x86 now sets up the mcount locations through the build and no longer
needs to record the ip when the function is executed. This patch changes
the initial mcount to simply return. There's no need to do any other work.
If the ftrace start up test fails, the original mcount will be what everything
will use, so having this as fast as possible is a good thing.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Record the address of the mcount call-site. Currently all archs except sparc64
record the address of the instruction following the mcount call-site. Some
general cleanups are entailed. Storing mcount addresses in rec->ip enables
looking them up in the kprobe hash table later on to check if they're kprobe'd.
Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com>
Cc: davem@davemloft.net
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The fault label to jump to on fault of updating the code was misplaced
preventing the fault from being recorded.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch replaces the indirect call to the mcount function
pointer with a direct call that will be patched by the
dynamic ftrace routines.
On boot up, the mcount function calls the ftace_stub function.
When the dynamic ftrace code is initialized, the ftrace_stub
is replaced with a call to the ftrace_record_ip, which records
the instruction pointers of the locations that call it.
Later, the ftraced daemon will call kstop_machine and patch all
the locations to nops.
When a ftrace is enabled, the original calls to mcount will now
be set top call ftrace_caller, which will do a direct call
to the registered ftrace function. This direct call is also patched
when the function that should be called is updated.
All patching is performed by a kstop_machine routine to prevent any
type of race conditions that is associated with modifying code
on the fly.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch moves the memory management of the ftrace
records out of the arch code and into the generic code
making the arch code simpler.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch patches the call to mcount with nops instead
of a jmp over the mcount call.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>