mirror of
https://github.com/torvalds/linux.git
synced 2024-12-31 23:31:29 +00:00
Merge branch 'slub/lockless' into for-linus
Conflicts: include/linux/slub_def.h
This commit is contained in:
commit
e8c500c2b6
@ -1,5 +1,6 @@
|
||||
#include <asm-generic/vmlinux.lds.h>
|
||||
#include <asm/thread_info.h>
|
||||
#include <asm/cache.h>
|
||||
#include <asm/page.h>
|
||||
|
||||
OUTPUT_FORMAT("elf64-alpha")
|
||||
@ -38,7 +39,7 @@ SECTIONS
|
||||
__init_begin = ALIGN(PAGE_SIZE);
|
||||
INIT_TEXT_SECTION(PAGE_SIZE)
|
||||
INIT_DATA_SECTION(16)
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(L1_CACHE_BYTES, PAGE_SIZE)
|
||||
/* Align to THREAD_SIZE rather than PAGE_SIZE here so any padding page
|
||||
needed for the THREAD_SIZE aligned init_task gets freed after init */
|
||||
. = ALIGN(THREAD_SIZE);
|
||||
@ -46,7 +47,7 @@ SECTIONS
|
||||
/* Freed after init ends here */
|
||||
|
||||
_data = .;
|
||||
RW_DATA_SECTION(64, PAGE_SIZE, THREAD_SIZE)
|
||||
RW_DATA_SECTION(L1_CACHE_BYTES, PAGE_SIZE, THREAD_SIZE)
|
||||
|
||||
.got : {
|
||||
*(.got)
|
||||
|
@ -78,7 +78,7 @@ SECTIONS
|
||||
#endif
|
||||
}
|
||||
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(32, PAGE_SIZE)
|
||||
|
||||
#ifndef CONFIG_XIP_KERNEL
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
|
@ -136,7 +136,7 @@ SECTIONS
|
||||
|
||||
. = ALIGN(16);
|
||||
INIT_DATA_SECTION(16)
|
||||
PERCPU(4)
|
||||
PERCPU(32, 4)
|
||||
|
||||
.exit.data :
|
||||
{
|
||||
|
@ -102,7 +102,7 @@ SECTIONS
|
||||
#endif
|
||||
__vmlinux_end = .; /* Last address of the physical file. */
|
||||
#ifdef CONFIG_ETRAX_ARCH_V32
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(32, PAGE_SIZE)
|
||||
|
||||
.init.ramfs : {
|
||||
INIT_RAM_FS
|
||||
|
@ -37,7 +37,7 @@ SECTIONS
|
||||
_einittext = .;
|
||||
|
||||
INIT_DATA_SECTION(8)
|
||||
PERCPU(4096)
|
||||
PERCPU(L1_CACHE_BYTES, 4096)
|
||||
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
__init_end = .;
|
||||
|
@ -198,7 +198,7 @@ SECTIONS {
|
||||
|
||||
/* Per-cpu data: */
|
||||
. = ALIGN(PERCPU_PAGE_SIZE);
|
||||
PERCPU_VADDR(PERCPU_ADDR, :percpu)
|
||||
PERCPU_VADDR(SMP_CACHE_BYTES, PERCPU_ADDR, :percpu)
|
||||
__phys_per_cpu_start = __per_cpu_load;
|
||||
/*
|
||||
* ensure percpu data fits
|
||||
|
@ -53,7 +53,7 @@ SECTIONS
|
||||
__init_begin = .;
|
||||
INIT_TEXT_SECTION(PAGE_SIZE)
|
||||
INIT_DATA_SECTION(16)
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(32, PAGE_SIZE)
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
__init_end = .;
|
||||
/* freed after init ends here */
|
||||
|
@ -115,7 +115,7 @@ SECTIONS
|
||||
EXIT_DATA
|
||||
}
|
||||
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(1 << CONFIG_MIPS_L1_CACHE_SHIFT, PAGE_SIZE)
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
__init_end = .;
|
||||
/* freed after init ends here */
|
||||
|
@ -70,7 +70,7 @@ SECTIONS
|
||||
.exit.text : { EXIT_TEXT; }
|
||||
.exit.data : { EXIT_DATA; }
|
||||
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(32, PAGE_SIZE)
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
__init_end = .;
|
||||
/* freed after init ends here */
|
||||
|
@ -145,7 +145,7 @@ SECTIONS
|
||||
EXIT_DATA
|
||||
}
|
||||
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(L1_CACHE_BYTES, PAGE_SIZE)
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
__init_end = .;
|
||||
/* freed after init ends here */
|
||||
|
@ -160,7 +160,7 @@ SECTIONS
|
||||
INIT_RAM_FS
|
||||
}
|
||||
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(L1_CACHE_BYTES, PAGE_SIZE)
|
||||
|
||||
. = ALIGN(8);
|
||||
.machine.desc : AT(ADDR(.machine.desc) - LOAD_OFFSET) {
|
||||
|
@ -77,7 +77,7 @@ SECTIONS
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
INIT_DATA_SECTION(0x100)
|
||||
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(0x100, PAGE_SIZE)
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
__init_end = .; /* freed after init ends here */
|
||||
|
||||
|
@ -66,7 +66,7 @@ SECTIONS
|
||||
__machvec_end = .;
|
||||
}
|
||||
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(L1_CACHE_BYTES, PAGE_SIZE)
|
||||
|
||||
/*
|
||||
* .exit.text is discarded at runtime, not link time, to deal with
|
||||
|
@ -108,7 +108,7 @@ SECTIONS
|
||||
__sun4v_2insn_patch_end = .;
|
||||
}
|
||||
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(SMP_CACHE_BYTES, PAGE_SIZE)
|
||||
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
__init_end = .;
|
||||
|
@ -63,7 +63,7 @@ SECTIONS
|
||||
*(.init.page)
|
||||
} :data =0
|
||||
INIT_DATA_SECTION(16)
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(L2_CACHE_BYTES, PAGE_SIZE)
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
VMLINUX_SYMBOL(_einitdata) = .;
|
||||
|
||||
|
@ -42,7 +42,7 @@
|
||||
INIT_SETUP(0)
|
||||
}
|
||||
|
||||
PERCPU(32)
|
||||
PERCPU(32, 32)
|
||||
|
||||
.initcall.init : {
|
||||
INIT_CALLS
|
||||
|
@ -451,6 +451,26 @@ do { \
|
||||
#define irqsafe_cpu_cmpxchg_4(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval)
|
||||
#endif /* !CONFIG_M386 */
|
||||
|
||||
#ifdef CONFIG_X86_CMPXCHG64
|
||||
#define percpu_cmpxchg8b_double(pcp1, o1, o2, n1, n2) \
|
||||
({ \
|
||||
char __ret; \
|
||||
typeof(o1) __o1 = o1; \
|
||||
typeof(o1) __n1 = n1; \
|
||||
typeof(o2) __o2 = o2; \
|
||||
typeof(o2) __n2 = n2; \
|
||||
typeof(o2) __dummy = n2; \
|
||||
asm volatile("cmpxchg8b "__percpu_arg(1)"\n\tsetz %0\n\t" \
|
||||
: "=a"(__ret), "=m" (pcp1), "=d"(__dummy) \
|
||||
: "b"(__n1), "c"(__n2), "a"(__o1), "d"(__o2)); \
|
||||
__ret; \
|
||||
})
|
||||
|
||||
#define __this_cpu_cmpxchg_double_4(pcp1, pcp2, o1, o2, n1, n2) percpu_cmpxchg8b_double(pcp1, o1, o2, n1, n2)
|
||||
#define this_cpu_cmpxchg_double_4(pcp1, pcp2, o1, o2, n1, n2) percpu_cmpxchg8b_double(pcp1, o1, o2, n1, n2)
|
||||
#define irqsafe_cpu_cmpxchg_double_4(pcp1, pcp2, o1, o2, n1, n2) percpu_cmpxchg8b_double(pcp1, o1, o2, n1, n2)
|
||||
#endif /* CONFIG_X86_CMPXCHG64 */
|
||||
|
||||
/*
|
||||
* Per cpu atomic 64 bit operations are only available under 64 bit.
|
||||
* 32 bit must fall back to generic operations.
|
||||
@ -480,6 +500,34 @@ do { \
|
||||
#define irqsafe_cpu_xor_8(pcp, val) percpu_to_op("xor", (pcp), val)
|
||||
#define irqsafe_cpu_xchg_8(pcp, nval) percpu_xchg_op(pcp, nval)
|
||||
#define irqsafe_cpu_cmpxchg_8(pcp, oval, nval) percpu_cmpxchg_op(pcp, oval, nval)
|
||||
|
||||
/*
|
||||
* Pretty complex macro to generate cmpxchg16 instruction. The instruction
|
||||
* is not supported on early AMD64 processors so we must be able to emulate
|
||||
* it in software. The address used in the cmpxchg16 instruction must be
|
||||
* aligned to a 16 byte boundary.
|
||||
*/
|
||||
#define percpu_cmpxchg16b_double(pcp1, o1, o2, n1, n2) \
|
||||
({ \
|
||||
char __ret; \
|
||||
typeof(o1) __o1 = o1; \
|
||||
typeof(o1) __n1 = n1; \
|
||||
typeof(o2) __o2 = o2; \
|
||||
typeof(o2) __n2 = n2; \
|
||||
typeof(o2) __dummy; \
|
||||
alternative_io("call this_cpu_cmpxchg16b_emu\n\t" P6_NOP4, \
|
||||
"cmpxchg16b %%gs:(%%rsi)\n\tsetz %0\n\t", \
|
||||
X86_FEATURE_CX16, \
|
||||
ASM_OUTPUT2("=a"(__ret), "=d"(__dummy)), \
|
||||
"S" (&pcp1), "b"(__n1), "c"(__n2), \
|
||||
"a"(__o1), "d"(__o2)); \
|
||||
__ret; \
|
||||
})
|
||||
|
||||
#define __this_cpu_cmpxchg_double_8(pcp1, pcp2, o1, o2, n1, n2) percpu_cmpxchg16b_double(pcp1, o1, o2, n1, n2)
|
||||
#define this_cpu_cmpxchg_double_8(pcp1, pcp2, o1, o2, n1, n2) percpu_cmpxchg16b_double(pcp1, o1, o2, n1, n2)
|
||||
#define irqsafe_cpu_cmpxchg_double_8(pcp1, pcp2, o1, o2, n1, n2) percpu_cmpxchg16b_double(pcp1, o1, o2, n1, n2)
|
||||
|
||||
#endif
|
||||
|
||||
/* This is not atomic against other CPUs -- CPU preemption needs to be off */
|
||||
|
@ -230,7 +230,7 @@ SECTIONS
|
||||
* output PHDR, so the next output section - .init.text - should
|
||||
* start another segment - init.
|
||||
*/
|
||||
PERCPU_VADDR(0, :percpu)
|
||||
PERCPU_VADDR(INTERNODE_CACHE_BYTES, 0, :percpu)
|
||||
#endif
|
||||
|
||||
INIT_TEXT_SECTION(PAGE_SIZE)
|
||||
@ -305,7 +305,7 @@ SECTIONS
|
||||
}
|
||||
|
||||
#if !defined(CONFIG_X86_64) || !defined(CONFIG_SMP)
|
||||
PERCPU(THREAD_SIZE)
|
||||
PERCPU(INTERNODE_CACHE_BYTES, THREAD_SIZE)
|
||||
#endif
|
||||
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
|
@ -42,4 +42,5 @@ else
|
||||
lib-y += memmove_64.o memset_64.o
|
||||
lib-y += copy_user_64.o rwlock_64.o copy_user_nocache_64.o
|
||||
lib-$(CONFIG_RWSEM_XCHGADD_ALGORITHM) += rwsem_64.o
|
||||
lib-y += cmpxchg16b_emu.o
|
||||
endif
|
||||
|
59
arch/x86/lib/cmpxchg16b_emu.S
Normal file
59
arch/x86/lib/cmpxchg16b_emu.S
Normal file
@ -0,0 +1,59 @@
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; version 2
|
||||
* of the License.
|
||||
*
|
||||
*/
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/alternative-asm.h>
|
||||
#include <asm/frame.h>
|
||||
#include <asm/dwarf2.h>
|
||||
|
||||
.text
|
||||
|
||||
/*
|
||||
* Inputs:
|
||||
* %rsi : memory location to compare
|
||||
* %rax : low 64 bits of old value
|
||||
* %rdx : high 64 bits of old value
|
||||
* %rbx : low 64 bits of new value
|
||||
* %rcx : high 64 bits of new value
|
||||
* %al : Operation successful
|
||||
*/
|
||||
ENTRY(this_cpu_cmpxchg16b_emu)
|
||||
CFI_STARTPROC
|
||||
|
||||
#
|
||||
# Emulate 'cmpxchg16b %gs:(%rsi)' except we return the result in %al not
|
||||
# via the ZF. Caller will access %al to get result.
|
||||
#
|
||||
# Note that this is only useful for a cpuops operation. Meaning that we
|
||||
# do *not* have a fully atomic operation but just an operation that is
|
||||
# *atomic* on a single cpu (as provided by the this_cpu_xx class of
|
||||
# macros).
|
||||
#
|
||||
this_cpu_cmpxchg16b_emu:
|
||||
pushf
|
||||
cli
|
||||
|
||||
cmpq %gs:(%rsi), %rax
|
||||
jne not_same
|
||||
cmpq %gs:8(%rsi), %rdx
|
||||
jne not_same
|
||||
|
||||
movq %rbx, %gs:(%rsi)
|
||||
movq %rcx, %gs:8(%rsi)
|
||||
|
||||
popf
|
||||
mov $1, %al
|
||||
ret
|
||||
|
||||
not_same:
|
||||
popf
|
||||
xor %al,%al
|
||||
ret
|
||||
|
||||
CFI_ENDPROC
|
||||
|
||||
ENDPROC(this_cpu_cmpxchg16b_emu)
|
@ -155,7 +155,7 @@ SECTIONS
|
||||
INIT_RAM_FS
|
||||
}
|
||||
|
||||
PERCPU(PAGE_SIZE)
|
||||
PERCPU(XCHAL_ICACHE_LINESIZE, PAGE_SIZE)
|
||||
|
||||
/* We need this dummy segment here */
|
||||
|
||||
|
@ -15,7 +15,7 @@
|
||||
* HEAD_TEXT_SECTION
|
||||
* INIT_TEXT_SECTION(PAGE_SIZE)
|
||||
* INIT_DATA_SECTION(...)
|
||||
* PERCPU(PAGE_SIZE)
|
||||
* PERCPU(CACHELINE_SIZE, PAGE_SIZE)
|
||||
* __init_end = .;
|
||||
*
|
||||
* _stext = .;
|
||||
@ -683,13 +683,18 @@
|
||||
|
||||
/**
|
||||
* PERCPU_VADDR - define output section for percpu area
|
||||
* @cacheline: cacheline size
|
||||
* @vaddr: explicit base address (optional)
|
||||
* @phdr: destination PHDR (optional)
|
||||
*
|
||||
* Macro which expands to output section for percpu area. If @vaddr
|
||||
* is not blank, it specifies explicit base address and all percpu
|
||||
* symbols will be offset from the given address. If blank, @vaddr
|
||||
* always equals @laddr + LOAD_OFFSET.
|
||||
* Macro which expands to output section for percpu area.
|
||||
*
|
||||
* @cacheline is used to align subsections to avoid false cacheline
|
||||
* sharing between subsections for different purposes.
|
||||
*
|
||||
* If @vaddr is not blank, it specifies explicit base address and all
|
||||
* percpu symbols will be offset from the given address. If blank,
|
||||
* @vaddr always equals @laddr + LOAD_OFFSET.
|
||||
*
|
||||
* @phdr defines the output PHDR to use if not blank. Be warned that
|
||||
* output PHDR is sticky. If @phdr is specified, the next output
|
||||
@ -700,7 +705,7 @@
|
||||
* If there is no need to put the percpu section at a predetermined
|
||||
* address, use PERCPU().
|
||||
*/
|
||||
#define PERCPU_VADDR(vaddr, phdr) \
|
||||
#define PERCPU_VADDR(cacheline, vaddr, phdr) \
|
||||
VMLINUX_SYMBOL(__per_cpu_load) = .; \
|
||||
.data..percpu vaddr : AT(VMLINUX_SYMBOL(__per_cpu_load) \
|
||||
- LOAD_OFFSET) { \
|
||||
@ -708,7 +713,9 @@
|
||||
*(.data..percpu..first) \
|
||||
. = ALIGN(PAGE_SIZE); \
|
||||
*(.data..percpu..page_aligned) \
|
||||
. = ALIGN(cacheline); \
|
||||
*(.data..percpu..readmostly) \
|
||||
. = ALIGN(cacheline); \
|
||||
*(.data..percpu) \
|
||||
*(.data..percpu..shared_aligned) \
|
||||
VMLINUX_SYMBOL(__per_cpu_end) = .; \
|
||||
@ -717,18 +724,18 @@
|
||||
|
||||
/**
|
||||
* PERCPU - define output section for percpu area, simple version
|
||||
* @cacheline: cacheline size
|
||||
* @align: required alignment
|
||||
*
|
||||
* Align to @align and outputs output section for percpu area. This
|
||||
* macro doesn't maniuplate @vaddr or @phdr and __per_cpu_load and
|
||||
* Align to @align and outputs output section for percpu area. This macro
|
||||
* doesn't manipulate @vaddr or @phdr and __per_cpu_load and
|
||||
* __per_cpu_start will be identical.
|
||||
*
|
||||
* This macro is equivalent to ALIGN(align); PERCPU_VADDR( , ) except
|
||||
* that __per_cpu_load is defined as a relative symbol against
|
||||
* .data..percpu which is required for relocatable x86_32
|
||||
* configuration.
|
||||
* This macro is equivalent to ALIGN(@align); PERCPU_VADDR(@cacheline,,)
|
||||
* except that __per_cpu_load is defined as a relative symbol against
|
||||
* .data..percpu which is required for relocatable x86_32 configuration.
|
||||
*/
|
||||
#define PERCPU(align) \
|
||||
#define PERCPU(cacheline, align) \
|
||||
. = ALIGN(align); \
|
||||
.data..percpu : AT(ADDR(.data..percpu) - LOAD_OFFSET) { \
|
||||
VMLINUX_SYMBOL(__per_cpu_load) = .; \
|
||||
@ -736,7 +743,9 @@
|
||||
*(.data..percpu..first) \
|
||||
. = ALIGN(PAGE_SIZE); \
|
||||
*(.data..percpu..page_aligned) \
|
||||
. = ALIGN(cacheline); \
|
||||
*(.data..percpu..readmostly) \
|
||||
. = ALIGN(cacheline); \
|
||||
*(.data..percpu) \
|
||||
*(.data..percpu..shared_aligned) \
|
||||
VMLINUX_SYMBOL(__per_cpu_end) = .; \
|
||||
|
@ -255,6 +255,30 @@ extern void __bad_size_call_parameter(void);
|
||||
pscr2_ret__; \
|
||||
})
|
||||
|
||||
/*
|
||||
* Special handling for cmpxchg_double. cmpxchg_double is passed two
|
||||
* percpu variables. The first has to be aligned to a double word
|
||||
* boundary and the second has to follow directly thereafter.
|
||||
*/
|
||||
#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
|
||||
({ \
|
||||
bool pdcrb_ret__; \
|
||||
__verify_pcpu_ptr(&pcp1); \
|
||||
BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
|
||||
VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
|
||||
VM_BUG_ON((unsigned long)(&pcp2) != \
|
||||
(unsigned long)(&pcp1) + sizeof(pcp1)); \
|
||||
switch(sizeof(pcp1)) { \
|
||||
case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
|
||||
default: \
|
||||
__bad_size_call_parameter(); break; \
|
||||
} \
|
||||
pdcrb_ret__; \
|
||||
})
|
||||
|
||||
#define __pcpu_size_call(stem, variable, ...) \
|
||||
do { \
|
||||
__verify_pcpu_ptr(&(variable)); \
|
||||
@ -500,6 +524,45 @@ do { \
|
||||
__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* cmpxchg_double replaces two adjacent scalars at once. The first
|
||||
* two parameters are per cpu variables which have to be of the same
|
||||
* size. A truth value is returned to indicate success or failure
|
||||
* (since a double register result is difficult to handle). There is
|
||||
* very limited hardware support for these operations, so only certain
|
||||
* sizes may work.
|
||||
*/
|
||||
#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
({ \
|
||||
int ret__; \
|
||||
preempt_disable(); \
|
||||
ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
|
||||
oval1, oval2, nval1, nval2); \
|
||||
preempt_enable(); \
|
||||
ret__; \
|
||||
})
|
||||
|
||||
#ifndef this_cpu_cmpxchg_double
|
||||
# ifndef this_cpu_cmpxchg_double_1
|
||||
# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# ifndef this_cpu_cmpxchg_double_2
|
||||
# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# ifndef this_cpu_cmpxchg_double_4
|
||||
# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# ifndef this_cpu_cmpxchg_double_8
|
||||
# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Generic percpu operations that do not require preemption handling.
|
||||
* Either we do not care about races or the caller has the
|
||||
@ -703,6 +766,39 @@ do { \
|
||||
__pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
|
||||
#endif
|
||||
|
||||
#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
({ \
|
||||
int __ret = 0; \
|
||||
if (__this_cpu_read(pcp1) == (oval1) && \
|
||||
__this_cpu_read(pcp2) == (oval2)) { \
|
||||
__this_cpu_write(pcp1, (nval1)); \
|
||||
__this_cpu_write(pcp2, (nval2)); \
|
||||
__ret = 1; \
|
||||
} \
|
||||
(__ret); \
|
||||
})
|
||||
|
||||
#ifndef __this_cpu_cmpxchg_double
|
||||
# ifndef __this_cpu_cmpxchg_double_1
|
||||
# define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# ifndef __this_cpu_cmpxchg_double_2
|
||||
# define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# ifndef __this_cpu_cmpxchg_double_4
|
||||
# define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# ifndef __this_cpu_cmpxchg_double_8
|
||||
# define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
__pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
|
||||
#endif
|
||||
|
||||
/*
|
||||
* IRQ safe versions of the per cpu RMW operations. Note that these operations
|
||||
* are *not* safe against modification of the same variable from another
|
||||
@ -823,4 +919,36 @@ do { \
|
||||
__pcpu_size_call_return2(irqsafe_cpu_cmpxchg_, (pcp), oval, nval)
|
||||
#endif
|
||||
|
||||
#define irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
({ \
|
||||
int ret__; \
|
||||
unsigned long flags; \
|
||||
local_irq_save(flags); \
|
||||
ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
|
||||
oval1, oval2, nval1, nval2); \
|
||||
local_irq_restore(flags); \
|
||||
ret__; \
|
||||
})
|
||||
|
||||
#ifndef irqsafe_cpu_cmpxchg_double
|
||||
# ifndef irqsafe_cpu_cmpxchg_double_1
|
||||
# define irqsafe_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# ifndef irqsafe_cpu_cmpxchg_double_2
|
||||
# define irqsafe_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# ifndef irqsafe_cpu_cmpxchg_double_4
|
||||
# define irqsafe_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# ifndef irqsafe_cpu_cmpxchg_double_8
|
||||
# define irqsafe_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
irqsafe_generic_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
|
||||
# endif
|
||||
# define irqsafe_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
|
||||
__pcpu_double_call_return_int(irqsafe_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
|
||||
#endif
|
||||
|
||||
#endif /* __LINUX_PERCPU_H */
|
||||
|
@ -35,7 +35,10 @@ enum stat_item {
|
||||
NR_SLUB_STAT_ITEMS };
|
||||
|
||||
struct kmem_cache_cpu {
|
||||
void **freelist; /* Pointer to first free per cpu object */
|
||||
void **freelist; /* Pointer to next available object */
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
unsigned long tid; /* Globally unique transaction id */
|
||||
#endif
|
||||
struct page *page; /* The slab from which we are allocating */
|
||||
int node; /* The node of the page (or -1 for debug) */
|
||||
#ifdef CONFIG_SLUB_STATS
|
||||
@ -70,6 +73,7 @@ struct kmem_cache {
|
||||
struct kmem_cache_cpu __percpu *cpu_slab;
|
||||
/* Used for retriving partial slabs etc */
|
||||
unsigned long flags;
|
||||
unsigned long min_partial;
|
||||
int size; /* The size of an object including meta data */
|
||||
int objsize; /* The size of an object without meta data */
|
||||
int offset; /* Free pointer offset. */
|
||||
@ -84,7 +88,6 @@ struct kmem_cache {
|
||||
int inuse; /* Offset to metadata */
|
||||
int align; /* Alignment */
|
||||
int reserved; /* Reserved bytes at the end of slabs */
|
||||
unsigned long min_partial;
|
||||
const char *name; /* Name (only for display!) */
|
||||
struct list_head list; /* List of slab caches */
|
||||
#ifdef CONFIG_SYSFS
|
||||
|
234
mm/slub.c
234
mm/slub.c
@ -836,14 +836,24 @@ static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void
|
||||
static inline void slab_free_hook(struct kmem_cache *s, void *x)
|
||||
{
|
||||
kmemleak_free_recursive(x, s->flags);
|
||||
}
|
||||
|
||||
static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
|
||||
{
|
||||
kmemcheck_slab_free(s, object, s->objsize);
|
||||
debug_check_no_locks_freed(object, s->objsize);
|
||||
if (!(s->flags & SLAB_DEBUG_OBJECTS))
|
||||
debug_check_no_obj_freed(object, s->objsize);
|
||||
/*
|
||||
* Trouble is that we may no longer disable interupts in the fast path
|
||||
* So in order to make the debug calls that expect irqs to be
|
||||
* disabled we need to disable interrupts temporarily.
|
||||
*/
|
||||
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
kmemcheck_slab_free(s, x, s->objsize);
|
||||
debug_check_no_locks_freed(x, s->objsize);
|
||||
if (!(s->flags & SLAB_DEBUG_OBJECTS))
|
||||
debug_check_no_obj_freed(x, s->objsize);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1130,9 +1140,6 @@ static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
|
||||
|
||||
static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
|
||||
|
||||
static inline void slab_free_hook_irq(struct kmem_cache *s,
|
||||
void *object) {}
|
||||
|
||||
#endif /* CONFIG_SLUB_DEBUG */
|
||||
|
||||
/*
|
||||
@ -1533,6 +1540,77 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
#ifdef CONFIG_PREEMPT
|
||||
/*
|
||||
* Calculate the next globally unique transaction for disambiguiation
|
||||
* during cmpxchg. The transactions start with the cpu number and are then
|
||||
* incremented by CONFIG_NR_CPUS.
|
||||
*/
|
||||
#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
|
||||
#else
|
||||
/*
|
||||
* No preemption supported therefore also no need to check for
|
||||
* different cpus.
|
||||
*/
|
||||
#define TID_STEP 1
|
||||
#endif
|
||||
|
||||
static inline unsigned long next_tid(unsigned long tid)
|
||||
{
|
||||
return tid + TID_STEP;
|
||||
}
|
||||
|
||||
static inline unsigned int tid_to_cpu(unsigned long tid)
|
||||
{
|
||||
return tid % TID_STEP;
|
||||
}
|
||||
|
||||
static inline unsigned long tid_to_event(unsigned long tid)
|
||||
{
|
||||
return tid / TID_STEP;
|
||||
}
|
||||
|
||||
static inline unsigned int init_tid(int cpu)
|
||||
{
|
||||
return cpu;
|
||||
}
|
||||
|
||||
static inline void note_cmpxchg_failure(const char *n,
|
||||
const struct kmem_cache *s, unsigned long tid)
|
||||
{
|
||||
#ifdef SLUB_DEBUG_CMPXCHG
|
||||
unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
|
||||
|
||||
printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
|
||||
|
||||
#ifdef CONFIG_PREEMPT
|
||||
if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
|
||||
printk("due to cpu change %d -> %d\n",
|
||||
tid_to_cpu(tid), tid_to_cpu(actual_tid));
|
||||
else
|
||||
#endif
|
||||
if (tid_to_event(tid) != tid_to_event(actual_tid))
|
||||
printk("due to cpu running other code. Event %ld->%ld\n",
|
||||
tid_to_event(tid), tid_to_event(actual_tid));
|
||||
else
|
||||
printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
|
||||
actual_tid, tid, next_tid(tid));
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
void init_kmem_cache_cpus(struct kmem_cache *s)
|
||||
{
|
||||
#if defined(CONFIG_CMPXCHG_LOCAL) && defined(CONFIG_PREEMPT)
|
||||
int cpu;
|
||||
|
||||
for_each_possible_cpu(cpu)
|
||||
per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
|
||||
#endif
|
||||
|
||||
}
|
||||
/*
|
||||
* Remove the cpu slab
|
||||
*/
|
||||
@ -1564,6 +1642,9 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
||||
page->inuse--;
|
||||
}
|
||||
c->page = NULL;
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
c->tid = next_tid(c->tid);
|
||||
#endif
|
||||
unfreeze_slab(s, page, tail);
|
||||
}
|
||||
|
||||
@ -1698,6 +1779,19 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
||||
{
|
||||
void **object;
|
||||
struct page *new;
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
#ifdef CONFIG_PREEMPT
|
||||
/*
|
||||
* We may have been preempted and rescheduled on a different
|
||||
* cpu before disabling interrupts. Need to reload cpu area
|
||||
* pointer.
|
||||
*/
|
||||
c = this_cpu_ptr(s->cpu_slab);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* We handle __GFP_ZERO in the caller */
|
||||
gfpflags &= ~__GFP_ZERO;
|
||||
@ -1724,6 +1818,10 @@ load_freelist:
|
||||
c->node = page_to_nid(c->page);
|
||||
unlock_out:
|
||||
slab_unlock(c->page);
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
c->tid = next_tid(c->tid);
|
||||
local_irq_restore(flags);
|
||||
#endif
|
||||
stat(s, ALLOC_SLOWPATH);
|
||||
return object;
|
||||
|
||||
@ -1785,23 +1883,76 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
|
||||
{
|
||||
void **object;
|
||||
struct kmem_cache_cpu *c;
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
unsigned long tid;
|
||||
#else
|
||||
unsigned long flags;
|
||||
#endif
|
||||
|
||||
if (slab_pre_alloc_hook(s, gfpflags))
|
||||
return NULL;
|
||||
|
||||
#ifndef CONFIG_CMPXCHG_LOCAL
|
||||
local_irq_save(flags);
|
||||
#else
|
||||
redo:
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Must read kmem_cache cpu data via this cpu ptr. Preemption is
|
||||
* enabled. We may switch back and forth between cpus while
|
||||
* reading from one cpu area. That does not matter as long
|
||||
* as we end up on the original cpu again when doing the cmpxchg.
|
||||
*/
|
||||
c = __this_cpu_ptr(s->cpu_slab);
|
||||
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
/*
|
||||
* The transaction ids are globally unique per cpu and per operation on
|
||||
* a per cpu queue. Thus they can be guarantee that the cmpxchg_double
|
||||
* occurs on the right processor and that there was no operation on the
|
||||
* linked list in between.
|
||||
*/
|
||||
tid = c->tid;
|
||||
barrier();
|
||||
#endif
|
||||
|
||||
object = c->freelist;
|
||||
if (unlikely(!object || !node_match(c, node)))
|
||||
|
||||
object = __slab_alloc(s, gfpflags, node, addr, c);
|
||||
|
||||
else {
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
/*
|
||||
* The cmpxchg will only match if there was no additonal
|
||||
* operation and if we are on the right processor.
|
||||
*
|
||||
* The cmpxchg does the following atomically (without lock semantics!)
|
||||
* 1. Relocate first pointer to the current per cpu area.
|
||||
* 2. Verify that tid and freelist have not been changed
|
||||
* 3. If they were not changed replace tid and freelist
|
||||
*
|
||||
* Since this is without lock semantics the protection is only against
|
||||
* code executing on this cpu *not* from access by other cpus.
|
||||
*/
|
||||
if (unlikely(!this_cpu_cmpxchg_double(
|
||||
s->cpu_slab->freelist, s->cpu_slab->tid,
|
||||
object, tid,
|
||||
get_freepointer(s, object), next_tid(tid)))) {
|
||||
|
||||
note_cmpxchg_failure("slab_alloc", s, tid);
|
||||
goto redo;
|
||||
}
|
||||
#else
|
||||
c->freelist = get_freepointer(s, object);
|
||||
#endif
|
||||
stat(s, ALLOC_FASTPATH);
|
||||
}
|
||||
|
||||
#ifndef CONFIG_CMPXCHG_LOCAL
|
||||
local_irq_restore(flags);
|
||||
#endif
|
||||
|
||||
if (unlikely(gfpflags & __GFP_ZERO) && object)
|
||||
memset(object, 0, s->objsize);
|
||||
@ -1879,9 +2030,13 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
|
||||
{
|
||||
void *prior;
|
||||
void **object = (void *)x;
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
unsigned long flags;
|
||||
|
||||
stat(s, FREE_SLOWPATH);
|
||||
local_irq_save(flags);
|
||||
#endif
|
||||
slab_lock(page);
|
||||
stat(s, FREE_SLOWPATH);
|
||||
|
||||
if (kmem_cache_debug(s))
|
||||
goto debug;
|
||||
@ -1911,6 +2066,9 @@ checks_ok:
|
||||
|
||||
out_unlock:
|
||||
slab_unlock(page);
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
local_irq_restore(flags);
|
||||
#endif
|
||||
return;
|
||||
|
||||
slab_empty:
|
||||
@ -1922,6 +2080,9 @@ slab_empty:
|
||||
stat(s, FREE_REMOVE_PARTIAL);
|
||||
}
|
||||
slab_unlock(page);
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
local_irq_restore(flags);
|
||||
#endif
|
||||
stat(s, FREE_SLAB);
|
||||
discard_slab(s, page);
|
||||
return;
|
||||
@ -1948,23 +2109,56 @@ static __always_inline void slab_free(struct kmem_cache *s,
|
||||
{
|
||||
void **object = (void *)x;
|
||||
struct kmem_cache_cpu *c;
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
unsigned long tid;
|
||||
#else
|
||||
unsigned long flags;
|
||||
#endif
|
||||
|
||||
slab_free_hook(s, x);
|
||||
|
||||
#ifndef CONFIG_CMPXCHG_LOCAL
|
||||
local_irq_save(flags);
|
||||
|
||||
#else
|
||||
redo:
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Determine the currently cpus per cpu slab.
|
||||
* The cpu may change afterward. However that does not matter since
|
||||
* data is retrieved via this pointer. If we are on the same cpu
|
||||
* during the cmpxchg then the free will succedd.
|
||||
*/
|
||||
c = __this_cpu_ptr(s->cpu_slab);
|
||||
|
||||
slab_free_hook_irq(s, x);
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
tid = c->tid;
|
||||
barrier();
|
||||
#endif
|
||||
|
||||
if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
|
||||
set_freepointer(s, object, c->freelist);
|
||||
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
if (unlikely(!this_cpu_cmpxchg_double(
|
||||
s->cpu_slab->freelist, s->cpu_slab->tid,
|
||||
c->freelist, tid,
|
||||
object, next_tid(tid)))) {
|
||||
|
||||
note_cmpxchg_failure("slab_free", s, tid);
|
||||
goto redo;
|
||||
}
|
||||
#else
|
||||
c->freelist = object;
|
||||
#endif
|
||||
stat(s, FREE_FASTPATH);
|
||||
} else
|
||||
__slab_free(s, page, x, addr);
|
||||
|
||||
#ifndef CONFIG_CMPXCHG_LOCAL
|
||||
local_irq_restore(flags);
|
||||
#endif
|
||||
}
|
||||
|
||||
void kmem_cache_free(struct kmem_cache *s, void *x)
|
||||
@ -2156,9 +2350,23 @@ static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
|
||||
BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
|
||||
SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
|
||||
|
||||
#ifdef CONFIG_CMPXCHG_LOCAL
|
||||
/*
|
||||
* Must align to double word boundary for the double cmpxchg instructions
|
||||
* to work.
|
||||
*/
|
||||
s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
|
||||
#else
|
||||
/* Regular alignment is sufficient */
|
||||
s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
|
||||
#endif
|
||||
|
||||
return s->cpu_slab != NULL;
|
||||
if (!s->cpu_slab)
|
||||
return 0;
|
||||
|
||||
init_kmem_cache_cpus(s);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
static struct kmem_cache *kmem_cache_node;
|
||||
|
Loading…
Reference in New Issue
Block a user