The Ethernet framing is used for a lot of devices these days. Most
prominent are WiFi and WiMAX based devices. However for userspace
application it is important to classify these devices correctly and
not only see them as Ethernet devices. The daemons like HAL, DeviceKit
or even NetworkManager with udev support tries to do the classification
in userspace with a lot trickery and extra system calls. This is not
good and actually reaches its limitations. Especially since the kernel
does know the type of the Ethernet device it is pretty stupid.
To solve this problem the underlying device type needs to be set and
then the value will be exported as DEVTYPE via uevents and available
within udev.
# cat /sys/class/net/wlan0/uevent
DEVTYPE=wlan
INTERFACE=wlan0
IFINDEX=5
This is similar to subsystems like USB and SCSI that distinguish
between hosts, devices, disks, partitions etc.
The new SET_NETDEV_DEVTYPE() is a convenience helper to set the actual
device type. All device types are free form, but for convenience the
same strings as used with RFKILL are choosen.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Mostly just simple conversions:
* ray_cs had bogus return of NET_TX_LOCKED but driver
was not using NETIF_F_LLTX
* hostap and ipw2x00 had some code that returned value
from a called function that also had to change to return netdev_tx_t
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
1. add intel's sdio vendor id to sdio_ids.h
2. move iwmc3200 sdio devices' ids to sdio_ids.h
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Many developers use "/debug/" or "/debugfs/" or "/sys/kernel/debug/"
directory name to mount debugfs filesystem for ftrace according to
./Documentation/tracers/ftrace.txt file.
And, three directory names(ex:/debug/, /debugfs/, /sys/kernel/debug/) is
existed in kernel source like ftrace, DRM, Wireless, Documentation,
Network[sky2]files to mount debugfs filesystem.
debugfs means debug filesystem for debugging easy to use by greg kroah
hartman. "/sys/kernel/debug/" name is suitable as directory name
of debugfs filesystem.
- debugfs related reference: http://lwn.net/Articles/334546/
Fix inconsistency of directory name to mount debugfs filesystem.
* From Steven Rostedt
- find_debugfs() and tracing_files() in this patch.
Signed-off-by: GeunSik Lim <geunsik.lim@samsung.com>
Acked-by : Inaky Perez-Gonzalez <inaky@linux.intel.com>
Reviewed-by : Steven Rostedt <rostedt@goodmis.org>
Reviewed-by : James Smart <james.smart@emulex.com>
CC: Jiri Kosina <trivial@kernel.org>
CC: David Airlie <airlied@linux.ie>
CC: Peter Osterlund <petero2@telia.com>
CC: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
CC: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
CC: Masami Hiramatsu <mhiramat@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
SH4's BUG() seems to confuse the compiler as it is considered to
return; thus, some functions would trigger usage of uninitialized
variables or non-void functions returning void.
Work around by initializing/returning.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
When the i2400m device resets, the driver code will force some
functions to return a -ERESTARTSYS error code, which can is used by
the caller to determine which recovery actions to take.
However, in certain situations the only thing that can be done is to
bubble up said error code to user space, for handling.
However, -ERESTARSYS was a poor choice, as it is supposed to be used
by the kernel only.
As such, replace -ERESTARTSYS with -EL3RST; as well, in
i2400m_msg_to_dev(), when the device is in boot mode (following a
recent reset), return -EL3RST instead of -ENODEV (meaning the device
is in bootrom mode after a reset, not that the device was
disconnected, and thus, normal commands cannot be executed).
Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com>
When a device reset happens during firmware load [in
i2400m_dev_bootstrap()], __i2400m_dev_start() will retry a number of
times. However, for those retries to be able to accomplish anything,
the device's bootrom has to be reinitialized.
Thus, on the retry path, pass the I2400M_MAC_REINIT to the firmware
load code.
Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com>
The current SDIO code was working in polling mode for boot-mode
(firmware load) mode. This was causing issues on some hardware.
Moved all the RX code to use a unified IRQ handler that based on the
type of data the device is sending can discriminate and decide which
is the right destination.
As well, all the reads from the device are made to be at least the
block size (256); the driver will ignore the rest when not needed.
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
When i2400m_bootrom_init() fails to put the device into a state of
being ready to accept firmware, the driver was currently trying to
reset it if it failed to do so. This is not too useful; as part of
trying to put the device in the right state a few resets have already
been tried.
At this point, things are probably fried out and an extra reset might
do more harm than good (for example causing reseting of other
functions in the same composite device).
So it is left up to the callers to determine the error path to take
(at the end this is always i2400m_setup(), who depending on how many
retries are left, might give up on the device).
From a fix by Cindy H. Kao.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
This change moves the table of "pokes" performed on the device at boot
time to the bus specific portion of the driver.
Different models of the i2400m device supported by this driver require
different poke tables, thus having a single table that works for all
is impossible. For that, the table is moved to the bus-specific
driver, who can decide which table to use based on the specifics of
the device and point the generic driver to it.
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
The code that sets up the i2400m (firmware load and general driver
setup after it) includes a couple of retry loops.
The SDIO device sometimes can get in more complicated corners than the
USB one (due to its interaction with other SDIO functions), that
require trying a few more times.
To solve that, without having a failing USB device taking longer to be
considered dead, allow the retry counts to be specified by the
bus-specific driver, which the general driver takes as a parameter.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
When a device reboot happens when we are under probe, with init_mutex
taken, make sure we can recover. Have dev_reset_handle set boot mode
and i2400m_msg_to_dev() will see it and fail gracefully instead of
timing out.
Found and diagnosed by Cindy H. Kao.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
When the TX FIFO filled up and i2400m_tx_new() failed to allocate a
new TX message header, a missing check for said condition was causing a
kernel oops when trying to dereference a NULL i2400m->tx_msg pointer.
Found and diagnosed by Cindy H. Kao.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
i2400m_dev_shutdown() tried to reset the device to put it in a known
state before shutting down.
But that turned out to be pointless. We reach this case in two paths:
1 - when the device resets, to clean up state
2 - when the driver is unloaded, for the same
however, in both cases it is pointless; in (1) the device is already
reset, why do it again? in (2) we can't -- the USB stack, for example,
doesn't allow communicating with the device when the driver is being
unbound and if the device is disconnected, the device is gone already.
So just remove it. Leave the function as a placeholder for future
cleanups that will be done from data allocated by the driver during
device operation.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
i2400m_tx_skip_tail() needs to handle the special case of being called
when the tail room that is left over in the FIFO is zero.
This happens when a TX message header was opened at the very end of
the FIFO (without payloads). The i2400m_tx_close() code already marked
said TX message (header) to be skipped and this function should be
doing nothing.
It is called anyway because it is part of a common "corner case" path
handling which takes care of more cases than only this one.
The tail room computation was also improved to take care of the case
when tx_in is at the end of the buffer boundary; tail_room has to be
modded (%) to the buffer size. To do that in a single well-documented
place, __i2400m_tx_tail_room() is introduced and used.
Treat i2400m->tx_in == 0 as a corner case and handle it accordingly.
Found and diagnosed by Cindy H. Kao.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
In some situations, when a new TX message header is started, there
might be no space for data payloads. In this case the message is left
with zero payloads and the i2400m_tx_close() function has just to mark
it as "to skip". If it tries to go ahead it will overwrite things
because there is no space to add padding as defined by the
bus-specific layer. This can cause buffer overruns and in some stress
cases, panics.
Found and diagnosed by Cindy H. Kao.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
The constant is being use as an alignment factor, not as a padding
factor; made reading/reviewing the code quite confusing.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
This reset type causes the WiMAX function to be disabled and
re-enabled, which will force the WiMAX device to reset and enter boot
mode.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
By mistake, the BUG_ON() check was left in there and it will fail when
called if i2400m->work_queue is still not setup.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
RX support is the only user of the work-queue, to process
reports/notifications from the device. Thus, it needs the work queue
to be initialized first.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Reported and fixed by Cindy H Kao.
When the device is stopped __i2400m_dev_stop() stops the network
queue.
However, when this is done in the middle of heavy network operation,
when the bus-specific subdriver is still wrapping up and it reports a
sent TX transaction with _tx_msg_sent() right after the device was
stopped, the queue was being started again, which was causing a stream
of oopsen and finally a panic.
In any case, said call has no place there. It's a left over from an
early implementation that was discarded later on.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
The i2400m driver waits for the device to report being ready for
entering power save before asking it to do so. This module parameter
allows control of said operation; if disabled, the driver won't ask
the device to enter power save mode.
This is useful in setups where power saving is not so important or
when the overhead imposed by network reentry after power save is not
acceptable; by combining this with parameter 'idle_mode_disabled', the
driver will always maintain both the connection and the device in
active state.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
When the i2400m is connected to a network, the host interface (USB)
cannot be suspended. For that to happen, the device has to have
negotiated with the basestation to put the link on IDLE state.
If the host tries to put the device in standby while it is connected
but not idle, the device resets, as the driver should not do that.
To avoid triggering that, when the USB susbsytem requires the driver
to autosuspend the device, the driver checks if the device is not yet
idle. If it is not, the request is requested (will be retried again
later on after the autosuspend timeout). At some point the device will
enter idle and the request will succeed (unless of course, there is
network traffic, but at that point, there is no idle neither in the
link or the host interface).
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
From a fix by Cindy H Kao:
Block size has to be set before sending IOE enable because the
firmware reads the block size register before it reads IOE register.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Functions i2400m_report_tlv*() are only called from
i2400m_report_hook(), called in a workqueue by
i2400m_report_hook_work(). The scheduler checks for device readiness
before scheduling.
Added an extra check for readiness in i2400m_report_hook_work(), which
makes all the checks down the line redundant.
Obviously the device state could change in the middle, but error
handling would take care of that.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
By running 'echo 1 > /sys/kernel/debug/wimax:wmxX/i2400m/trace_msg_from_user',
the driver will echo to user space all the commands being sent to the
device from user space, along with the responses.
However, this only helps with the commands being sent from user space;
with this patch, the trace hook is moved to i2400m_msg_to_dev(), which
is the single access point for running commands to the device (both by
user space and the kernel driver). This allows better debugging by
having a complete stream of commands/acks and reports.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
When commands are sent from user space, trace both the command sent
and the answer received over the "echo" pipe instead of over the
"trace" pipe when command tracing is enabled. As well, when the device
sends a reports/indications, send it over the "echo" pipe.
The "trace" pipe is used by the device to send firmware traces;
gets confusing. Another named pipe makes it easier to split debug
information.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
The WiMAX i2400m driver needs to generate a fake source MAC address to
fake an ethernet header (for destination, the card's MAC is
used). This is the source of the packet, which is the basestation it
came from. The basestation's mac address is not usable for this, as it
uses its own namespace and it is not always available.
Currently the fake source MAC address was being set to all zeros,
which was causing trouble with bridging.
Use random_ether_addr() to generate a proper one that creates no
trouble.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
When the i2400m receives data and the device indicates there has to be
reordering, we keep an sliding window implementation to sort the
packets before sending them to the network stack.
One of the "operations" that the device indicates is "queue a packet
and update the window start". When the queue is empty, this is
equivalent to "deliver the packet and update the window start".
That case was optimized in i2400m_roq_queue_update_ws() so that we
would not pointlessly queue and dequeue a packet. However, when the
optimization was active, it wasn't updating the window start. That
caused the reorder management code to get confused later on with what
seemed to be wrong reorder requests from the device.
Thus the fix implemented is to do the right thing and update the
window start in both cases, when the queue is empty (and the
optimization is done) and when not.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Fix printk format warnings:
drivers/net/wimax/i2400m/netdev.c:523: warning: format '%zu' expects type 'size_t', but argument 7 has type 'unsigned int'
drivers/net/wimax/i2400m/netdev.c:548: warning: format '%zu' expects type 'size_t', but argument 7 has type 'unsigned int'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow the device to give the driver RX data with reorder information.
When that is done, the device will indicate the driver if a packet has
to be held in a (sorted) queue. It will also tell the driver when held
packets have to be released to the OS.
This is done to improve the WiMAX-protocol level retransmission
support when missing frames are detected.
The code docs provide details about the implementation.
In general, this just hooks into the RX path in rx.c; if a packet with
the reorder bit in the RX header is detected, the reorder information
in the header is extracted and one of the four main reorder operations
are executed. In one case (queue) no packet will be delivered to the
networking stack, just queued, whereas in the others (reset, update_ws
and queue_update_ws), queued packet might be delivered depending on
the window start for the specific queue.
The modifications to files other than rx.c are:
- control.c: during device initialization, enable reordering support
if the rx_reorder_disabled module parameter is not enabled
- driver.c: expose a rx_reorder_disable module parameter and call
i2400m_rx_setup/release() to initialize/shutdown RX reorder
support.
- i2400m.h: introduce members in 'struct i2400m' needed for
implementing reorder support.
- linux/i2400m.h: introduce TLVs, commands and constant definitions
related to RX reorder
Last but not least, the rx reorder code includes an small circular log
where the last N reorder operations are recorded to be displayed in
case of inconsistency. Otherwise diagnosing issues would be almost
impossible.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Base versions handle constant folding now.
Edited by Inaky to fix conflicts due to changes in netdev.c
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Newer i2400m firmwares (>= v1.4) extend the data RX protocol so that
each packet has a 16 byte header. This header is mainly used to
implement host reordeing (which is addressed in later commits).
However, this header also allows us to overwrite it (once data has
been extracted) with an Ethernet header and deliver to the networking
stack without having to reallocate the skb (as it happened in fw <=
v1.3) to make room for it.
- control.c: indicate the device [dev_initialize()] that the driver
wants to use the extended data RX protocol. Also involves adding the
definition of the needed data types in include/linux/wimax/i2400m.h.
- rx.c: handle the new payload type for the extended RX data
protocol. Prepares the skb for delivery to
netdev.c:i2400m_net_erx().
- netdev.c: Introduce i2400m_net_erx() that adds the fake ethernet
address to a prepared skb and delivers it to the networking
stack.
- cleanup: in most instances in rx.c, the variable 'single' was
renamed to 'single_last' for it better conveys its meaning.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For power saving reasons, WiMAX links can be put in idle mode while
connected after a certain time of the link not being used for tx or
rx. In this mode, the device pages the base-station regularly and when
data is ready to be transmitted, the link is revived.
This patch allows the user to control the time the device has to be
idle before it decides to go to idle mode from a sysfs
interace.
It also updates the initialization code to acknowledge the module
variable 'idle_mode_disabled' when the firmware is a newer version
(upcoming 1.4 vs 2.6.29's v1.3).
The method for setting the idle mode timeout in the older firmwares is
much more limited and can be only done at initialization time. Thus,
the sysfs file will return -ENOSYS on older ones.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Upcoming modifications will need to test for the running firmware
version before activating a feature or not. This is helpful to
implement backward compatibility with older firmware versions.
Modify i2400m_firmware_check() to encode in i2400m->fw_version the
major and minor version numbers of the firmware interface.
As well, move the call to be done as the very first operation once we
have communication with the device during probe() [in
__i2400m_dev_start()]. This is needed so any operation that is
executed afterwards can determine which fw version it is talking to.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Firmware interface version 8.x.x has long been deprecated and is no
longer supported (nor available, as it is a preproduction firmware),
so it can be safely dropped.
Add support for firmware interface v9.2.x (current is 9.1.x). Firmware
version 9.2.x is backwards compatible with 9.1.x; new features are
enabled if switches are pressed to turn them on. Forthcoming commits
to the driver will start pressing those switches when the firmware
interface supports it.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In order to support backwards compatibility with older firmwares when
a driver is updated by a new kernel release, the i2400m bus drivers
can declare a list of firmware files they can work with (in general
these will be each a different version). The firmware loader will try
them in sequence until one loads.
Thus, if a user doesn't have the latest and greatest firmware that a
newly installed kernel would require, the driver would fall back to
the firmware from a previous release.
To support this, the i2400m->bus_fw_name is changed to be a NULL
terminated array firmware file names (and renamed to bus_fw_names) and
we add a new entry (i2400m->fw_name) that points to the name of the
firmware being currently used. All code that needs to print the
firmware file name uses i2400m->fw_name instead of the old
i2400m->bus_fw_name.
The code in i2400m_dev_bootstrap() that loads the firmware is changed
with an iterator over the firmware file name list that tries to load
each form user space, using the first one that succeeds in
request_firmware() (and thus stopping the iteration).
The USB and SDIO bus drivers are updated to take advantage of this and
reflect which firmwares they support.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove some pointless conditionals before kfree_skb().
Signed-off-by: Wei Yongjun <yjwei@cn.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a one liner change to have the driver use by default the v1.4
of the i2400m firmware instead of v1.3. The v1.4 version of the
firmware has been submitted to David Woodhouse for inclusion in the
linux-firmware tree and it is already available at
http://linuxwimax.org/Download.
The reason for this change is that the 1.3 release of the user space
software and firmware has a few issues that will make it difficult to
use with currently deployed commercial networks such as Xohm and
Clearwire.
As well, the new 1.4 release of the user space software (which matches
the 1.4 firmware) has intermitent issues with the 1.3 firmware.
The 1.4 release in http://linuxwimax.org/Download has been widely
deployed and tested with the codebase in 2.6.29-rc, the 1.4 firmware
and the 1.4 user space components.
We understand it is quite late in the rc process for such a change,
but would like to ask for the change to be taken into consideration.
Alternatively, a user could always force feed a 1.4 firmware into a
driver that doesn't have this modification by:
$ cd /lib/firmware
$ mv i2400m-fw-usb-1.3.sbcf i2400m-fw-usb-1.3.real.sbcf
$ ln -sf i2400m-fw-usb-1.4.sbc i2400m-fw-usb-1.3.sbcf
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Base versions handle constant folding now.
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Acked-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As reported by Toralf Förster and Randy Dunlap.
- http://linuxwimax.org/pipermail/wimax/2009-January/000460.html
- http://lkml.org/lkml/2009/1/29/279
The definitions needed for the wimax stack and i2400m driver debug
infrastructure was, by mistake, compiled depending on CONFIG_DEBUG_FS
(by them being placed in the debugfs.c files); thus the build broke in
2.6.29-rc3 when debugging was enabled (CONFIG_WIMAX_DEBUG) and
DEBUG_FS was disabled.
These definitions are always needed if debug is enabled at compile
time (independently of DEBUG_FS being or not enabled), so moving them
to a file that is always compiled fixes the issue.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Roel Kluin reported a bug in two error paths where skbs were wrongly
being freed using kfree(). He provided a fix where it was replaced to
kfree_skb(), as it should be.
However, in i2400mu_rx(), the error path was missing returning an
indication of the failure. Changed to reset rx_skb to NULL and return
it to the caller, i2400mu_rxd(). It will be treated as a transient
error and just ignore the packet.
Depending on the buffering conditions inside the device, the data
packet might be dropped or the device will signal the host again for
data-ready-to-read and the host will retry.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Current code was assuming PM was always enabled, which is not
correct. Code which accesses members in the struct usb_device that are
dependant on CONFIG_PM must be protected the same.
Reported by Randy Dunlap from a build error in the linux-next tree on
07/01/2009.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>