Commit Graph

4149 Commits

Author SHA1 Message Date
Linus Torvalds
2004cef11e In the v6.12 scheduler development cycle we had 63 commits from 18 contributors:
- Implement the SCHED_DEADLINE server infrastructure - Daniel Bristot de Oliveira's
    last major contribution to the kernel:
 
      "SCHED_DEADLINE servers can help fixing starvation issues of low priority
      tasks (e.g., SCHED_OTHER) when higher priority tasks monopolize CPU
      cycles. Today we have RT Throttling; DEADLINE servers should be able to
      replace and improve that."
 
      (Daniel Bristot de Oliveira, Peter Zijlstra, Joel Fernandes,
       Youssef Esmat, Huang Shijie)
 
  - Preparatory changes for sched_ext integration:
 
      - Use set_next_task(.first) where required
      - Fix up set_next_task() implementations
      - Clean up DL server vs. core sched
      - Split up put_prev_task_balance()
      - Rework pick_next_task()
      - Combine the last put_prev_task() and the first set_next_task()
      - Rework dl_server
      - Add put_prev_task(.next)
 
       (Peter Zijlstra, with a fix by Tejun Heo)
 
  - Complete the EEVDF transition and refine EEVDF scheduling:
 
      - Implement delayed dequeue
      - Allow shorter slices to wakeup-preempt
      - Use sched_attr::sched_runtime to set request/slice suggestion
      - Document the new feature flags
      - Remove unused and duplicate-functionality fields
      - Simplify & unify pick_next_task_fair()
      - Misc debuggability enhancements
 
       (Peter Zijlstra, with fixes/cleanups by Dietmar Eggemann,
        Valentin Schneider and Chuyi Zhou)
 
  - Initialize the vruntime of a new task when it is first enqueued,
    resulting in significant decrease in latency of newly woken tasks.
    (Zhang Qiao)
 
  - Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
    (K Prateek Nayak, Peter Zijlstra)
 
  - Clean up and clarify the usage of Clean up usage of rt_task()
    (Qais Yousef)
 
  - Preempt SCHED_IDLE entities in strict cgroup hierarchies
    (Tianchen Ding)
 
  - Clarify the documentation of time units for deadline scheduler
    parameters. (Christian Loehle)
 
  - Remove the HZ_BW chicken-bit feature flag introduced a year ago,
    the original change seems to be working fine.
    (Phil Auld)
 
  - Misc fixes and cleanups (Chen Yu, Dan Carpenter, Huang Shijie,
    Peilin He, Qais Yousefm and Vincent Guittot)
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmbr8qcRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gdbw/+Mj3zWfYP+dtUkfgrR2FClPAJoo1/9Dz0
 LYD8XgYHu8rEJ0Aq+VbdkgYGUt9utvzUFPIxvWFDcldQl57KwhF4hp9Ir+PqJyYC
 NolQ1q8ddo1hnslxnEg6SgHVzQq/4FqMM0nDNUkQETCx6zTyFFeRf+q7o/2c2m5B
 uI9dSU1Wrx7XrXm2D3kB8+xP+ZRy+qhbFN5Pfuz96mhelfklylgKMfPzgAiCT/7T
 JTbQhQ2HdcCNgiLoSrWsHBDy2UYpouP4zb4jyd+lDQzhSUJrj3u4Xy4vVmuTKq+y
 sTgWlgKB+MTuh9UuJ4UYzSnMqg161UlMvtXeH84ABmAqDNGHRPtOKrrlcLtJ3D4x
 m1SPhNnsvpjOu2pH0XLIS8al3VUesWND5S+rucHRYSq6Nvhivf4MTvRJlicXXurL
 Mt2APnIlhGJuKBNWnmyZovVdtO0ZUUPlaZWfr3rCS4txAVo+HwWhsm3uhtTycQqN
 gazsCiuGh6Jds90ZqA/BvdLWG+DY8J0xLlV3ex4pCXuQ/HFrabVWTyThJsULhrZ2
 5mTdWIsocPctNMO9/RHMy7vJI7G7ljgHEquWVn5kiGGzXhK6VwVwKAMpfgXGw+YA
 yVP6/M7a7g2yEzj69gXkcDa8k/kedMVquJ/G/8YhZM7u7sPqsMjpmaGsqsJRfnpT
 ChngAzap+kA=
 =TEC6
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - Implement the SCHED_DEADLINE server infrastructure - Daniel Bristot
   de Oliveira's last major contribution to the kernel:

     "SCHED_DEADLINE servers can help fixing starvation issues of low
      priority tasks (e.g., SCHED_OTHER) when higher priority tasks
      monopolize CPU cycles. Today we have RT Throttling; DEADLINE
      servers should be able to replace and improve that."

   (Daniel Bristot de Oliveira, Peter Zijlstra, Joel Fernandes, Youssef
   Esmat, Huang Shijie)

 - Preparatory changes for sched_ext integration:
     - Use set_next_task(.first) where required
     - Fix up set_next_task() implementations
     - Clean up DL server vs. core sched
     - Split up put_prev_task_balance()
     - Rework pick_next_task()
     - Combine the last put_prev_task() and the first set_next_task()
     - Rework dl_server
     - Add put_prev_task(.next)

   (Peter Zijlstra, with a fix by Tejun Heo)

 - Complete the EEVDF transition and refine EEVDF scheduling:
     - Implement delayed dequeue
     - Allow shorter slices to wakeup-preempt
     - Use sched_attr::sched_runtime to set request/slice suggestion
     - Document the new feature flags
     - Remove unused and duplicate-functionality fields
     - Simplify & unify pick_next_task_fair()
     - Misc debuggability enhancements

   (Peter Zijlstra, with fixes/cleanups by Dietmar Eggemann, Valentin
   Schneider and Chuyi Zhou)

 - Initialize the vruntime of a new task when it is first enqueued,
   resulting in significant decrease in latency of newly woken tasks
   (Zhang Qiao)

 - Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
   (K Prateek Nayak, Peter Zijlstra)

 - Clean up and clarify the usage of Clean up usage of rt_task()
   (Qais Yousef)

 - Preempt SCHED_IDLE entities in strict cgroup hierarchies
   (Tianchen Ding)

 - Clarify the documentation of time units for deadline scheduler
   parameters (Christian Loehle)

 - Remove the HZ_BW chicken-bit feature flag introduced a year ago,
   the original change seems to be working fine (Phil Auld)

 - Misc fixes and cleanups (Chen Yu, Dan Carpenter, Huang Shijie,
   Peilin He, Qais Yousefm and Vincent Guittot)

* tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
  sched/cpufreq: Use NSEC_PER_MSEC for deadline task
  cpufreq/cppc: Use NSEC_PER_MSEC for deadline task
  sched/deadline: Clarify nanoseconds in uapi
  sched/deadline: Convert schedtool example to chrt
  sched/debug: Fix the runnable tasks output
  sched: Fix sched_delayed vs sched_core
  kernel/sched: Fix util_est accounting for DELAY_DEQUEUE
  kthread: Fix task state in kthread worker if being frozen
  sched/pelt: Use rq_clock_task() for hw_pressure
  sched/fair: Move effective_cpu_util() and effective_cpu_util() in fair.c
  sched/core: Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
  sched: Add put_prev_task(.next)
  sched: Rework dl_server
  sched: Combine the last put_prev_task() and the first set_next_task()
  sched: Rework pick_next_task()
  sched: Split up put_prev_task_balance()
  sched: Clean up DL server vs core sched
  sched: Fixup set_next_task() implementations
  sched: Use set_next_task(.first) where required
  sched/fair: Properly deactivate sched_delayed task upon class change
  ...
2024-09-19 15:55:58 +02:00
Linus Torvalds
067610ebaa RCU pull request for v6.12
This pull request contains the following branches:
 
 context_tracking.15.08.24a: Rename context tracking state related
         symbols and remove references to "dynticks" in various context
         tracking state variables and related helpers; force
         context_tracking_enabled_this_cpu() to be inlined to avoid
         leaving a noinstr section.
 
 csd.lock.15.08.24a: Enhance CSD-lock diagnostic reports; add an API
         to provide an indication of ongoing CSD-lock stall.
 
 nocb.09.09.24a: Update and simplify RCU nocb code to handle
         (de-)offloading of callbacks only for offline CPUs; fix RT
         throttling hrtimer being armed from offline CPU.
 
 rcutorture.14.08.24a: Remove redundant rcu_torture_ops get_gp_completed
         fields; add SRCU ->same_gp_state and ->get_comp_state
         functions; add generic test for NUM_ACTIVE_*RCU_POLL* for
         testing RCU and SRCU polled grace periods; add CFcommon.arch
         for arch-specific Kconfig options; print number of update types
         in rcu_torture_write_types();
         add rcutree.nohz_full_patience_delay testing to the TREE07
         scenario; add a stall_cpu_repeat module parameter to test
         repeated CPU stalls; add argument to limit number of CPUs a
         guest OS can use in torture.sh;
 
 rcustall.09.09.24a: Abbreviate RCU CPU stall warnings during CSD-lock
         stalls; Allow dump_cpu_task() to be called without disabling
         preemption; defer printing stall-warning backtrace when holding
         rcu_node lock.
 
 srcu.12.08.24a: Make SRCU gp seq wrap-around faster; add KCSAN checks
         for concurrent updates to ->srcu_n_exp_nodelay and
         ->reschedule_count which are used in heuristics governing
         auto-expediting of normal SRCU grace periods and
         grace-period-state-machine delays; mark idle SRCU-barrier
         callbacks to help identify stuck SRCU-barrier callback.
 
 rcu.tasks.14.08.24a: Remove RCU Tasks Rude asynchronous APIs as they
         are no longer used; stop testing RCU Tasks Rude asynchronous
         APIs; fix access to non-existent percpu regions; check
         processor-ID assumptions during chosen CPU calculation for
         callback enqueuing; update description of rtp->tasks_gp_seq
         grace-period sequence number; add rcu_barrier_cb_is_done()
         to identify whether a given rcu_barrier callback is stuck;
         mark idle Tasks-RCU-barrier callbacks; add
         *torture_stats_print() functions to print detailed
         diagnostics for Tasks-RCU variants; capture start time of
         rcu_barrier_tasks*() operation to help distinguish a hung
         barrier operation from a long series of barrier operations.
 
 rcu_scaling_tests.15.08.24a:
         refscale: Add a TINY scenario to support tests of Tiny RCU
         and Tiny SRCU; Optimize process_durations() operation;
 
         rcuscale: Dump stacks of stalled rcu_scale_writer() instances;
         dump grace-period statistics when rcu_scale_writer() stalls;
         mark idle RCU-barrier callbacks to identify stuck RCU-barrier
         callbacks; print detailed grace-period and barrier diagnostics
         on rcu_scale_writer() hangs for Tasks-RCU variants; warn if
         async module parameter is specified for RCU implementations
         that do not have async primitives such as RCU Tasks Rude;
         make all writer tasks report upon hang; tolerate repeated
         GFP_KERNEL failure in rcu_scale_writer(); use special allocator
         for rcu_scale_writer(); NULL out top-level pointers to heap
         memory to avoid double-free bugs on modprobe failures; maintain
         per-task instead of per-CPU callbacks count to avoid any issues
         with migration of either tasks or callbacks; constify struct
         ref_scale_ops.
 
 fixes.12.08.24a: Use system_unbound_wq for kfree_rcu work to avoid
         disturbing isolated CPUs.
 
 misc.11.08.24a: Warn on unexpected rcu_state.srs_done_tail state;
         Better define "atomic" for list_replace_rcu() and
         hlist_replace_rcu() routines; annotate struct
         kvfree_rcu_bulk_data with __counted_by().
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQSi2tPIQIc2VEtjarIAHS7/6Z0wpQUCZt8+8wAKCRAAHS7/6Z0w
 pTqoAPwPN//tlEoJx2PRs6t0q+nD1YNvnZawPaRmdzgdM8zJogD+PiSN+XhqRr80
 jzyvMDU4Aa0wjUNP3XsCoaCxo7L/lQk=
 =bZ9z
 -----END PGP SIGNATURE-----

Merge tag 'rcu.release.v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux

Pull RCU updates from Neeraj Upadhyay:
 "Context tracking:
   - rename context tracking state related symbols and remove references
     to "dynticks" in various context tracking state variables and
     related helpers
   - force context_tracking_enabled_this_cpu() to be inlined to avoid
     leaving a noinstr section

  CSD lock:
   - enhance CSD-lock diagnostic reports
   - add an API to provide an indication of ongoing CSD-lock stall

  nocb:
   - update and simplify RCU nocb code to handle (de-)offloading of
     callbacks only for offline CPUs
   - fix RT throttling hrtimer being armed from offline CPU

  rcutorture:
   - remove redundant rcu_torture_ops get_gp_completed fields
   - add SRCU ->same_gp_state and ->get_comp_state functions
   - add generic test for NUM_ACTIVE_*RCU_POLL* for testing RCU and SRCU
     polled grace periods
   - add CFcommon.arch for arch-specific Kconfig options
   - print number of update types in rcu_torture_write_types()
   - add rcutree.nohz_full_patience_delay testing to the TREE07 scenario
   - add a stall_cpu_repeat module parameter to test repeated CPU stalls
   - add argument to limit number of CPUs a guest OS can use in
     torture.sh

  rcustall:
   - abbreviate RCU CPU stall warnings during CSD-lock stalls
   - Allow dump_cpu_task() to be called without disabling preemption
   - defer printing stall-warning backtrace when holding rcu_node lock

  srcu:
   - make SRCU gp seq wrap-around faster
   - add KCSAN checks for concurrent updates to ->srcu_n_exp_nodelay and
     ->reschedule_count which are used in heuristics governing
     auto-expediting of normal SRCU grace periods and
     grace-period-state-machine delays
   - mark idle SRCU-barrier callbacks to help identify stuck
     SRCU-barrier callback

  rcu tasks:
   - remove RCU Tasks Rude asynchronous APIs as they are no longer used
   - stop testing RCU Tasks Rude asynchronous APIs
   - fix access to non-existent percpu regions
   - check processor-ID assumptions during chosen CPU calculation for
     callback enqueuing
   - update description of rtp->tasks_gp_seq grace-period sequence
     number
   - add rcu_barrier_cb_is_done() to identify whether a given
     rcu_barrier callback is stuck
   - mark idle Tasks-RCU-barrier callbacks
   - add *torture_stats_print() functions to print detailed diagnostics
     for Tasks-RCU variants
   - capture start time of rcu_barrier_tasks*() operation to help
     distinguish a hung barrier operation from a long series of barrier
     operations

  refscale:
   - add a TINY scenario to support tests of Tiny RCU and Tiny
     SRCU
   - optimize process_durations() operation

  rcuscale:
   - dump stacks of stalled rcu_scale_writer() instances and
     grace-period statistics when rcu_scale_writer() stalls
   - mark idle RCU-barrier callbacks to identify stuck RCU-barrier
     callbacks
   - print detailed grace-period and barrier diagnostics on
     rcu_scale_writer() hangs for Tasks-RCU variants
   - warn if async module parameter is specified for RCU implementations
     that do not have async primitives such as RCU Tasks Rude
   - make all writer tasks report upon hang
   - tolerate repeated GFP_KERNEL failure in rcu_scale_writer()
   - use special allocator for rcu_scale_writer()
   - NULL out top-level pointers to heap memory to avoid double-free
     bugs on modprobe failures
   - maintain per-task instead of per-CPU callbacks count to avoid any
     issues with migration of either tasks or callbacks
   - constify struct ref_scale_ops

  Fixes:
   - use system_unbound_wq for kfree_rcu work to avoid disturbing
     isolated CPUs

  Misc:
   - warn on unexpected rcu_state.srs_done_tail state
   - better define "atomic" for list_replace_rcu() and
     hlist_replace_rcu() routines
   - annotate struct kvfree_rcu_bulk_data with __counted_by()"

* tag 'rcu.release.v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux: (90 commits)
  rcu: Defer printing stall-warning backtrace when holding rcu_node lock
  rcu/nocb: Remove superfluous memory barrier after bypass enqueue
  rcu/nocb: Conditionally wake up rcuo if not already waiting on GP
  rcu/nocb: Fix RT throttling hrtimer armed from offline CPU
  rcu/nocb: Simplify (de-)offloading state machine
  context_tracking: Tag context_tracking_enabled_this_cpu() __always_inline
  context_tracking, rcu: Rename rcu_dyntick trace event into rcu_watching
  rcu: Update stray documentation references to rcu_dynticks_eqs_{enter, exit}()
  rcu: Rename rcu_momentary_dyntick_idle() into rcu_momentary_eqs()
  rcu: Rename rcu_implicit_dynticks_qs() into rcu_watching_snap_recheck()
  rcu: Rename dyntick_save_progress_counter() into rcu_watching_snap_save()
  rcu: Rename struct rcu_data .exp_dynticks_snap into .exp_watching_snap
  rcu: Rename struct rcu_data .dynticks_snap into .watching_snap
  rcu: Rename rcu_dynticks_zero_in_eqs() into rcu_watching_zero_in_eqs()
  rcu: Rename rcu_dynticks_in_eqs_since() into rcu_watching_snap_stopped_since()
  rcu: Rename rcu_dynticks_in_eqs() into rcu_watching_snap_in_eqs()
  rcu: Rename rcu_dynticks_eqs_online() into rcu_watching_online()
  context_tracking, rcu: Rename rcu_dynticks_curr_cpu_in_eqs() into rcu_is_watching_curr_cpu()
  context_tracking, rcu: Rename rcu_dynticks_task*() into rcu_task*()
  refscale: Constify struct ref_scale_ops
  ...
2024-09-18 07:52:24 +02:00
Linus Torvalds
9ea925c806 Updates for timers and timekeeping:
- Core:
 
 	- Overhaul of posix-timers in preparation of removing the
 	  workaround for periodic timers which have signal delivery
 	  ignored.
 
         - Remove the historical extra jiffie in msleep()
 
 	  msleep() adds an extra jiffie to the timeout value to ensure
 	  minimal sleep time. The timer wheel ensures minimal sleep
 	  time since the large rewrite to a non-cascading wheel, but the
 	  extra jiffie in msleep() remained unnoticed. Remove it.
 
         - Make the timer slack handling correct for realtime tasks.
 
 	  The procfs interface is inconsistent and does neither reflect
 	  reality nor conforms to the man page. Show the correct 0 slack
 	  for real time tasks and enforce it at the core level instead of
 	  having inconsistent individual checks in various timer setup
 	  functions.
 
         - The usual set of updates and enhancements all over the place.
 
   - Drivers:
 
         - Allow the ACPI PM timer to be turned off during suspend
 
 	- No new drivers
 
 	- The usual updates and enhancements in various drivers
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmbn7jQTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYobqnD/9COlU0nwsulABI/aNIrsh6iYvnCC9v
 14CcNta7Qn+157Wfw9BWOyHdNhR1/fPCXE8jJ71zTyIOeW27HV2JyTtxTwe9ZcdK
 ViHAaj7YcIjcVUEC3StCoRCPnvLslEw4qJA5AOQuDyMivdQn+YVa2c0baJxKaXZt
 xk4HZdMj4NAS0jRKnoZSwtKW/+Oz6rR4GAWrZo+Zs1/8ur3HfqnQfi8lJ1hJtLLW
 V7XDCVRvamVi6Ah3ocYPPp/1P6yeQDA1ge9aMddqaza5STWISXRtSnFMUmYP3rbS
 FaL8TyL+ilfny8pkGB2WlG6nLuSbtvogtdEh1gG1k1RmZt44kAtk8ba/KiWFPBSb
 zK9cjojRMBS71f9G4kmb5F4rnXoLsg1YbD1Nzhz3wq2Cs1Z90dc2QwMren0zoQ1x
 Fn56ueRyAiagBlnrSaKyso/2RvqJTNoSdi3RkpjYeAph0UoDCqvTvKjGAf1mWiw1
 T/1lUWSVqWHnzZbM7XXzzajIN9bl6A7bbqlcAJ2O9vZIDt7273DG+bQym9Vh6Why
 0LTGGERHxzKBsG7WRg+2Gmvv6S18UPKRo8tLtlA758rHlFuPTZCShWrIriwSNl1K
 Hxon+d4BparSnm1h9W/NHPKJA574UbWRCBjdk58IkAj8DxZZY4ORD9SMP+ggkV7G
 F6p9cgoDNP9KFg==
 =jE0N
 -----END PGP SIGNATURE-----

Merge tag 'timers-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull timer updates from Thomas Gleixner:
 "Core:

   - Overhaul of posix-timers in preparation of removing the workaround
     for periodic timers which have signal delivery ignored.

   - Remove the historical extra jiffie in msleep()

     msleep() adds an extra jiffie to the timeout value to ensure
     minimal sleep time. The timer wheel ensures minimal sleep time
     since the large rewrite to a non-cascading wheel, but the extra
     jiffie in msleep() remained unnoticed. Remove it.

   - Make the timer slack handling correct for realtime tasks.

     The procfs interface is inconsistent and does neither reflect
     reality nor conforms to the man page. Show the correct 0 slack for
     real time tasks and enforce it at the core level instead of having
     inconsistent individual checks in various timer setup functions.

   - The usual set of updates and enhancements all over the place.

  Drivers:

   - Allow the ACPI PM timer to be turned off during suspend

   - No new drivers

   - The usual updates and enhancements in various drivers"

* tag 'timers-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
  ntp: Make sure RTC is synchronized when time goes backwards
  treewide: Fix wrong singular form of jiffies in comments
  cpu: Use already existing usleep_range()
  timers: Rename next_expiry_recalc() to be unique
  platform/x86:intel/pmc: Fix comment for the pmc_core_acpi_pm_timer_suspend_resume function
  clocksource/drivers/jcore: Use request_percpu_irq()
  clocksource/drivers/cadence-ttc: Add missing clk_disable_unprepare in ttc_setup_clockevent
  clocksource/drivers/asm9260: Add missing clk_disable_unprepare in asm9260_timer_init
  clocksource/drivers/qcom: Add missing iounmap() on errors in msm_dt_timer_init()
  clocksource/drivers/ingenic: Use devm_clk_get_enabled() helpers
  platform/x86:intel/pmc: Enable the ACPI PM Timer to be turned off when suspended
  clocksource: acpi_pm: Add external callback for suspend/resume
  clocksource/drivers/arm_arch_timer: Using for_each_available_child_of_node_scoped()
  dt-bindings: timer: rockchip: Add rk3576 compatible
  timers: Annotate possible non critical data race of next_expiry
  timers: Remove historical extra jiffie for timeout in msleep()
  hrtimer: Use and report correct timerslack values for realtime tasks
  hrtimer: Annotate hrtimer_cpu_base_.*_expiry() for sparse.
  timers: Add sparse annotation for timer_sync_wait_running().
  signal: Replace BUG_ON()s
  ...
2024-09-17 07:25:37 +02:00
Linus Torvalds
cb69d86550 Updates for the interrupt subsystem:
- Core:
 	- Remove a global lock in the affinity setting code
 
 	  The lock protects a cpumask for intermediate results and the lock
 	  causes a bottleneck on simultaneous start of multiple virtual
 	  machines. Replace the lock and the static cpumask with a per CPU
 	  cpumask which is nicely serialized by raw spinlock held when
 	  executing this code.
 
 	- Provide support for giving a suffix to interrupt domain names.
 
 	  That's required to support devices with subfunctions so that the
 	  domain names are distinct even if they originate from the same
 	  device node.
 
 	- The usual set of cleanups and enhancements all over the place
 
   - Drivers:
 
 	- Support for longarch AVEC interrupt chip
 
 	- Refurbishment of the Armada driver so it can be extended for new
           variants.
 
 	- The usual set of cleanups and enhancements all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmbn5p8THHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoRFtD/43eB3h5usY2OPW0JmDqrE6qnzsvjPZ
 1H52BcmMcOuI6yCfTnbi/fBB52mwSEGq9Dmt1GXradyq9/CJDIqZ1ajI1rA2jzW2
 YdbeTDpKm1rS2ddzfp2LT2BryrNt+7etrRO7qHn4EKSuOcNuV2f58WPbIIqasvaK
 uPbUDVDPrvXxLNcjoab6SqaKrEoAaHSyKpd0MvDd80wHrtcSC/QouW7JDSUXv699
 RwvLebN1OF6mQ2J8Z3DLeCQpcbAs+UT8UvID7kYUJi1g71J/ZY+xpMLoX/gHiDNr
 isBtsuEAiZeNaFpksc7A6Jgu5ljZf2/aLCqbPLlHaduHFNmo94x9KUbIF2cpEMN+
 rsf5Ff7AVh1otz3cUwLLsm+cFLWRRoZdLuncn7rrgB4Yg0gll7qzyLO6YGvQHr8U
 Ocj1RXtvvWsMk4XzhgCt1AH/42cO6go+bhA4HspeYykNpsIldIUl1MeFbO8sWiDJ
 kybuwiwHp3oaMLjEK4Lpq65u7Ll8Lju2zRde65YUJN2nbNmJFORrOLmeC1qsr6ri
 dpend6n2qD9UD1oAt32ej/uXnG160nm7UKescyxiZNeTm1+ez8GW31hY128ifTY3
 4R3urGS38p3gazXBsfw6eqkeKx0kEoDNoQqrO5gBvb8kowYTvoZtkwMGAN9OADwj
 w6vvU0i+NIyVMA==
 =JlJ2
 -----END PGP SIGNATURE-----

Merge tag 'irq-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull irq updates from Thomas Gleixner:
 "Core:

   - Remove a global lock in the affinity setting code

     The lock protects a cpumask for intermediate results and the lock
     causes a bottleneck on simultaneous start of multiple virtual
     machines. Replace the lock and the static cpumask with a per CPU
     cpumask which is nicely serialized by raw spinlock held when
     executing this code.

   - Provide support for giving a suffix to interrupt domain names.

     That's required to support devices with subfunctions so that the
     domain names are distinct even if they originate from the same
     device node.

   - The usual set of cleanups and enhancements all over the place

  Drivers:

   - Support for longarch AVEC interrupt chip

   - Refurbishment of the Armada driver so it can be extended for new
     variants.

   - The usual set of cleanups and enhancements all over the place"

* tag 'irq-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
  genirq: Use cpumask_intersects()
  genirq/cpuhotplug: Use cpumask_intersects()
  irqchip/apple-aic: Only access system registers on SoCs which provide them
  irqchip/apple-aic: Add a new "Global fast IPIs only" feature level
  irqchip/apple-aic: Skip unnecessary enabling of use_fast_ipi
  dt-bindings: apple,aic: Document A7-A11 compatibles
  irqdomain: Use IS_ERR_OR_NULL() in irq_domain_trim_hierarchy()
  genirq/msi: Use kmemdup_array() instead of kmemdup()
  genirq/proc: Change the return value for set affinity permission error
  genirq/proc: Use irq_move_pending() in show_irq_affinity()
  genirq/proc: Correctly set file permissions for affinity control files
  genirq: Get rid of global lock in irq_do_set_affinity()
  genirq: Fix typo in struct comment
  irqchip/loongarch-avec: Add AVEC irqchip support
  irqchip/loongson-pch-msi: Prepare get_pch_msi_handle() for AVECINTC
  irqchip/loongson-eiointc: Rename CPUHP_AP_IRQ_LOONGARCH_STARTING
  LoongArch: Architectural preparation for AVEC irqchip
  LoongArch: Move irqchip function prototypes to irq-loongson.h
  irqchip/loongson-pch-msi: Switch to MSI parent domains
  softirq: Remove unused 'action' parameter from action callback
  ...
2024-09-17 07:09:17 +02:00
Christian Loehle
bc9057da1a sched/cpufreq: Use NSEC_PER_MSEC for deadline task
Convert the sugov deadline task attributes to use the available
definitions to make them more readable.
No functional change.

Signed-off-by: Christian Loehle <christian.loehle@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20240813144348.1180344-5-christian.loehle@arm.com
2024-09-11 11:25:22 +02:00
Thomas Gleixner
2f7eedca6c Merge branch 'linus' into timers/core
To update with the latest fixes.
2024-09-10 13:49:53 +02:00
Huang Shijie
2cab4bd024 sched/debug: Fix the runnable tasks output
The current runnable tasks output looks like:

  runnable tasks:
   S            task   PID         tree-key  switches  prio     wait-time             sum-exec        sum-sleep
  -------------------------------------------------------------------------------------------------------------
   Ikworker/R-rcu_g     4         0.129049 E         0.620179           0.750000         0.002920         2   100         0.000000         0.002920         0.000000         0.000000 0 0 /
   Ikworker/R-sync_     5         0.125328 E         0.624147           0.750000         0.001840         2   100         0.000000         0.001840         0.000000         0.000000 0 0 /
   Ikworker/R-slub_     6         0.120835 E         0.628680           0.750000         0.001800         2   100         0.000000         0.001800         0.000000         0.000000 0 0 /
   Ikworker/R-netns     7         0.114294 E         0.634701           0.750000         0.002400         2   100         0.000000         0.002400         0.000000         0.000000 0 0 /
   I    kworker/0:1     9       508.781746 E       511.754666           3.000000       151.575240       224   120         0.000000       151.575240         0.000000         0.000000 0 0 /

Which is messy. Remove the duplicate printing of sum_exec_runtime and
tidy up the layout to make it look like:

  runnable tasks:
   S            task   PID       vruntime   eligible    deadline             slice          sum-exec      switches  prio         wait-time        sum-sleep       sum-block  node   group-id  group-path
  -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
   I     kworker/0:3  1698       295.001459   E         297.977619           3.000000        38.862920         9     120         0.000000         0.000000         0.000000   0      0        /
   I     kworker/0:4  1702       278.026303   E         281.026303           3.000000         9.918760         3     120         0.000000         0.000000         0.000000   0      0        /
   S  NetworkManager  2646         0.377936   E           2.598104           3.000000        98.535880       314     120         0.000000         0.000000         0.000000   0      0        /system.slice/NetworkManager.service
   S       virtqemud  2689         0.541016   E           2.440104           3.000000        50.967960        80     120         0.000000         0.000000         0.000000   0      0        /system.slice/virtqemud.service
   S   gsd-smartcard  3058        73.604144   E          76.475904           3.000000        74.033320        88     120         0.000000         0.000000         0.000000   0      0        /user.slice/user-42.slice/session-c1.scope

Reviewed-by: Christoph Lameter (Ampere) <cl@linux.com>
Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240906053019.7874-1-shijie@os.amperecomputing.com
2024-09-10 09:51:15 +02:00
Peter Zijlstra
c662e2b1e8 sched: Fix sched_delayed vs sched_core
Completely analogous to commit dfa0a574cb ("sched/uclamg: Handle
delayed dequeue"), avoid double dequeue for the sched_core entries.

Fixes: 152e11f6df ("sched/fair: Implement delayed dequeue")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2024-09-10 09:51:15 +02:00
Dietmar Eggemann
729288bc68 kernel/sched: Fix util_est accounting for DELAY_DEQUEUE
Remove delayed tasks from util_est even they are runnable.

Exclude delayed task which are (a) migrating between rq's or (b) in a
SAVE/RESTORE dequeue/enqueue.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/c49ef5fe-a909-43f1-b02f-a765ab9cedbf@arm.com
2024-09-10 09:51:15 +02:00
Chen Yu
84d265281d sched/pelt: Use rq_clock_task() for hw_pressure
commit 97450eb909 ("sched/pelt: Remove shift of thermal clock")
removed the decay_shift for hw_pressure. This commit uses the
sched_clock_task() in sched_tick() while it replaces the
sched_clock_task() with rq_clock_pelt() in __update_blocked_others().
This could bring inconsistence. One possible scenario I can think of
is in ___update_load_sum():

  u64 delta = now - sa->last_update_time

'now' could be calculated by rq_clock_pelt() from
__update_blocked_others(), and last_update_time was calculated by
rq_clock_task() previously from sched_tick(). Usually the former
chases after the latter, it cause a very large 'delta' and brings
unexpected behavior.

Fixes: 97450eb909 ("sched/pelt: Remove shift of thermal clock")
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20240827112607.181206-1-yu.c.chen@intel.com
2024-09-10 09:51:14 +02:00
Vincent Guittot
5d871a6399 sched/fair: Move effective_cpu_util() and effective_cpu_util() in fair.c
Move effective_cpu_util() and sched_cpu_util() functions in fair.c file
with others utilization related functions.

No functional change.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240904092417.20660-1-vincent.guittot@linaro.org
2024-09-10 09:51:14 +02:00
Peter Zijlstra
3dcac251b0 sched/core: Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
Since commit b2a02fc43a ("smp: Optimize
send_call_function_single_ipi()") an idle CPU in TIF_POLLING_NRFLAG mode
can be pulled out of idle by setting TIF_NEED_RESCHED flag to service an
IPI without actually sending an interrupt. Even in cases where the IPI
handler does not queue a task on the idle CPU, do_idle() will call
__schedule() since need_resched() returns true in these cases.

Introduce and use SM_IDLE to identify call to __schedule() from
schedule_idle() and shorten the idle re-entry time by skipping
pick_next_task() when nr_running is 0 and the previous task is the idle
task.

With the SM_IDLE fast-path, the time taken to complete a fixed set of
IPIs using ipistorm improves noticeably. Following are the numbers
from a dual socket Intel Ice Lake Xeon server (2 x 32C/64T) and
3rd Generation AMD EPYC system (2 x 64C/128T) (boost on, C2 disabled)
running ipistorm between CPU8 and CPU16:

cmdline: insmod ipistorm.ko numipi=100000 single=1 offset=8 cpulist=8 wait=1

   ==================================================================
   Test          : ipistorm (modified)
   Units         : Normalized runtime
   Interpretation: Lower is better
   Statistic     : AMean
   ======================= Intel Ice Lake Xeon ======================
   kernel:				time [pct imp]
   tip:sched/core			1.00 [baseline]
   tip:sched/core + SM_IDLE		0.80 [20.51%]
   ==================== 3rd Generation AMD EPYC =====================
   kernel:				time [pct imp]
   tip:sched/core			1.00 [baseline]
   tip:sched/core + SM_IDLE		0.90 [10.17%]
   ==================================================================

[ kprateek: Commit message, SM_RTLOCK_WAIT fix ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Not-yet-signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240809092240.6921-1-kprateek.nayak@amd.com
2024-09-10 09:51:14 +02:00
Neeraj Upadhyay
355debb83b Merge branches 'context_tracking.15.08.24a', 'csd.lock.15.08.24a', 'nocb.09.09.24a', 'rcutorture.14.08.24a', 'rcustall.09.09.24a', 'srcu.12.08.24a', 'rcu.tasks.14.08.24a', 'rcu_scaling_tests.15.08.24a', 'fixes.12.08.24a' and 'misc.11.08.24a' into next.09.09.24a 2024-09-09 00:09:47 +05:30
Peter Zijlstra
b2d70222db sched: Add put_prev_task(.next)
In order to tell the previous sched_class what the next task is, add
put_prev_task(.next).

Notable SCX will use this to:

 1) determine the next task will leave the SCX sched class and push
    the current task to another CPU if possible.
 2) statistics on how often and which other classes preempt it

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224016.367421076@infradead.org
2024-09-03 15:26:32 +02:00
Peter Zijlstra
bd9bbc96e8 sched: Rework dl_server
When a task is selected through a dl_server, it will have p->dl_server
set, such that it can account runtime to the dl_server, see
update_curr_task().

Currently p->dl_server is set in pick*task() whenever it goes through
the dl_server, clearing it is a bit of a mess though. The trivial
solution is clearing it on the final put (now that we have this
location).

However, this gives a problem when:

	p = pick_task(rq);
	if (p)
		put_prev_set_next_task(rq, prev, next);

picks the same task but through a different path, notably when it goes
from picking through the dl_server to a direct pick or vice-versa. In
that case we cannot readily determine wether we should clear or
preserve p->dl_server.

An additional complication is pick_*task() setting p->dl_server for a
remote pick, it might still need to update runtime before it schedules
the core_pick.

Close all these holes and remove all the random clearing of
p->dl_server by:

 - having pick_*task() manage rq->dl_server

 - having the final put_prev_task() clear p->dl_server

 - having the first set_next_task() set p->dl_server = rq->dl_server

 - complicate the core_sched code to save/restore rq->dl_server where
   appropriate.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224016.259853414@infradead.org
2024-09-03 15:26:32 +02:00
Peter Zijlstra
436f3eed5c sched: Combine the last put_prev_task() and the first set_next_task()
Ensure the last put_prev_task() and the first set_next_task() always
go together.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224016.158454756@infradead.org
2024-09-03 15:26:31 +02:00
Peter Zijlstra
fd03c5b858 sched: Rework pick_next_task()
The current rule is that:

  pick_next_task() := pick_task() + set_next_task(.first = true)

And many classes implement it directly as such. Change things around
to make pick_next_task() optional while also changing the definition to:

  pick_next_task(prev) := pick_task() + put_prev_task() + set_next_task(.first = true)

The reason is that sched_ext would like to have a 'final' call that
knows the next task. By placing put_prev_task() right next to
set_next_task() (as it already is for sched_core) this becomes
trivial.

As a bonus, this is a nice cleanup on its own.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224016.051225657@infradead.org
2024-09-03 15:26:31 +02:00
Peter Zijlstra
260598f142 sched: Split up put_prev_task_balance()
With the goal of pushing put_prev_task() after pick_task() / into
pick_next_task().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224015.943143811@infradead.org
2024-09-03 15:26:31 +02:00
Peter Zijlstra
4686cc598f sched: Clean up DL server vs core sched
Abide by the simple rule:

  pick_next_task() := pick_task() + set_next_task(.first = true)

This allows us to trivially get rid of server_pick_next() and things
collapse nicely.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224015.837303391@infradead.org
2024-09-03 15:26:31 +02:00
Peter Zijlstra
dae4320b29 sched: Fixup set_next_task() implementations
The rule is that:

  pick_next_task() := pick_task() + set_next_task(.first = true)

Turns out, there's still a few things in pick_next_task() that are
missing from that combination.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224015.724111109@infradead.org
2024-09-03 15:26:30 +02:00
Peter Zijlstra
7d2180d9d9 sched: Use set_next_task(.first) where required
Turns out the core_sched bits forgot to use the
set_next_task(.first=true) variant. Notably:

  pick_next_task() := pick_task() + set_next_task(.first = true)

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224015.614146342@infradead.org
2024-09-03 15:26:30 +02:00
Valentin Schneider
75b6499024 sched/fair: Properly deactivate sched_delayed task upon class change
__sched_setscheduler() goes through an enqueue/dequeue cycle like so:

  flags := DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
  prev_class->dequeue_task(rq, p, flags);
  new_class->enqueue_task(rq, p, flags);

when prev_class := fair_sched_class, this is followed by:

  dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP);

the idea being that since the task has switched classes, we need to drop
the sched_delayed logic and have that task be deactivated per its previous
dequeue_task(..., DEQUEUE_SLEEP).

Unfortunately, this leaves the task on_rq. This is missing the tail end of
dequeue_entities() that issues __block_task(), which __sched_setscheduler()
won't have done due to not using DEQUEUE_DELAYED - not that it should, as
it is pretty much a fair_sched_class specific thing.

Make switched_from_fair() properly deactivate sched_delayed tasks upon
class changes via __block_task(), as if a
  dequeue_task(..., DEQUEUE_DELAYED)
had been issued.

Fixes: 2e0199df25 ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue")
Reported-by: "Paul E. McKenney" <paulmck@kernel.org>
Reported-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240829135353.1524260-1-vschneid@redhat.com
2024-09-03 15:26:30 +02:00
Huang Shijie
9c602adb79 sched/deadline: Fix schedstats vs deadline servers
In dl_server_start(), when schedstats is enabled, the following
happens:

  dl_server_start()
    dl_se->dl_server = 1;
    enqueue_dl_entity()
      update_stats_enqueue_dl()
        __schedstats_from_dl_se()
          dl_task_of()
            BUG_ON(dl_server(dl_se));

Since only tasks have schedstats and internal entries do not, avoid
trying to update stats in this case.

Fixes: 63ba8422f8 ("sched/deadline: Introduce deadline servers")
Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20240829031111.12142-1-shijie@os.amperecomputing.com
2024-09-03 15:26:30 +02:00
Felix Moessbauer
ed4fb6d7ef hrtimer: Use and report correct timerslack values for realtime tasks
The timerslack_ns setting is used to specify how much the hardware
timers should be delayed, to potentially dispatch multiple timers in a
single interrupt. This is a performance optimization. Timers of
realtime tasks (having a realtime scheduling policy) should not be
delayed.

This logic was inconsitently applied to the hrtimers, leading to delays
of realtime tasks which used timed waits for events (e.g. condition
variables). Due to the downstream override of the slack for rt tasks,
the procfs reported incorrect (non-zero) timerslack_ns values.

This is changed by setting the timer_slack_ns task attribute to 0 for
all tasks with a rt policy. By that, downstream users do not need to
specially handle rt tasks (w.r.t. the slack), and the procfs entry
shows the correct value of "0". Setting non-zero slack values (either
via procfs or PR_SET_TIMERSLACK) on tasks with a rt policy is ignored,
as stated in "man 2 PR_SET_TIMERSLACK":

  Timer slack is not applied to threads that are scheduled under a
  real-time scheduling policy (see sched_setscheduler(2)).

The special handling of timerslack on rt tasks in downstream users
is removed as well.

Signed-off-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240814121032.368444-2-felix.moessbauer@siemens.com
2024-08-23 20:13:02 +02:00
Caleb Sander Mateos
e68ac2b488 softirq: Remove unused 'action' parameter from action callback
When soft interrupt actions are called, they are passed a pointer to the
struct softirq action which contains the action's function pointer.

This pointer isn't useful, as the action callback already knows what
function it is. And since each callback handles a specific soft interrupt,
the callback also knows which soft interrupt number is running.

No soft interrupt action callback actually uses this parameter, so remove
it from the function pointer signature. This clarifies that soft interrupt
actions are global routines and makes it slightly cheaper to call them.

Signed-off-by: Caleb Sander Mateos <csander@purestorage.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/all/20240815171549.3260003-1-csander@purestorage.com
2024-08-20 17:13:40 +02:00
Peter Zijlstra
aef6987d89 sched/eevdf: Propagate min_slice up the cgroup hierarchy
In the absence of an explicit cgroup slice configureation, make mixed
slice length work with cgroups by propagating the min_slice up the
hierarchy.

This ensures the cgroup entity gets timely service to service its
entities that have this timing constraint set on them.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.948188417@infradead.org
2024-08-17 11:06:46 +02:00
Peter Zijlstra
857b158dc5 sched/eevdf: Use sched_attr::sched_runtime to set request/slice suggestion
Allow applications to directly set a suggested request/slice length using
sched_attr::sched_runtime.

The implementation clamps the value to: 0.1[ms] <= slice <= 100[ms]
which is 1/10 the size of HZ=1000 and 10 times the size of HZ=100.

Applications should strive to use their periodic runtime at a high
confidence interval (95%+) as the target slice. Using a smaller slice
will introduce undue preemptions, while using a larger value will
increase latency.

For all the following examples assume a scheduling quantum of 8, and for
consistency all examples have W=4:

  {A,B,C,D}(w=1,r=8):

  ABCD...
  +---+---+---+---

  t=0, V=1.5				t=1, V=3.5
  A  |------<				A          |------<
  B   |------<				B   |------<
  C    |------<				C    |------<
  D     |------<			D     |------<
  ---+*------+-------+---		---+--*----+-------+---

  t=2, V=5.5				t=3, V=7.5
  A          |------<			A          |------<
  B           |------<			B           |------<
  C    |------<				C            |------<
  D     |------<			D     |------<
  ---+----*--+-------+---		---+------*+-------+---

Note: 4 identical tasks in FIFO order

~~~

  {A,B}(w=1,r=16) C(w=2,r=16)

  AACCBBCC...
  +---+---+---+---

  t=0, V=1.25				t=2, V=5.25
  A  |--------------<                   A                  |--------------<
  B   |--------------<                  B   |--------------<
  C    |------<                         C    |------<
  ---+*------+-------+---               ---+----*--+-------+---

  t=4, V=8.25				t=6, V=12.25
  A                  |--------------<   A                  |--------------<
  B   |--------------<                  B                   |--------------<
  C            |------<                 C            |------<
  ---+-------*-------+---               ---+-------+---*---+---

Note: 1 heavy task -- because q=8, double r such that the deadline of the w=2
      task doesn't go below q.

Note: observe the full schedule becomes: W*max(r_i/w_i) = 4*2q = 8q in length.

Note: the period of the heavy task is half the full period at:
      W*(r_i/w_i) = 4*(2q/2) = 4q

~~~

  {A,C,D}(w=1,r=16) B(w=1,r=8):

  BAACCBDD...
  +---+---+---+---

  t=0, V=1.5				t=1, V=3.5
  A  |--------------<			A  |---------------<
  B   |------<				B           |------<
  C    |--------------<			C    |--------------<
  D     |--------------<		D     |--------------<
  ---+*------+-------+---		---+--*----+-------+---

  t=3, V=7.5				t=5, V=11.5
  A                  |---------------<  A                  |---------------<
  B           |------<                  B           |------<
  C    |--------------<                 C                    |--------------<
  D     |--------------<                D     |--------------<
  ---+------*+-------+---               ---+-------+--*----+---

  t=6, V=13.5
  A                  |---------------<
  B                   |------<
  C                    |--------------<
  D     |--------------<
  ---+-------+----*--+---

Note: 1 short task -- again double r so that the deadline of the short task
      won't be below q. Made B short because its not the leftmost task, but is
      eligible with the 0,1,2,3 spread.

Note: like with the heavy task, the period of the short task observes:
      W*(r_i/w_i) = 4*(1q/1) = 4q

~~~

  A(w=1,r=16) B(w=1,r=8) C(w=2,r=16)

  BCCAABCC...
  +---+---+---+---

  t=0, V=1.25				t=1, V=3.25
  A  |--------------<                   A  |--------------<
  B   |------<                          B           |------<
  C    |------<                         C    |------<
  ---+*------+-------+---               ---+--*----+-------+---

  t=3, V=7.25				t=5, V=11.25
  A  |--------------<                   A                  |--------------<
  B           |------<                  B           |------<
  C            |------<                 C            |------<
  ---+------*+-------+---               ---+-------+--*----+---

  t=6, V=13.25
  A                  |--------------<
  B                   |------<
  C            |------<
  ---+-------+----*--+---

Note: 1 heavy and 1 short task -- combine them all.

Note: both the short and heavy task end up with a period of 4q

~~~

  A(w=1,r=16) B(w=2,r=16) C(w=1,r=8)

  BBCAABBC...
  +---+---+---+---

  t=0, V=1				t=2, V=5
  A  |--------------<                   A  |--------------<
  B   |------<                          B           |------<
  C    |------<                         C    |------<
  ---+*------+-------+---               ---+----*--+-------+---

  t=3, V=7				t=5, V=11
  A  |--------------<                   A                  |--------------<
  B           |------<                  B           |------<
  C            |------<                 C            |------<
  ---+------*+-------+---               ---+-------+--*----+---

  t=7, V=15
  A                  |--------------<
  B                   |------<
  C            |------<
  ---+-------+------*+---

Note: as before but permuted

~~~

From all this it can be deduced that, for the steady state:

 - the total period (P) of a schedule is:	W*max(r_i/w_i)
 - the average period of a task is:		W*(r_i/w_i)
 - each task obtains the fair share:		w_i/W of each full period P

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.842834421@infradead.org
2024-08-17 11:06:45 +02:00
Peter Zijlstra
85e511df3c sched/eevdf: Allow shorter slices to wakeup-preempt
Part of the reason to have shorter slices is to improve
responsiveness. Allow shorter slices to preempt longer slices on
wakeup.

    Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Sum delay ms     |

  100ms massive_intr 500us cyclictest NO_PREEMPT_SHORT

  1 massive_intr:(5)      | 846018.956 ms |   779188 | avg:   0.273 ms | max:  58.337 ms | sum:212545.245 ms |
  2 massive_intr:(5)      | 853450.693 ms |   792269 | avg:   0.275 ms | max:  71.193 ms | sum:218263.588 ms |
  3 massive_intr:(5)      | 843888.920 ms |   771456 | avg:   0.277 ms | max:  92.405 ms | sum:213353.221 ms |
  1 chromium-browse:(8)   |  53015.889 ms |   131766 | avg:   0.463 ms | max:  36.341 ms | sum:60959.230  ms |
  2 chromium-browse:(8)   |  53864.088 ms |   136962 | avg:   0.480 ms | max:  27.091 ms | sum:65687.681  ms |
  3 chromium-browse:(9)   |  53637.904 ms |   132637 | avg:   0.481 ms | max:  24.756 ms | sum:63781.673  ms |
  1 cyclictest:(5)        |  12615.604 ms |   639689 | avg:   0.471 ms | max:  32.272 ms | sum:301351.094 ms |
  2 cyclictest:(5)        |  12511.583 ms |   642578 | avg:   0.448 ms | max:  44.243 ms | sum:287632.830 ms |
  3 cyclictest:(5)        |  12545.867 ms |   635953 | avg:   0.475 ms | max:  25.530 ms | sum:302374.658 ms |

  100ms massive_intr 500us cyclictest PREEMPT_SHORT

  1 massive_intr:(5)      | 839843.919 ms |   837384 | avg:   0.264 ms | max:  74.366 ms | sum:221476.885 ms |
  2 massive_intr:(5)      | 852449.913 ms |   845086 | avg:   0.252 ms | max:  68.162 ms | sum:212595.968 ms |
  3 massive_intr:(5)      | 839180.725 ms |   836883 | avg:   0.266 ms | max:  69.742 ms | sum:222812.038 ms |
  1 chromium-browse:(11)  |  54591.481 ms |   138388 | avg:   0.458 ms | max:  35.427 ms | sum:63401.508  ms |
  2 chromium-browse:(8)   |  52034.541 ms |   132276 | avg:   0.436 ms | max:  31.826 ms | sum:57732.958  ms |
  3 chromium-browse:(8)   |  55231.771 ms |   141892 | avg:   0.469 ms | max:  27.607 ms | sum:66538.697  ms |
  1 cyclictest:(5)        |  13156.391 ms |   667412 | avg:   0.373 ms | max:  38.247 ms | sum:249174.502 ms |
  2 cyclictest:(5)        |  12688.939 ms |   665144 | avg:   0.374 ms | max:  33.548 ms | sum:248509.392 ms |
  3 cyclictest:(5)        |  13475.623 ms |   669110 | avg:   0.370 ms | max:  37.819 ms | sum:247673.390 ms |

As per the numbers the, this makes cyclictest (short slice) it's
max-delay more consistent and consistency drops the sum-delay. The
trade-off is that the massive_intr (long slice) gets more context
switches and a slight increase in sum-delay.

Chunxin contributed did_preempt_short() where a task that lost slice
protection from PREEMPT_SHORT gets rescheduled once it becomes
in-eligible.

[mike: numbers]
Co-Developed-by: Chunxin Zang <zangchunxin@lixiang.com>
Signed-off-by: Chunxin Zang <zangchunxin@lixiang.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Link: https://lkml.kernel.org/r/20240727105030.735459544@infradead.org
2024-08-17 11:06:45 +02:00
Peter Zijlstra
82e9d0456e sched/fair: Avoid re-setting virtual deadline on 'migrations'
During OSPM24 Youssef noted that migrations are re-setting the virtual
deadline. Notably everything that does a dequeue-enqueue, like setting
nice, changing preferred numa-node, and a myriad of other random crap,
will cause this to happen.

This shouldn't be. Preserve the relative virtual deadline across such
dequeue/enqueue cycles.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.625119246@infradead.org
2024-08-17 11:06:45 +02:00
Peter Zijlstra
fc1892becd sched/eevdf: Fixup PELT vs DELAYED_DEQUEUE
Note that tasks that are kept on the runqueue to burn off negative
lag, are not in fact runnable anymore, they'll get dequeued the moment
they get picked.

As such, don't count this time towards runnable.

Thanks to Valentin for spotting I had this backwards initially.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.514088302@infradead.org
2024-08-17 11:06:45 +02:00
Peter Zijlstra
54a58a7877 sched/fair: Implement DELAY_ZERO
'Extend' DELAY_DEQUEUE by noting that since we wanted to dequeued them
at the 0-lag point, truncate lag (eg. don't let them earn positive
lag).

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.403750550@infradead.org
2024-08-17 11:06:44 +02:00
Peter Zijlstra
152e11f6df sched/fair: Implement delayed dequeue
Extend / fix 86bfbb7ce4 ("sched/fair: Add lag based placement") by
noting that lag is fundamentally a temporal measure. It should not be
carried around indefinitely.

OTOH it should also not be instantly discarded, doing so will allow a
task to game the system by purposefully (micro) sleeping at the end of
its time quantum.

Since lag is intimately tied to the virtual time base, a wall-time
based decay is also insufficient, notably competition is required for
any of this to make sense.

Instead, delay the dequeue and keep the 'tasks' on the runqueue,
competing until they are eligible.

Strictly speaking, we only care about keeping them until the 0-lag
point, but that is a difficult proposition, instead carry them around
until they get picked again, and dequeue them at that point.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.226163742@infradead.org
2024-08-17 11:06:44 +02:00
Peter Zijlstra
e1459a50ba sched: Teach dequeue_task() about special task states
Since special task states must not suffer spurious wakeups, and the
proposed delayed dequeue can cause exactly these (under some boundary
conditions), propagate this knowledge into dequeue_task() such that it
can do the right thing.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.110439521@infradead.org
2024-08-17 11:06:44 +02:00
Peter Zijlstra
781773e3b6 sched/fair: Implement ENQUEUE_DELAYED
Doing a wakeup on a delayed dequeue task is about as simple as it
sounds -- remove the delayed mark and enjoy the fact it was actually
still on the runqueue.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.888107381@infradead.org
2024-08-17 11:06:43 +02:00
Peter Zijlstra
f12e148892 sched/fair: Prepare pick_next_task() for delayed dequeue
Delayed dequeue's natural end is when it gets picked again. Ensure
pick_next_task() knows what to do with delayed tasks.

Note, this relies on the earlier patch that made pick_next_task()
state invariant -- it will restart the pick on dequeue, because
obviously the just dequeued task is no longer eligible.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.747330118@infradead.org
2024-08-17 11:06:43 +02:00
Peter Zijlstra
2e0199df25 sched/fair: Prepare exit/cleanup paths for delayed_dequeue
When dequeue_task() is delayed it becomes possible to exit a task (or
cgroup) that is still enqueued. Ensure things are dequeued before
freeing.

Thanks to Valentin for asking the obvious questions and making
switched_from_fair() less weird.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.631948434@infradead.org
2024-08-17 11:06:43 +02:00
Peter Zijlstra
e28b5f8bda sched/fair: Assert {set_next,put_prev}_entity() are properly balanced
Just a little sanity test..

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.486423066@infradead.org
2024-08-17 11:06:42 +02:00
Peter Zijlstra
dfa0a574cb sched/uclamg: Handle delayed dequeue
Delayed dequeue has tasks sit around on the runqueue that are not
actually runnable -- specifically, they will be dequeued the moment
they get picked.

One side-effect is that such a task can get migrated, which leads to a
'nested' dequeue_task() scenario that messes up uclamp if we don't
take care.

Notably, dequeue_task(DEQUEUE_SLEEP) can 'fail' and keep the task on
the runqueue. This however will have removed the task from uclamp --
per uclamp_rq_dec() in dequeue_task(). So far so good.

However, if at that point the task gets migrated -- or nice adjusted
or any of a myriad of operations that does a dequeue-enqueue cycle --
we'll pass through dequeue_task()/enqueue_task() again. Without
modification this will lead to a double decrement for uclamp, which is
wrong.

Reported-by: Luis Machado <luis.machado@arm.com>
Reported-by: Hongyan Xia <hongyan.xia2@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.315205425@infradead.org
2024-08-17 11:06:42 +02:00
Peter Zijlstra
abc158c82a sched: Prepare generic code for delayed dequeue
While most of the delayed dequeue code can be done inside the
sched_class itself, there is one location where we do not have an
appropriate hook, namely ttwu_runnable().

Add an ENQUEUE_DELAYED call to the on_rq path to deal with waking
delayed dequeue tasks.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.200000445@infradead.org
2024-08-17 11:06:42 +02:00
Peter Zijlstra
e8901061ca sched: Split DEQUEUE_SLEEP from deactivate_task()
As a preparation for dequeue_task() failing, and a second code-path
needing to take care of the 'success' path, split out the DEQEUE_SLEEP
path from deactivate_task().

Much thanks to Libo for spotting and fixing a TASK_ON_RQ_MIGRATING
ordering fail.

Fixed-by: Libo Chen <libo.chen@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.086192709@infradead.org
2024-08-17 11:06:42 +02:00
Peter Zijlstra
fab4a808ba sched/fair: Re-organize dequeue_task_fair()
Working towards delaying dequeue, notably also inside the hierachy,
rework dequeue_task_fair() such that it can 'resume' an interrupted
hierarchy walk.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.977256873@infradead.org
2024-08-17 11:06:41 +02:00
Peter Zijlstra
863ccdbb91 sched: Allow sched_class::dequeue_task() to fail
Change the function signature of sched_class::dequeue_task() to return
a boolean, allowing future patches to 'fail' dequeue.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.864630153@infradead.org
2024-08-17 11:06:41 +02:00
Peter Zijlstra
3b3dd89b8b sched/fair: Unify pick_{,next_}_task_fair()
Implement pick_next_task_fair() in terms of pick_task_fair() to
de-duplicate the pick loop.

More importantly, this makes all the pick loops use the
state-invariant form, which is useful to introduce further re-try
conditions in later patches.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.725062368@infradead.org
2024-08-17 11:06:41 +02:00
Peter Zijlstra
c97f54fe6d sched/fair: Cleanup pick_task_fair()'s curr
With 4c456c9ad3 ("sched/fair: Remove unused 'curr' argument from
pick_next_entity()") curr is no longer being used, so no point in
clearing it.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.614707623@infradead.org
2024-08-17 11:06:41 +02:00
Peter Zijlstra
8e2e13ac61 sched/fair: Cleanup pick_task_fair() vs throttle
Per 54d27365ca ("sched/fair: Prevent throttling in early
pick_next_task_fair()") the reason check_cfs_rq_runtime() is under the
'if (curr)' check is to ensure the (downward) traversal does not
result in an empty cfs_rq.

But then the pick_task_fair() 'copy' of all this made it restart the
traversal anyway, so that seems to solve the issue too.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.501679876@infradead.org
2024-08-17 11:06:40 +02:00
Peter Zijlstra
949090eaf0 sched/eevdf: Remove min_vruntime_copy
Since commit e8f331bcc2 ("sched/smp: Use lag to simplify
cross-runqueue placement") the min_vruntime_copy is no longer used.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.395297941@infradead.org
2024-08-17 11:06:40 +02:00
Peter Zijlstra
f25b7b32b0 sched/eevdf: Add feature comments
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.287790895@infradead.org
2024-08-17 11:06:40 +02:00
Ryo Takakura
51b739990c rcu: Let dump_cpu_task() be used without preemption disabled
The commit 2d7f00b2f0 ("rcu: Suppress smp_processor_id() complaint
in synchronize_rcu_expedited_wait()") disabled preemption around
dump_cpu_task() to suppress warning on its usage within preemtible context.

Calling dump_cpu_task() doesn't required to be in non-preemptible context
except for suppressing the smp_processor_id() warning.
As the smp_processor_id() is evaluated along with in_hardirq()
to check if it's in interrupt context, this patch removes the need
for its preemtion disablement by reordering the condition so that
smp_processor_id() only gets evaluated when it's in interrupt context.

Signed-off-by: Ryo Takakura <takakura@valinux.co.jp>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-08-15 00:10:50 +05:30
Qais Yousef
ae04f69de0 sched/rt: Rename realtime_{prio, task}() to rt_or_dl_{prio, task}()
Some find the name realtime overloaded. Use rt_or_dl() as an
alternative, hopefully better, name.

Suggested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240610192018.1567075-4-qyousef@layalina.io
2024-08-07 18:32:38 +02:00
Qais Yousef
130fd056dd sched/rt: Clean up usage of rt_task()
rt_task() checks if a task has RT priority. But depends on your
dictionary, this could mean it belongs to RT class, or is a 'realtime'
task, which includes RT and DL classes.

Since this has caused some confusion already on discussion [1], it
seemed a clean up is due.

I define the usage of rt_task() to be tasks that belong to RT class.
Make sure that it returns true only for RT class and audit the users and
replace the ones required the old behavior with the new realtime_task()
which returns true for RT and DL classes. Introduce similar
realtime_prio() to create similar distinction to rt_prio() and update
the users that required the old behavior to use the new function.

Move MAX_DL_PRIO to prio.h so it can be used in the new definitions.

Document the functions to make it more obvious what is the difference
between them. PI-boosted tasks is a factor that must be taken into
account when choosing which function to use.

Rename task_is_realtime() to realtime_task_policy() as the old name is
confusing against the new realtime_task().

No functional changes were intended.

[1] https://lore.kernel.org/lkml/20240506100509.GL40213@noisy.programming.kicks-ass.net/

Signed-off-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: "Steven Rostedt (Google)" <rostedt@goodmis.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/20240610192018.1567075-2-qyousef@layalina.io
2024-08-07 18:32:37 +02:00