No point for an extra export just to set the extra argument of
hrtimer_start_range_ns() to 0.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203502.808544539@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The evaluation of the next timer in the nohz code is based on jiffies
while all the tick internals are nano seconds based. We have also to
convert hrtimer nanoseconds to jiffies in the !highres case. That's
just wrong and introduces interesting corner cases.
Turn it around and convert the next timer wheel timer expiry and the
rcu event to clock monotonic and base all calculations on
nanoseconds. That identifies the case where no timer is pending
clearly with an absolute expiry value of KTIME_MAX.
Makes the code more readable and gets rid of the jiffies magic in the
nohz code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Link: http://lkml.kernel.org/r/20150414203502.184198593@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
hrtimer softirq is a leftover from the initial implementation and
serves only the purpose to handle the enqueueing of already expired
timers in the high resolution timer mode. We discussed whether we
change the return value and force all start sites to handle that the
timer is already expired, but that would be a Herculean task and I'm
not sure whether its a good idea to enforce that handling on
everyone.
A simpler solution is to enforce a timer interrupt instead of raising
and scheduling a softirq. Just use the existing infrastructure to do
so and remove all the softirq leftovers.
The HRTIMER softirq enum is now unused, but kept around because trace
parsers rely on the existing numbering.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.840834708@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
__remove_hrtimer() needs to evaluate the expiry time to figure out
whether the timer which is removed is eventually the first expiring
timer on the cpu. Keep a pointer to it, which is lazily updated, so we
can avoid the evaluation dance and retrieve the information from there.
Generates slightly better code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.752838019@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use the return value instead of reevaluating the information.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.658152945@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The active_bases field is guaranteed to be in sync with the timerqueue
of the corresponding clock base. So we can use it for iterating over
the clock bases. This allows to break out early if no more active
clock bases are available and avoids touching the cache lines of
inactive clock bases.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.322887675@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On every tick/hrtimer interrupt we update the offset variables of the
clock bases. That's silly because these offsets change very seldom.
Add a sequence counter to the time keeping code which keeps track of
the offset updates (clock_was_set()). Have a sequence cache in the
hrtimer cpu bases to evaluate whether the offsets must be updated or
not. This allows us later to avoid pointless cacheline pollution.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/20150414203501.132820245@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
The softirq time field in the clock bases is an optimization from the
early days of hrtimers. It provides a coarse "jiffies" like time
mostly for self rearming timers.
But that comes with a price:
- Larger code size
- Extra storage space
- Duplicated functions with really small differences
The benefit of this is optimization is marginal for contemporary
systems.
Consolidate everything on the high resolution timer
implementation. This makes further optimizations possible.
Text size reduction:
x8664 -95, i386 -356, ARM -148, ARM64 -40, power64 -16
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203501.039977424@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point in having usigned long for /proc/timer_list statistics. Make
them unsigned int.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203500.959773467@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The resolution is directly accessible now. So its simpler just to fill
in the values of the timespec and be done with it.
Text size reduction (combined with "hrtimer: Get rid of the resolution
field in hrtimer_clock_base"):
x8664 -61, i386 -221, ARM -60, power64 -48
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203500.879888080@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The field has no value because all clock bases have the same
resolution. The resolution only changes when we switch to high
resolution timer mode. We can evaluate that from a single static
variable as well. In the !HIGHRES case its simply a constant.
Export the variable, so we can simplify the usage sites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203500.645454122@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
'active_bases' indicates which clock-base have active timer. The
intention of this bit field was to avoid evaluating inactive bases. It
was introduced with the introduction of the BOOTTIME and TAI clock
bases, but it was never brought into full use.
We want to use it now, but in __remove_hrtimer() the update happens
after the calling hrtimer_force_reprogram() which has to evaluate all
clock bases for the next expiring timer. So in case the last timer of
a clock base got removed we still see the active bit and therefor
evaluate the clock base for no value. There are further optimizations
possible when active_bases is updated in the right place.
Move the update before the call to hrtimer_force_reprogram()
[ tglx: Massaged changelog ]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/20150414203500.533438642@linutronix.de
Link: http://lkml.kernel.org/r/c7c8ebcd9ed88bb09d76059c745a1fafb48314e7.1428039899.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Document the calling context conditions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150413210035.178751779@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
clockevents_notify() is a leftover from the early design of the
clockevents facility. It's really not a notification mechanism,
it's a multiplex call. We are way better off to have explicit
calls instead of this monstrosity.
Split out the cleanup function for a dead cpu and invoke it
directly from the cpu down code. Make it conditional on
CPU_HOTPLUG as well.
Temporary change, will be refined in the future.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebased, added clockevents_notify() removal ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1735025.raBZdQHM3m@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
clockevents_notify() is a leftover from the early design of the
clockevents facility. It's really not a notification mechanism,
it's a multiplex call. We are way better off to have explicit
calls instead of this monstrosity.
Split out the tick_handover call and invoke it explicitely from
the hotplug code. Temporary solution will be cleaned up in later
patches.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebase ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1658173.RkEEILFiQZ@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
No point to expose everything to the world. People just believe
such functions can be abused for whatever purposes. Sigh.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[ Rebased on top of 4.0-rc5 ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/28017337.VbCUc39Gme@vostro.rjw.lan
[ Merged to latest timers/core ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If an attacker can cause a controlled kernel stack overflow, overwriting
the restart block is a very juicy exploit target. This is because the
restart_block is held in the same memory allocation as the kernel stack.
Moving the restart block to struct task_struct prevents this exploit by
making the restart_block harder to locate.
Note that there are other fields in thread_info that are also easy
targets, at least on some architectures.
It's also a decent simplification, since the restart code is more or less
identical on all architectures.
[james.hogan@imgtec.com: metag: align thread_info::supervisor_stack]
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: David Miller <davem@davemloft.net>
Acked-by: Richard Weinberger <richard@nod.at>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Chris Zankel <chris@zankel.net>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull timer updates from Ingo Molnar:
"The main changes in this cycle were:
- rework hrtimer expiry calculation in hrtimer_interrupt(): the
previous code had a subtle bug where expiry caching would miss an
expiry, resulting in occasional bogus (late) expiry of hrtimers.
- continuing Y2038 fixes
- ktime division optimization
- misc smaller fixes and cleanups"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
hrtimer: Make __hrtimer_get_next_event() static
rtc: Convert rtc_set_ntp_time() to use timespec64
rtc: Remove redundant rtc_valid_tm() from rtc_hctosys()
rtc: Modify rtc_hctosys() to address y2038 issues
rtc: Update rtc-dev to use y2038-safe time interfaces
rtc: Update interface.c to use y2038-safe time interfaces
time: Expose get_monotonic_boottime64 for in-kernel use
time: Expose getboottime64 for in-kernel uses
ktime: Optimize ktime_divns for constant divisors
hrtimer: Prevent stale expiry time in hrtimer_interrupt()
ktime.h: Introduce ktime_ms_delta
I noticed some CLOCK_TAI timer test failures on one of my
less-frequently used configurations. And after digging in I
found in 76f4108892 (Cleanup hrtimer accessors to the
timekepeing state), the hrtimer_get_softirq_time tai offset
calucation was incorrectly rewritten, as the tai offset we
return shold be from CLOCK_MONOTONIC, and not CLOCK_REALTIME.
This results in CLOCK_TAI timers expiring early on non-highres
capable machines.
This patch fixes the issue, calculating the tai time properly
from the monotonic base.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable <stable@vger.kernel.org> # 3.17+
Link: http://lkml.kernel.org/r/1423097126-10236-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
kernel/time/hrtimer.c:444:9: sparse: symbol '__hrtimer_get_next_event' was not declared. Should it be static?
Fixes: 9bc7491906 hrtimer: Prevent stale expiry time in hrtimer_interrupt()
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: kbuild-all@01.org
Link: http://lkml.kernel.org/r/20150123121206.GA4766@snb
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* ktime division optimization
* Expose a few more y2038-safe timekeeping interfaces
* RTC core changes to address y2038
Signed-off-by: John Stultz <john.stultz@linaro.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUwvXJAAoJEK8vClot3jMxTAoH/1DMT3fuVx6RFjKJ/P1abIB+
+w3cfEgEWgkSwYmuS0XHq1WppnQ0p0n1GOJcWUPiP9tTGrKcTdp5uG5qMprcga3q
XoeR8wefkyEKyH4ukStdGKQKot2Vj117TauDtVNPf2eOOBS5pqOw1dYUlwjlMtOj
45poW5ORNKmBMn90e22k8nlNSI9PebvMh9w6nzeYJWEibdyk96z2TOk1puPTvws/
ppyNzlhnKckpNb49JVxE8B4DNRpXsUV+aUxRNyRPN4OdqCGzHwIJCyEKi6+nbRyb
4HMUhfl8eRB2Iu7zHF2a2XEOqJdOjl8i1DsTwr3Vwd3crf4XkXD6WtTtGl2YKkU=
=YhDu
-----END PGP SIGNATURE-----
Merge tag 'fortglx-3.20-time' of https://git.linaro.org/people/john.stultz/linux into timers/core
Pull time updates from John Stultz for 3.20:
* ktime division optimization
* Expose a few more y2038-safe timekeeping interfaces
* RTC core changes to address y2038
At least on ARM, do_div() is optimized to turn constant divisors into
an inline multiplication by the reciprocal value at compile time.
However this optimization is missed entirely whenever ktime_divns() is
used and the slow out-of-line division code is used all the time.
Let ktime_divns() use do_div() inline whenever the divisor is constant
and small enough. This will make things like ktime_to_us() and
ktime_to_ms() much faster.
Cc: Arnd Bergmann <arnd.bergmann@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nicolas Pitre <nico@linaro.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
hrtimer_interrupt() has the following subtle issue:
hrtimer_interrupt()
lock(cpu_base);
expires_next = KTIME_MAX;
expire_timers(CLOCK_MONOTONIC);
expires = get_next_timer(CLOCK_MONOTONIC);
if (expires < expires_next)
expires_next = expires;
expire_timers(CLOCK_REALTIME);
unlock(cpu_base);
wakeup()
hrtimer_start(CLOCK_MONOTONIC, newtimer);
lock(cpu_base();
expires = get_next_timer(CLOCK_REALTIME);
if (expires < expires_next)
expires_next = expires;
So because we already evaluated the next expiring timer of
CLOCK_MONOTONIC we ignore that the expiry time of newtimer might be
earlier than the overall next expiry time in hrtimer_interrupt().
To solve this, remove the caching of the next expiry value from
hrtimer_interrupt() and reevaluate all active clock bases for the next
expiry value. To avoid another code duplication, create a shared
evaluation function and use it for hrtimer_get_next_event(),
hrtimer_force_reprogram() and hrtimer_interrupt().
There is another subtlety in this mechanism:
While hrtimer_interrupt() is running, we want to avoid to touch the
hardware device because we will reprogram it anyway at the end of
hrtimer_interrupt(). This works nicely for hrtimers which get rearmed
via the HRTIMER_RESTART mechanism, because we drop out when the
callback on that CPU is running. But that fails, if a new timer gets
enqueued like in the example above.
This has another implication: While hrtimer_interrupt() is running we
refuse remote enqueueing of timers - see hrtimer_interrupt() and
hrtimer_check_target().
hrtimer_interrupt() tries to prevent this by setting cpu_base->expires
to KTIME_MAX, but that fails if a new timer gets queued.
Prevent both the hardware access and the remote enqueue
explicitely. We can loosen the restriction on the remote enqueue now
due to reevaluation of the next expiry value, but that needs a
seperate patch.
Folded in a fix from Vignesh Radhakrishnan.
Reported-and-tested-by: Stanislav Fomichev <stfomichev@yandex-team.ru>
Based-on-patch-by: Stanislav Fomichev <stfomichev@yandex-team.ru>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: vigneshr@codeaurora.org
Cc: john.stultz@linaro.org
Cc: viresh.kumar@linaro.org
Cc: fweisbec@gmail.com
Cc: cl@linux.com
Cc: stuart.w.hayes@gmail.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1501202049190.5526@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull percpu consistent-ops changes from Tejun Heo:
"Way back, before the current percpu allocator was implemented, static
and dynamic percpu memory areas were allocated and handled separately
and had their own accessors. The distinction has been gone for many
years now; however, the now duplicate two sets of accessors remained
with the pointer based ones - this_cpu_*() - evolving various other
operations over time. During the process, we also accumulated other
inconsistent operations.
This pull request contains Christoph's patches to clean up the
duplicate accessor situation. __get_cpu_var() uses are replaced with
with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().
Unfortunately, the former sometimes is tricky thanks to C being a bit
messy with the distinction between lvalues and pointers, which led to
a rather ugly solution for cpumask_var_t involving the introduction of
this_cpu_cpumask_var_ptr().
This converts most of the uses but not all. Christoph will follow up
with the remaining conversions in this merge window and hopefully
remove the obsolete accessors"
* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
irqchip: Properly fetch the per cpu offset
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
Revert "powerpc: Replace __get_cpu_var uses"
percpu: Remove __this_cpu_ptr
clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
sparc: Replace __get_cpu_var uses
avr32: Replace __get_cpu_var with __this_cpu_write
blackfin: Replace __get_cpu_var uses
tile: Use this_cpu_ptr() for hardware counters
tile: Replace __get_cpu_var uses
powerpc: Replace __get_cpu_var uses
alpha: Replace __get_cpu_var
ia64: Replace __get_cpu_var uses
s390: cio driver &__get_cpu_var replacements
s390: Replace __get_cpu_var uses
mips: Replace __get_cpu_var uses
MIPS: Replace __get_cpu_var uses in FPU emulator.
arm: Replace __this_cpu_ptr with raw_cpu_ptr
...
Convert uses of __get_cpu_var for creating a address from a percpu
offset to this_cpu_ptr.
The two cases where get_cpu_var is used to actually access a percpu
variable are changed to use this_cpu_read/raw_cpu_read.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Right now we have time related prototypes in 3 different header
files. Move it to a single timekeeping header file and move the core
internal stuff into a core private header.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
With the plain nanoseconds based ktime_t we can simply use
ktime_divns() instead of going through loops and hoops of
timespec/timeval conversion.
Reported-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The non-scalar ktime_t implementation is basically a timespec
which has to be changed to support dates past 2038 on 32bit
systems.
This patch removes the non-scalar ktime_t implementation, forcing
the scalar s64 nanosecond version on all architectures.
This may have additional performance overhead on some 32bit
systems when converting between ktime_t and timespec structures,
however the majority of 32bit systems (arm and i386) were already
using scalar ktime_t, so no performance regressions will be seen
on those platforms.
On affected platforms, I'm open to finding optimizations, including
avoiding converting to timespecs where possible.
[ tglx: We can now cleanup the ktime_t.tv64 mess, but thats a
different issue and we can throw a coccinelle script at it ]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Rather then having two similar but totally different implementations
that provide timekeeping state to the hrtimer code, try to unify the
two implementations to be more simliar.
Thus this clarifies ktime_get_update_offsets to
ktime_get_update_offsets_now and changes get_xtime... to
ktime_get_update_offsets_tick.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
We call hrtimer_enqueue_reprogram() only when we are in high resolution
mode now so we don't need to check that again in hrtimer_enqueue_reprogram().
Once the check is removed, hrtimer_enqueue_reprogram() turns to be an
useless wrapper over hrtimer_reprogram() and can be dropped.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1403393357-2070-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In lowres mode, hrtimers are serviced by the tick instead of a clock
event. It works well as long as the tick stays periodic but we must also
make sure that the hrtimers are serviced in dynticks mode targets,
pretty much like timer list timers do.
Note that all dynticks modes are concerned: get_nohz_timer_target()
tries not to return remote idle CPUs but there is nothing to prevent
the elected target from entering dynticks idle mode until we lock its
base. It's also prefectly legal to enqueue hrtimers on full dynticks CPU.
So there are two requirements to correctly handle dynticks:
1) On target's tick stop time, we must not delay the next tick further
the next hrtimer.
2) On hrtimer queue time. If the tick of the target is stopped, we must
wake up that CPU such that it sees the new hrtimer and recalculate
the next tick accordingly.
The point 1 is well handled currently through get_nohz_timer_interrupt() and
cmp_next_hrtimer_event().
But the point 2 isn't handled at all.
Fixing this is easy though as we have the necessary API ready for that.
All we need is to call wake_up_nohz_cpu() on a target when a newly
enqueued hrtimer requires tick rescheduling, like timer list timer do.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/3d7ea08ce008698e26bd39fe10f55949391073ab.1403507178.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In lowres mode, hrtimers are serviced by the tick instead of a clock
event. Now it works well as long as the tick stays periodic but we
must also make sure that the hrtimers are serviced in dynticks mode.
Part of that job consist in kicking a dynticks hrtimer target in order
to make it reconsider the next tick to schedule to correctly handle the
hrtimer's expiring time. And that part isn't handled by the hrtimers
subsystem.
To prepare for fixing this, we need __hrtimer_start_range_ns() to be
able to resolve the CPU target associated to a hrtimer's object
'cpu_base' so that the kick can be centralized there.
So lets store it in the 'struct hrtimer_cpu_base' to resolve the CPU
without overhead. It is set once at CPU's online notification.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1403393357-2070-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>