mirror of
https://github.com/torvalds/linux.git
synced 2024-11-15 00:21:59 +00:00
KVM: arm64: nv: Handle shadow stage 2 page faults
If we are faulting on a shadow stage 2 translation, we first walk the guest hypervisor's stage 2 page table to see if it has a mapping. If not, we inject a stage 2 page fault to the virtual EL2. Otherwise, we create a mapping in the shadow stage 2 page table. Note that we have to deal with two IPAs when we got a shadow stage 2 page fault. One is the address we faulted on, and is in the L2 guest phys space. The other is from the guest stage-2 page table walk, and is in the L1 guest phys space. To differentiate them, we rename variables so that fault_ipa is used for the former and ipa is used for the latter. When mapping a page in a shadow stage-2, special care must be taken not to be more permissive than the guest is. Co-developed-by: Christoffer Dall <christoffer.dall@linaro.org> Co-developed-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240614144552.2773592-4-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
This commit is contained in:
parent
61e30b9eef
commit
fd276e71d1
@ -78,8 +78,41 @@ struct kvm_s2_trans {
|
||||
u64 upper_attr;
|
||||
};
|
||||
|
||||
static inline phys_addr_t kvm_s2_trans_output(struct kvm_s2_trans *trans)
|
||||
{
|
||||
return trans->output;
|
||||
}
|
||||
|
||||
static inline unsigned long kvm_s2_trans_size(struct kvm_s2_trans *trans)
|
||||
{
|
||||
return trans->block_size;
|
||||
}
|
||||
|
||||
static inline u32 kvm_s2_trans_esr(struct kvm_s2_trans *trans)
|
||||
{
|
||||
return trans->esr;
|
||||
}
|
||||
|
||||
static inline bool kvm_s2_trans_readable(struct kvm_s2_trans *trans)
|
||||
{
|
||||
return trans->readable;
|
||||
}
|
||||
|
||||
static inline bool kvm_s2_trans_writable(struct kvm_s2_trans *trans)
|
||||
{
|
||||
return trans->writable;
|
||||
}
|
||||
|
||||
static inline bool kvm_s2_trans_executable(struct kvm_s2_trans *trans)
|
||||
{
|
||||
return !(trans->upper_attr & BIT(54));
|
||||
}
|
||||
|
||||
extern int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
|
||||
struct kvm_s2_trans *result);
|
||||
extern int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu,
|
||||
struct kvm_s2_trans *trans);
|
||||
extern int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2);
|
||||
|
||||
int kvm_init_nv_sysregs(struct kvm *kvm);
|
||||
|
||||
|
@ -1407,6 +1407,7 @@ static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
|
||||
}
|
||||
|
||||
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
struct kvm_s2_trans *nested,
|
||||
struct kvm_memory_slot *memslot, unsigned long hva,
|
||||
bool fault_is_perm)
|
||||
{
|
||||
@ -1415,6 +1416,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
bool exec_fault, mte_allowed;
|
||||
bool device = false, vfio_allow_any_uc = false;
|
||||
unsigned long mmu_seq;
|
||||
phys_addr_t ipa = fault_ipa;
|
||||
struct kvm *kvm = vcpu->kvm;
|
||||
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
||||
struct vm_area_struct *vma;
|
||||
@ -1498,10 +1500,38 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
}
|
||||
|
||||
vma_pagesize = 1UL << vma_shift;
|
||||
|
||||
if (nested) {
|
||||
unsigned long max_map_size;
|
||||
|
||||
max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
|
||||
|
||||
ipa = kvm_s2_trans_output(nested);
|
||||
|
||||
/*
|
||||
* If we're about to create a shadow stage 2 entry, then we
|
||||
* can only create a block mapping if the guest stage 2 page
|
||||
* table uses at least as big a mapping.
|
||||
*/
|
||||
max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
|
||||
|
||||
/*
|
||||
* Be careful that if the mapping size falls between
|
||||
* two host sizes, take the smallest of the two.
|
||||
*/
|
||||
if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
|
||||
max_map_size = PMD_SIZE;
|
||||
else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
|
||||
max_map_size = PAGE_SIZE;
|
||||
|
||||
force_pte = (max_map_size == PAGE_SIZE);
|
||||
vma_pagesize = min(vma_pagesize, (long)max_map_size);
|
||||
}
|
||||
|
||||
if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
|
||||
fault_ipa &= ~(vma_pagesize - 1);
|
||||
|
||||
gfn = fault_ipa >> PAGE_SHIFT;
|
||||
gfn = ipa >> PAGE_SHIFT;
|
||||
mte_allowed = kvm_vma_mte_allowed(vma);
|
||||
|
||||
vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
|
||||
@ -1552,6 +1582,17 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
if (exec_fault && device)
|
||||
return -ENOEXEC;
|
||||
|
||||
/*
|
||||
* Potentially reduce shadow S2 permissions to match the guest's own
|
||||
* S2. For exec faults, we'd only reach this point if the guest
|
||||
* actually allowed it (see kvm_s2_handle_perm_fault).
|
||||
*/
|
||||
if (nested) {
|
||||
writable &= kvm_s2_trans_writable(nested);
|
||||
if (!kvm_s2_trans_readable(nested))
|
||||
prot &= ~KVM_PGTABLE_PROT_R;
|
||||
}
|
||||
|
||||
read_lock(&kvm->mmu_lock);
|
||||
pgt = vcpu->arch.hw_mmu->pgt;
|
||||
if (mmu_invalidate_retry(kvm, mmu_seq)) {
|
||||
@ -1598,7 +1639,8 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
||||
prot |= KVM_PGTABLE_PROT_NORMAL_NC;
|
||||
else
|
||||
prot |= KVM_PGTABLE_PROT_DEVICE;
|
||||
} else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC)) {
|
||||
} else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC) &&
|
||||
(!nested || kvm_s2_trans_executable(nested))) {
|
||||
prot |= KVM_PGTABLE_PROT_X;
|
||||
}
|
||||
|
||||
@ -1658,8 +1700,10 @@ static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
|
||||
*/
|
||||
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
struct kvm_s2_trans nested_trans, *nested = NULL;
|
||||
unsigned long esr;
|
||||
phys_addr_t fault_ipa;
|
||||
phys_addr_t fault_ipa; /* The address we faulted on */
|
||||
phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
|
||||
struct kvm_memory_slot *memslot;
|
||||
unsigned long hva;
|
||||
bool is_iabt, write_fault, writable;
|
||||
@ -1668,7 +1712,7 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
|
||||
|
||||
esr = kvm_vcpu_get_esr(vcpu);
|
||||
|
||||
fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
|
||||
ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
|
||||
is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
|
||||
|
||||
if (esr_fsc_is_translation_fault(esr)) {
|
||||
@ -1718,7 +1762,42 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
|
||||
|
||||
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
||||
|
||||
gfn = fault_ipa >> PAGE_SHIFT;
|
||||
/*
|
||||
* We may have faulted on a shadow stage 2 page table if we are
|
||||
* running a nested guest. In this case, we have to resolve the L2
|
||||
* IPA to the L1 IPA first, before knowing what kind of memory should
|
||||
* back the L1 IPA.
|
||||
*
|
||||
* If the shadow stage 2 page table walk faults, then we simply inject
|
||||
* this to the guest and carry on.
|
||||
*
|
||||
* If there are no shadow S2 PTs because S2 is disabled, there is
|
||||
* nothing to walk and we treat it as a 1:1 before going through the
|
||||
* canonical translation.
|
||||
*/
|
||||
if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
|
||||
vcpu->arch.hw_mmu->nested_stage2_enabled) {
|
||||
u32 esr;
|
||||
|
||||
ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
|
||||
if (ret) {
|
||||
esr = kvm_s2_trans_esr(&nested_trans);
|
||||
kvm_inject_s2_fault(vcpu, esr);
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
|
||||
if (ret) {
|
||||
esr = kvm_s2_trans_esr(&nested_trans);
|
||||
kvm_inject_s2_fault(vcpu, esr);
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
ipa = kvm_s2_trans_output(&nested_trans);
|
||||
nested = &nested_trans;
|
||||
}
|
||||
|
||||
gfn = ipa >> PAGE_SHIFT;
|
||||
memslot = gfn_to_memslot(vcpu->kvm, gfn);
|
||||
hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
|
||||
write_fault = kvm_is_write_fault(vcpu);
|
||||
@ -1762,13 +1841,13 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
|
||||
* faulting VA. This is always 12 bits, irrespective
|
||||
* of the page size.
|
||||
*/
|
||||
fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
|
||||
ret = io_mem_abort(vcpu, fault_ipa);
|
||||
ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
|
||||
ret = io_mem_abort(vcpu, ipa);
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
/* Userspace should not be able to register out-of-bounds IPAs */
|
||||
VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
|
||||
VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
|
||||
|
||||
if (esr_fsc_is_access_flag_fault(esr)) {
|
||||
handle_access_fault(vcpu, fault_ipa);
|
||||
@ -1776,7 +1855,7 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
ret = user_mem_abort(vcpu, fault_ipa, memslot, hva,
|
||||
ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
|
||||
esr_fsc_is_permission_fault(esr));
|
||||
if (ret == 0)
|
||||
ret = 1;
|
||||
|
@ -121,6 +121,15 @@ static u32 compute_fsc(int level, u32 fsc)
|
||||
return fsc | (level & 0x3);
|
||||
}
|
||||
|
||||
static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
|
||||
{
|
||||
u32 esr;
|
||||
|
||||
esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
|
||||
esr |= compute_fsc(level, fsc);
|
||||
return esr;
|
||||
}
|
||||
|
||||
static int get_ia_size(struct s2_walk_info *wi)
|
||||
{
|
||||
return 64 - wi->t0sz;
|
||||
@ -482,6 +491,42 @@ void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns non-zero if permission fault is handled by injecting it to the next
|
||||
* level hypervisor.
|
||||
*/
|
||||
int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
|
||||
{
|
||||
bool forward_fault = false;
|
||||
|
||||
trans->esr = 0;
|
||||
|
||||
if (!kvm_vcpu_trap_is_permission_fault(vcpu))
|
||||
return 0;
|
||||
|
||||
if (kvm_vcpu_trap_is_iabt(vcpu)) {
|
||||
forward_fault = !kvm_s2_trans_executable(trans);
|
||||
} else {
|
||||
bool write_fault = kvm_is_write_fault(vcpu);
|
||||
|
||||
forward_fault = ((write_fault && !trans->writable) ||
|
||||
(!write_fault && !trans->readable));
|
||||
}
|
||||
|
||||
if (forward_fault)
|
||||
trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
|
||||
|
||||
return forward_fault;
|
||||
}
|
||||
|
||||
int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
|
||||
{
|
||||
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
|
||||
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
|
||||
|
||||
return kvm_inject_nested_sync(vcpu, esr_el2);
|
||||
}
|
||||
|
||||
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
||||
{
|
||||
int i;
|
||||
|
Loading…
Reference in New Issue
Block a user