mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 22:21:40 +00:00
cachetlb.txt: standardize document format
Each text file under Documentation follows a different format. Some doesn't even have titles! Change its representation to follow the adopted standard, using ReST markups for it to be parseable by Sphinx: - Adjust the title format; - use :Author: for author's name; - mark literals as such; - use note and important notation. Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
parent
38975e905a
commit
fdefdbca7e
@ -1,7 +1,8 @@
|
||||
Cache and TLB Flushing
|
||||
Under Linux
|
||||
==================================
|
||||
Cache and TLB Flushing Under Linux
|
||||
==================================
|
||||
|
||||
David S. Miller <davem@redhat.com>
|
||||
:Author: David S. Miller <davem@redhat.com>
|
||||
|
||||
This document describes the cache/tlb flushing interfaces called
|
||||
by the Linux VM subsystem. It enumerates over each interface,
|
||||
@ -28,7 +29,7 @@ Therefore when software page table changes occur, the kernel will
|
||||
invoke one of the following flush methods _after_ the page table
|
||||
changes occur:
|
||||
|
||||
1) void flush_tlb_all(void)
|
||||
1) ``void flush_tlb_all(void)``
|
||||
|
||||
The most severe flush of all. After this interface runs,
|
||||
any previous page table modification whatsoever will be
|
||||
@ -37,7 +38,7 @@ changes occur:
|
||||
This is usually invoked when the kernel page tables are
|
||||
changed, since such translations are "global" in nature.
|
||||
|
||||
2) void flush_tlb_mm(struct mm_struct *mm)
|
||||
2) ``void flush_tlb_mm(struct mm_struct *mm)``
|
||||
|
||||
This interface flushes an entire user address space from
|
||||
the TLB. After running, this interface must make sure that
|
||||
@ -49,8 +50,8 @@ changes occur:
|
||||
page table operations such as what happens during
|
||||
fork, and exec.
|
||||
|
||||
3) void flush_tlb_range(struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end)
|
||||
3) ``void flush_tlb_range(struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end)``
|
||||
|
||||
Here we are flushing a specific range of (user) virtual
|
||||
address translations from the TLB. After running, this
|
||||
@ -69,7 +70,7 @@ changes occur:
|
||||
call flush_tlb_page (see below) for each entry which may be
|
||||
modified.
|
||||
|
||||
4) void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
|
||||
4) ``void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)``
|
||||
|
||||
This time we need to remove the PAGE_SIZE sized translation
|
||||
from the TLB. The 'vma' is the backing structure used by
|
||||
@ -87,8 +88,8 @@ changes occur:
|
||||
|
||||
This is used primarily during fault processing.
|
||||
|
||||
5) void update_mmu_cache(struct vm_area_struct *vma,
|
||||
unsigned long address, pte_t *ptep)
|
||||
5) ``void update_mmu_cache(struct vm_area_struct *vma,
|
||||
unsigned long address, pte_t *ptep)``
|
||||
|
||||
At the end of every page fault, this routine is invoked to
|
||||
tell the architecture specific code that a translation
|
||||
@ -100,7 +101,7 @@ changes occur:
|
||||
translations for software managed TLB configurations.
|
||||
The sparc64 port currently does this.
|
||||
|
||||
6) void tlb_migrate_finish(struct mm_struct *mm)
|
||||
6) ``void tlb_migrate_finish(struct mm_struct *mm)``
|
||||
|
||||
This interface is called at the end of an explicit
|
||||
process migration. This interface provides a hook
|
||||
@ -112,7 +113,7 @@ changes occur:
|
||||
|
||||
Next, we have the cache flushing interfaces. In general, when Linux
|
||||
is changing an existing virtual-->physical mapping to a new value,
|
||||
the sequence will be in one of the following forms:
|
||||
the sequence will be in one of the following forms::
|
||||
|
||||
1) flush_cache_mm(mm);
|
||||
change_all_page_tables_of(mm);
|
||||
@ -143,7 +144,7 @@ and have no dependency on translation information.
|
||||
|
||||
Here are the routines, one by one:
|
||||
|
||||
1) void flush_cache_mm(struct mm_struct *mm)
|
||||
1) ``void flush_cache_mm(struct mm_struct *mm)``
|
||||
|
||||
This interface flushes an entire user address space from
|
||||
the caches. That is, after running, there will be no cache
|
||||
@ -152,7 +153,7 @@ Here are the routines, one by one:
|
||||
This interface is used to handle whole address space
|
||||
page table operations such as what happens during exit and exec.
|
||||
|
||||
2) void flush_cache_dup_mm(struct mm_struct *mm)
|
||||
2) ``void flush_cache_dup_mm(struct mm_struct *mm)``
|
||||
|
||||
This interface flushes an entire user address space from
|
||||
the caches. That is, after running, there will be no cache
|
||||
@ -164,8 +165,8 @@ Here are the routines, one by one:
|
||||
This option is separate from flush_cache_mm to allow some
|
||||
optimizations for VIPT caches.
|
||||
|
||||
3) void flush_cache_range(struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end)
|
||||
3) ``void flush_cache_range(struct vm_area_struct *vma,
|
||||
unsigned long start, unsigned long end)``
|
||||
|
||||
Here we are flushing a specific range of (user) virtual
|
||||
addresses from the cache. After running, there will be no
|
||||
@ -181,7 +182,7 @@ Here are the routines, one by one:
|
||||
call flush_cache_page (see below) for each entry which may be
|
||||
modified.
|
||||
|
||||
4) void flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
|
||||
4) ``void flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)``
|
||||
|
||||
This time we need to remove a PAGE_SIZE sized range
|
||||
from the cache. The 'vma' is the backing structure used by
|
||||
@ -202,7 +203,7 @@ Here are the routines, one by one:
|
||||
|
||||
This is used primarily during fault processing.
|
||||
|
||||
5) void flush_cache_kmaps(void)
|
||||
5) ``void flush_cache_kmaps(void)``
|
||||
|
||||
This routine need only be implemented if the platform utilizes
|
||||
highmem. It will be called right before all of the kmaps
|
||||
@ -214,8 +215,8 @@ Here are the routines, one by one:
|
||||
|
||||
This routing should be implemented in asm/highmem.h
|
||||
|
||||
6) void flush_cache_vmap(unsigned long start, unsigned long end)
|
||||
void flush_cache_vunmap(unsigned long start, unsigned long end)
|
||||
6) ``void flush_cache_vmap(unsigned long start, unsigned long end)``
|
||||
``void flush_cache_vunmap(unsigned long start, unsigned long end)``
|
||||
|
||||
Here in these two interfaces we are flushing a specific range
|
||||
of (kernel) virtual addresses from the cache. After running,
|
||||
@ -243,8 +244,10 @@ size). This setting will force the SYSv IPC layer to only allow user
|
||||
processes to mmap shared memory at address which are a multiple of
|
||||
this value.
|
||||
|
||||
NOTE: This does not fix shared mmaps, check out the sparc64 port for
|
||||
one way to solve this (in particular SPARC_FLAG_MMAPSHARED).
|
||||
.. note::
|
||||
|
||||
This does not fix shared mmaps, check out the sparc64 port for
|
||||
one way to solve this (in particular SPARC_FLAG_MMAPSHARED).
|
||||
|
||||
Next, you have to solve the D-cache aliasing issue for all
|
||||
other cases. Please keep in mind that fact that, for a given page
|
||||
@ -255,8 +258,8 @@ physical page into its address space, by implication the D-cache
|
||||
aliasing problem has the potential to exist since the kernel already
|
||||
maps this page at its virtual address.
|
||||
|
||||
void copy_user_page(void *to, void *from, unsigned long addr, struct page *page)
|
||||
void clear_user_page(void *to, unsigned long addr, struct page *page)
|
||||
``void copy_user_page(void *to, void *from, unsigned long addr, struct page *page)``
|
||||
``void clear_user_page(void *to, unsigned long addr, struct page *page)``
|
||||
|
||||
These two routines store data in user anonymous or COW
|
||||
pages. It allows a port to efficiently avoid D-cache alias
|
||||
@ -276,14 +279,16 @@ maps this page at its virtual address.
|
||||
If D-cache aliasing is not an issue, these two routines may
|
||||
simply call memcpy/memset directly and do nothing more.
|
||||
|
||||
void flush_dcache_page(struct page *page)
|
||||
``void flush_dcache_page(struct page *page)``
|
||||
|
||||
Any time the kernel writes to a page cache page, _OR_
|
||||
the kernel is about to read from a page cache page and
|
||||
user space shared/writable mappings of this page potentially
|
||||
exist, this routine is called.
|
||||
|
||||
NOTE: This routine need only be called for page cache pages
|
||||
.. note::
|
||||
|
||||
This routine need only be called for page cache pages
|
||||
which can potentially ever be mapped into the address
|
||||
space of a user process. So for example, VFS layer code
|
||||
handling vfs symlinks in the page cache need not call
|
||||
@ -322,18 +327,19 @@ maps this page at its virtual address.
|
||||
made of this flag bit, and if set the flush is done and the flag
|
||||
bit is cleared.
|
||||
|
||||
IMPORTANT NOTE: It is often important, if you defer the flush,
|
||||
.. important::
|
||||
|
||||
It is often important, if you defer the flush,
|
||||
that the actual flush occurs on the same CPU
|
||||
as did the cpu stores into the page to make it
|
||||
dirty. Again, see sparc64 for examples of how
|
||||
to deal with this.
|
||||
|
||||
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
|
||||
unsigned long user_vaddr,
|
||||
void *dst, void *src, int len)
|
||||
void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
|
||||
unsigned long user_vaddr,
|
||||
void *dst, void *src, int len)
|
||||
``void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
|
||||
unsigned long user_vaddr, void *dst, void *src, int len)``
|
||||
``void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
|
||||
unsigned long user_vaddr, void *dst, void *src, int len)``
|
||||
|
||||
When the kernel needs to copy arbitrary data in and out
|
||||
of arbitrary user pages (f.e. for ptrace()) it will use
|
||||
these two routines.
|
||||
@ -344,8 +350,9 @@ maps this page at its virtual address.
|
||||
likely that you will need to flush the instruction cache
|
||||
for copy_to_user_page().
|
||||
|
||||
void flush_anon_page(struct vm_area_struct *vma, struct page *page,
|
||||
unsigned long vmaddr)
|
||||
``void flush_anon_page(struct vm_area_struct *vma, struct page *page,
|
||||
unsigned long vmaddr)``
|
||||
|
||||
When the kernel needs to access the contents of an anonymous
|
||||
page, it calls this function (currently only
|
||||
get_user_pages()). Note: flush_dcache_page() deliberately
|
||||
@ -354,7 +361,8 @@ maps this page at its virtual address.
|
||||
architectures). For incoherent architectures, it should flush
|
||||
the cache of the page at vmaddr.
|
||||
|
||||
void flush_kernel_dcache_page(struct page *page)
|
||||
``void flush_kernel_dcache_page(struct page *page)``
|
||||
|
||||
When the kernel needs to modify a user page is has obtained
|
||||
with kmap, it calls this function after all modifications are
|
||||
complete (but before kunmapping it) to bring the underlying
|
||||
@ -366,14 +374,16 @@ maps this page at its virtual address.
|
||||
the kernel cache for page (using page_address(page)).
|
||||
|
||||
|
||||
void flush_icache_range(unsigned long start, unsigned long end)
|
||||
``void flush_icache_range(unsigned long start, unsigned long end)``
|
||||
|
||||
When the kernel stores into addresses that it will execute
|
||||
out of (eg when loading modules), this function is called.
|
||||
|
||||
If the icache does not snoop stores then this routine will need
|
||||
to flush it.
|
||||
|
||||
void flush_icache_page(struct vm_area_struct *vma, struct page *page)
|
||||
``void flush_icache_page(struct vm_area_struct *vma, struct page *page)``
|
||||
|
||||
All the functionality of flush_icache_page can be implemented in
|
||||
flush_dcache_page and update_mmu_cache. In the future, the hope
|
||||
is to remove this interface completely.
|
||||
@ -387,7 +397,8 @@ the kernel trying to do I/O to vmap areas must manually manage
|
||||
coherency. It must do this by flushing the vmap range before doing
|
||||
I/O and invalidating it after the I/O returns.
|
||||
|
||||
void flush_kernel_vmap_range(void *vaddr, int size)
|
||||
``void flush_kernel_vmap_range(void *vaddr, int size)``
|
||||
|
||||
flushes the kernel cache for a given virtual address range in
|
||||
the vmap area. This is to make sure that any data the kernel
|
||||
modified in the vmap range is made visible to the physical
|
||||
@ -395,7 +406,8 @@ I/O and invalidating it after the I/O returns.
|
||||
Note that this API does *not* also flush the offset map alias
|
||||
of the area.
|
||||
|
||||
void invalidate_kernel_vmap_range(void *vaddr, int size) invalidates
|
||||
``void invalidate_kernel_vmap_range(void *vaddr, int size) invalidates``
|
||||
|
||||
the cache for a given virtual address range in the vmap area
|
||||
which prevents the processor from making the cache stale by
|
||||
speculatively reading data while the I/O was occurring to the
|
||||
|
Loading…
Reference in New Issue
Block a user