iov_iter: Convert iterate*() to inline funcs

Convert the iov_iter iteration macros to inline functions to make the code
easier to follow.

The functions are marked __always_inline as we don't want to end up with
indirect calls in the code.  This, however, leaves dealing with ->copy_mc
in an awkard situation since the step function (memcpy_from_iter_mc())
needs to test the flag in the iterator, but isn't passed the iterator.
This will be dealt with in a follow-up patch.

The variable names in the per-type iterator functions have been harmonised
as much as possible and made clearer as to the variable purpose.

The iterator functions are also moved to a header file so that other
operations that need to scan over an iterator can be added.  For instance,
the rbd driver could use this to scan a buffer to see if it is all zeros
and libceph could use this to generate a crc.

Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/3710261.1691764329@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/855.1692047347@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/20230816120741.534415-1-dhowells@redhat.com/ # v3
Link: https://lore.kernel.org/r/20230925120309.1731676-8-dhowells@redhat.com
cc: Alexander Viro <viro@zeniv.linux.org.uk>
cc: Jens Axboe <axboe@kernel.dk>
cc: Christoph Hellwig <hch@lst.de>
cc: Christian Brauner <christian@brauner.io>
cc: Matthew Wilcox <willy@infradead.org>
cc: Linus Torvalds <torvalds@linux-foundation.org>
cc: David Laight <David.Laight@ACULAB.COM>
cc: linux-block@vger.kernel.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
This commit is contained in:
David Howells 2023-09-25 13:03:04 +01:00 committed by Christian Brauner
parent f1b4cb650b
commit f1982740f5
No known key found for this signature in database
GPG Key ID: 91C61BC06578DCA2
2 changed files with 448 additions and 240 deletions

274
include/linux/iov_iter.h Normal file
View File

@ -0,0 +1,274 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/* I/O iterator iteration building functions.
*
* Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#ifndef _LINUX_IOV_ITER_H
#define _LINUX_IOV_ITER_H
#include <linux/uio.h>
#include <linux/bvec.h>
typedef size_t (*iov_step_f)(void *iter_base, size_t progress, size_t len,
void *priv, void *priv2);
typedef size_t (*iov_ustep_f)(void __user *iter_base, size_t progress, size_t len,
void *priv, void *priv2);
/*
* Handle ITER_UBUF.
*/
static __always_inline
size_t iterate_ubuf(struct iov_iter *iter, size_t len, void *priv, void *priv2,
iov_ustep_f step)
{
void __user *base = iter->ubuf;
size_t progress = 0, remain;
remain = step(base + iter->iov_offset, 0, len, priv, priv2);
progress = len - remain;
iter->iov_offset += progress;
iter->count -= progress;
return progress;
}
/*
* Handle ITER_IOVEC.
*/
static __always_inline
size_t iterate_iovec(struct iov_iter *iter, size_t len, void *priv, void *priv2,
iov_ustep_f step)
{
const struct iovec *p = iter->__iov;
size_t progress = 0, skip = iter->iov_offset;
do {
size_t remain, consumed;
size_t part = min(len, p->iov_len - skip);
if (likely(part)) {
remain = step(p->iov_base + skip, progress, part, priv, priv2);
consumed = part - remain;
progress += consumed;
skip += consumed;
len -= consumed;
if (skip < p->iov_len)
break;
}
p++;
skip = 0;
} while (len);
iter->nr_segs -= p - iter->__iov;
iter->__iov = p;
iter->iov_offset = skip;
iter->count -= progress;
return progress;
}
/*
* Handle ITER_KVEC.
*/
static __always_inline
size_t iterate_kvec(struct iov_iter *iter, size_t len, void *priv, void *priv2,
iov_step_f step)
{
const struct kvec *p = iter->kvec;
size_t progress = 0, skip = iter->iov_offset;
do {
size_t remain, consumed;
size_t part = min(len, p->iov_len - skip);
if (likely(part)) {
remain = step(p->iov_base + skip, progress, part, priv, priv2);
consumed = part - remain;
progress += consumed;
skip += consumed;
len -= consumed;
if (skip < p->iov_len)
break;
}
p++;
skip = 0;
} while (len);
iter->nr_segs -= p - iter->kvec;
iter->kvec = p;
iter->iov_offset = skip;
iter->count -= progress;
return progress;
}
/*
* Handle ITER_BVEC.
*/
static __always_inline
size_t iterate_bvec(struct iov_iter *iter, size_t len, void *priv, void *priv2,
iov_step_f step)
{
const struct bio_vec *p = iter->bvec;
size_t progress = 0, skip = iter->iov_offset;
do {
size_t remain, consumed;
size_t offset = p->bv_offset + skip, part;
void *kaddr = kmap_local_page(p->bv_page + offset / PAGE_SIZE);
part = min3(len,
(size_t)(p->bv_len - skip),
(size_t)(PAGE_SIZE - offset % PAGE_SIZE));
remain = step(kaddr + offset % PAGE_SIZE, progress, part, priv, priv2);
kunmap_local(kaddr);
consumed = part - remain;
len -= consumed;
progress += consumed;
skip += consumed;
if (skip >= p->bv_len) {
skip = 0;
p++;
}
if (remain)
break;
} while (len);
iter->nr_segs -= p - iter->bvec;
iter->bvec = p;
iter->iov_offset = skip;
iter->count -= progress;
return progress;
}
/*
* Handle ITER_XARRAY.
*/
static __always_inline
size_t iterate_xarray(struct iov_iter *iter, size_t len, void *priv, void *priv2,
iov_step_f step)
{
struct folio *folio;
size_t progress = 0;
loff_t start = iter->xarray_start + iter->iov_offset;
pgoff_t index = start / PAGE_SIZE;
XA_STATE(xas, iter->xarray, index);
rcu_read_lock();
xas_for_each(&xas, folio, ULONG_MAX) {
size_t remain, consumed, offset, part, flen;
if (xas_retry(&xas, folio))
continue;
if (WARN_ON(xa_is_value(folio)))
break;
if (WARN_ON(folio_test_hugetlb(folio)))
break;
offset = offset_in_folio(folio, start + progress);
flen = min(folio_size(folio) - offset, len);
while (flen) {
void *base = kmap_local_folio(folio, offset);
part = min_t(size_t, flen,
PAGE_SIZE - offset_in_page(offset));
remain = step(base, progress, part, priv, priv2);
kunmap_local(base);
consumed = part - remain;
progress += consumed;
len -= consumed;
if (remain || len == 0)
goto out;
flen -= consumed;
offset += consumed;
}
}
out:
rcu_read_unlock();
iter->iov_offset += progress;
iter->count -= progress;
return progress;
}
/*
* Handle ITER_DISCARD.
*/
static __always_inline
size_t iterate_discard(struct iov_iter *iter, size_t len, void *priv, void *priv2,
iov_step_f step)
{
size_t progress = len;
iter->count -= progress;
return progress;
}
/**
* iterate_and_advance2 - Iterate over an iterator
* @iter: The iterator to iterate over.
* @len: The amount to iterate over.
* @priv: Data for the step functions.
* @priv2: More data for the step functions.
* @ustep: Function for UBUF/IOVEC iterators; given __user addresses.
* @step: Function for other iterators; given kernel addresses.
*
* Iterate over the next part of an iterator, up to the specified length. The
* buffer is presented in segments, which for kernel iteration are broken up by
* physical pages and mapped, with the mapped address being presented.
*
* Two step functions, @step and @ustep, must be provided, one for handling
* mapped kernel addresses and the other is given user addresses which have the
* potential to fault since no pinning is performed.
*
* The step functions are passed the address and length of the segment, @priv,
* @priv2 and the amount of data so far iterated over (which can, for example,
* be added to @priv to point to the right part of a second buffer). The step
* functions should return the amount of the segment they didn't process (ie. 0
* indicates complete processsing).
*
* This function returns the amount of data processed (ie. 0 means nothing was
* processed and the value of @len means processes to completion).
*/
static __always_inline
size_t iterate_and_advance2(struct iov_iter *iter, size_t len, void *priv,
void *priv2, iov_ustep_f ustep, iov_step_f step)
{
if (unlikely(iter->count < len))
len = iter->count;
if (unlikely(!len))
return 0;
if (likely(iter_is_ubuf(iter)))
return iterate_ubuf(iter, len, priv, priv2, ustep);
if (likely(iter_is_iovec(iter)))
return iterate_iovec(iter, len, priv, priv2, ustep);
if (iov_iter_is_bvec(iter))
return iterate_bvec(iter, len, priv, priv2, step);
if (iov_iter_is_kvec(iter))
return iterate_kvec(iter, len, priv, priv2, step);
if (iov_iter_is_xarray(iter))
return iterate_xarray(iter, len, priv, priv2, step);
return iterate_discard(iter, len, priv, priv2, step);
}
/**
* iterate_and_advance - Iterate over an iterator
* @iter: The iterator to iterate over.
* @len: The amount to iterate over.
* @priv: Data for the step functions.
* @ustep: Function for UBUF/IOVEC iterators; given __user addresses.
* @step: Function for other iterators; given kernel addresses.
*
* As iterate_and_advance2(), but priv2 is always NULL.
*/
static __always_inline
size_t iterate_and_advance(struct iov_iter *iter, size_t len, void *priv,
iov_ustep_f ustep, iov_step_f step)
{
return iterate_and_advance2(iter, len, priv, NULL, ustep, step);
}
#endif /* _LINUX_IOV_ITER_H */

View File

@ -13,189 +13,69 @@
#include <net/checksum.h>
#include <linux/scatterlist.h>
#include <linux/instrumented.h>
#include <linux/iov_iter.h>
/* covers ubuf and kbuf alike */
#define iterate_buf(i, n, base, len, off, __p, STEP) { \
size_t __maybe_unused off = 0; \
len = n; \
base = __p + i->iov_offset; \
len -= (STEP); \
i->iov_offset += len; \
n = len; \
}
/* covers iovec and kvec alike */
#define iterate_iovec(i, n, base, len, off, __p, STEP) { \
size_t off = 0; \
size_t skip = i->iov_offset; \
do { \
len = min(n, __p->iov_len - skip); \
if (likely(len)) { \
base = __p->iov_base + skip; \
len -= (STEP); \
off += len; \
skip += len; \
n -= len; \
if (skip < __p->iov_len) \
break; \
} \
__p++; \
skip = 0; \
} while (n); \
i->iov_offset = skip; \
n = off; \
}
#define iterate_bvec(i, n, base, len, off, p, STEP) { \
size_t off = 0; \
unsigned skip = i->iov_offset; \
while (n) { \
unsigned offset = p->bv_offset + skip; \
unsigned left; \
void *kaddr = kmap_local_page(p->bv_page + \
offset / PAGE_SIZE); \
base = kaddr + offset % PAGE_SIZE; \
len = min(min(n, (size_t)(p->bv_len - skip)), \
(size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
left = (STEP); \
kunmap_local(kaddr); \
len -= left; \
off += len; \
skip += len; \
if (skip == p->bv_len) { \
skip = 0; \
p++; \
} \
n -= len; \
if (left) \
break; \
} \
i->iov_offset = skip; \
n = off; \
}
#define iterate_xarray(i, n, base, len, __off, STEP) { \
__label__ __out; \
size_t __off = 0; \
struct folio *folio; \
loff_t start = i->xarray_start + i->iov_offset; \
pgoff_t index = start / PAGE_SIZE; \
XA_STATE(xas, i->xarray, index); \
\
len = PAGE_SIZE - offset_in_page(start); \
rcu_read_lock(); \
xas_for_each(&xas, folio, ULONG_MAX) { \
unsigned left; \
size_t offset; \
if (xas_retry(&xas, folio)) \
continue; \
if (WARN_ON(xa_is_value(folio))) \
break; \
if (WARN_ON(folio_test_hugetlb(folio))) \
break; \
offset = offset_in_folio(folio, start + __off); \
while (offset < folio_size(folio)) { \
base = kmap_local_folio(folio, offset); \
len = min(n, len); \
left = (STEP); \
kunmap_local(base); \
len -= left; \
__off += len; \
n -= len; \
if (left || n == 0) \
goto __out; \
offset += len; \
len = PAGE_SIZE; \
} \
} \
__out: \
rcu_read_unlock(); \
i->iov_offset += __off; \
n = __off; \
}
#define __iterate_and_advance(i, n, base, len, off, I, K) { \
if (unlikely(i->count < n)) \
n = i->count; \
if (likely(n)) { \
if (likely(iter_is_ubuf(i))) { \
void __user *base; \
size_t len; \
iterate_buf(i, n, base, len, off, \
i->ubuf, (I)) \
} else if (likely(iter_is_iovec(i))) { \
const struct iovec *iov = iter_iov(i); \
void __user *base; \
size_t len; \
iterate_iovec(i, n, base, len, off, \
iov, (I)) \
i->nr_segs -= iov - iter_iov(i); \
i->__iov = iov; \
} else if (iov_iter_is_bvec(i)) { \
const struct bio_vec *bvec = i->bvec; \
void *base; \
size_t len; \
iterate_bvec(i, n, base, len, off, \
bvec, (K)) \
i->nr_segs -= bvec - i->bvec; \
i->bvec = bvec; \
} else if (iov_iter_is_kvec(i)) { \
const struct kvec *kvec = i->kvec; \
void *base; \
size_t len; \
iterate_iovec(i, n, base, len, off, \
kvec, (K)) \
i->nr_segs -= kvec - i->kvec; \
i->kvec = kvec; \
} else if (iov_iter_is_xarray(i)) { \
void *base; \
size_t len; \
iterate_xarray(i, n, base, len, off, \
(K)) \
} \
i->count -= n; \
} \
}
#define iterate_and_advance(i, n, base, len, off, I, K) \
__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
static int copyout(void __user *to, const void *from, size_t n)
static __always_inline
size_t copy_to_user_iter(void __user *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
if (should_fail_usercopy())
return n;
if (access_ok(to, n)) {
instrument_copy_to_user(to, from, n);
n = raw_copy_to_user(to, from, n);
return len;
if (access_ok(iter_to, len)) {
from += progress;
instrument_copy_to_user(iter_to, from, len);
len = raw_copy_to_user(iter_to, from, len);
}
return n;
return len;
}
static int copyout_nofault(void __user *to, const void *from, size_t n)
static __always_inline
size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
long res;
ssize_t res;
if (should_fail_usercopy())
return n;
return len;
res = copy_to_user_nofault(to, from, n);
return res < 0 ? n : res;
from += progress;
res = copy_to_user_nofault(iter_to, from, len);
return res < 0 ? len : res;
}
static int copyin(void *to, const void __user *from, size_t n)
static __always_inline
size_t copy_from_user_iter(void __user *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
size_t res = n;
size_t res = len;
if (should_fail_usercopy())
return n;
if (access_ok(from, n)) {
instrument_copy_from_user_before(to, from, n);
res = raw_copy_from_user(to, from, n);
instrument_copy_from_user_after(to, from, n, res);
return len;
if (access_ok(iter_from, len)) {
to += progress;
instrument_copy_from_user_before(to, iter_from, len);
res = raw_copy_from_user(to, iter_from, len);
instrument_copy_from_user_after(to, iter_from, len, res);
}
return res;
}
static __always_inline
size_t memcpy_to_iter(void *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
memcpy(iter_to, from + progress, len);
return 0;
}
static __always_inline
size_t memcpy_from_iter(void *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
memcpy(to + progress, iter_from, len);
return 0;
}
/*
* fault_in_iov_iter_readable - fault in iov iterator for reading
* @i: iterator
@ -312,23 +192,29 @@ size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
return 0;
if (user_backed_iter(i))
might_fault();
iterate_and_advance(i, bytes, base, len, off,
copyout(base, addr + off, len),
memcpy(base, addr + off, len)
)
return bytes;
return iterate_and_advance(i, bytes, (void *)addr,
copy_to_user_iter, memcpy_to_iter);
}
EXPORT_SYMBOL(_copy_to_iter);
#ifdef CONFIG_ARCH_HAS_COPY_MC
static int copyout_mc(void __user *to, const void *from, size_t n)
static __always_inline
size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
if (access_ok(to, n)) {
instrument_copy_to_user(to, from, n);
n = copy_mc_to_user((__force void *) to, from, n);
if (access_ok(iter_to, len)) {
from += progress;
instrument_copy_to_user(iter_to, from, len);
len = copy_mc_to_user(iter_to, from, len);
}
return n;
return len;
}
static __always_inline
size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
return copy_mc_to_kernel(iter_to, from + progress, len);
}
/**
@ -361,22 +247,20 @@ size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
return 0;
if (user_backed_iter(i))
might_fault();
__iterate_and_advance(i, bytes, base, len, off,
copyout_mc(base, addr + off, len),
copy_mc_to_kernel(base, addr + off, len)
)
return bytes;
return iterate_and_advance(i, bytes, (void *)addr,
copy_to_user_iter_mc, memcpy_to_iter_mc);
}
EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
#endif /* CONFIG_ARCH_HAS_COPY_MC */
static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from,
size_t size)
static size_t memcpy_from_iter_mc(void *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
if (iov_iter_is_copy_mc(i))
return (void *)copy_mc_to_kernel(to, from, size);
return memcpy(to, from, size);
struct iov_iter *iter = priv2;
if (iov_iter_is_copy_mc(iter))
return copy_mc_to_kernel(to + progress, iter_from, len);
return memcpy_from_iter(iter_from, progress, len, to, priv2);
}
size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
@ -386,30 +270,46 @@ size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
if (user_backed_iter(i))
might_fault();
iterate_and_advance(i, bytes, base, len, off,
copyin(addr + off, base, len),
memcpy_from_iter(i, addr + off, base, len)
)
return bytes;
return iterate_and_advance2(i, bytes, addr, i,
copy_from_user_iter,
memcpy_from_iter_mc);
}
EXPORT_SYMBOL(_copy_from_iter);
static __always_inline
size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
}
size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
{
if (WARN_ON_ONCE(!i->data_source))
return 0;
iterate_and_advance(i, bytes, base, len, off,
__copy_from_user_inatomic_nocache(addr + off, base, len),
memcpy(addr + off, base, len)
)
return bytes;
return iterate_and_advance(i, bytes, addr,
copy_from_user_iter_nocache,
memcpy_from_iter);
}
EXPORT_SYMBOL(_copy_from_iter_nocache);
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
static __always_inline
size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
return __copy_from_user_flushcache(to + progress, iter_from, len);
}
static __always_inline
size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
memcpy_flushcache(to + progress, iter_from, len);
return 0;
}
/**
* _copy_from_iter_flushcache - write destination through cpu cache
* @addr: destination kernel address
@ -431,12 +331,9 @@ size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
if (WARN_ON_ONCE(!i->data_source))
return 0;
iterate_and_advance(i, bytes, base, len, off,
__copy_from_user_flushcache(addr + off, base, len),
memcpy_flushcache(addr + off, base, len)
)
return bytes;
return iterate_and_advance(i, bytes, addr,
copy_from_user_iter_flushcache,
memcpy_from_iter_flushcache);
}
EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
#endif
@ -508,10 +405,9 @@ size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t byte
void *kaddr = kmap_local_page(page);
size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
iterate_and_advance(i, n, base, len, off,
copyout_nofault(base, kaddr + offset + off, len),
memcpy(base, kaddr + offset + off, len)
)
n = iterate_and_advance(i, bytes, kaddr,
copy_to_user_iter_nofault,
memcpy_to_iter);
kunmap_local(kaddr);
res += n;
bytes -= n;
@ -554,14 +450,25 @@ size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
}
EXPORT_SYMBOL(copy_page_from_iter);
static __always_inline
size_t zero_to_user_iter(void __user *iter_to, size_t progress,
size_t len, void *priv, void *priv2)
{
return clear_user(iter_to, len);
}
static __always_inline
size_t zero_to_iter(void *iter_to, size_t progress,
size_t len, void *priv, void *priv2)
{
memset(iter_to, 0, len);
return 0;
}
size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
{
iterate_and_advance(i, bytes, base, len, count,
clear_user(base, len),
memset(base, 0, len)
)
return bytes;
return iterate_and_advance(i, bytes, NULL,
zero_to_user_iter, zero_to_iter);
}
EXPORT_SYMBOL(iov_iter_zero);
@ -586,10 +493,9 @@ size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
}
p = kmap_atomic(page) + offset;
iterate_and_advance(i, n, base, len, off,
copyin(p + off, base, len),
memcpy_from_iter(i, p + off, base, len)
)
n = iterate_and_advance2(i, n, p, i,
copy_from_user_iter,
memcpy_from_iter_mc);
kunmap_atomic(p);
copied += n;
offset += n;
@ -1180,32 +1086,64 @@ ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
}
EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
static __always_inline
size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
__wsum next, *csum = priv2;
next = csum_and_copy_from_user(iter_from, to + progress, len);
*csum = csum_block_add(*csum, next, progress);
return next ? 0 : len;
}
static __always_inline
size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
size_t len, void *to, void *priv2)
{
__wsum *csum = priv2;
*csum = csum_and_memcpy(to + progress, iter_from, len, *csum, progress);
return 0;
}
size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
struct iov_iter *i)
{
__wsum sum, next;
sum = *csum;
if (WARN_ON_ONCE(!i->data_source))
return 0;
iterate_and_advance(i, bytes, base, len, off, ({
next = csum_and_copy_from_user(base, addr + off, len);
sum = csum_block_add(sum, next, off);
next ? 0 : len;
}), ({
sum = csum_and_memcpy(addr + off, base, len, sum, off);
})
)
*csum = sum;
return bytes;
return iterate_and_advance2(i, bytes, addr, csum,
copy_from_user_iter_csum,
memcpy_from_iter_csum);
}
EXPORT_SYMBOL(csum_and_copy_from_iter);
static __always_inline
size_t copy_to_user_iter_csum(void __user *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
__wsum next, *csum = priv2;
next = csum_and_copy_to_user(from + progress, iter_to, len);
*csum = csum_block_add(*csum, next, progress);
return next ? 0 : len;
}
static __always_inline
size_t memcpy_to_iter_csum(void *iter_to, size_t progress,
size_t len, void *from, void *priv2)
{
__wsum *csum = priv2;
*csum = csum_and_memcpy(iter_to, from + progress, len, *csum, progress);
return 0;
}
size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
struct iov_iter *i)
{
struct csum_state *csstate = _csstate;
__wsum sum, next;
__wsum sum;
if (WARN_ON_ONCE(i->data_source))
return 0;
@ -1219,14 +1157,10 @@ size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
}
sum = csum_shift(csstate->csum, csstate->off);
iterate_and_advance(i, bytes, base, len, off, ({
next = csum_and_copy_to_user(addr + off, base, len);
sum = csum_block_add(sum, next, off);
next ? 0 : len;
}), ({
sum = csum_and_memcpy(base, addr + off, len, sum, off);
})
)
bytes = iterate_and_advance2(i, bytes, (void *)addr, &sum,
copy_to_user_iter_csum,
memcpy_to_iter_csum);
csstate->csum = csum_shift(sum, csstate->off);
csstate->off += bytes;
return bytes;