net/funeth: add the data path

Add the driver's data path. Tx handles skbs, XDP, and kTLS, Rx has skbs
and XDP. Also included are Rx and Tx queue creation/tear-down and
tracing.

Signed-off-by: Dimitris Michailidis <dmichail@fungible.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Dimitris Michailidis 2022-02-24 18:59:00 -08:00 committed by David S. Miller
parent d1d899f244
commit db37bc177d
4 changed files with 1969 additions and 0 deletions

View File

@ -0,0 +1,826 @@
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
#include <linux/bpf_trace.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/filter.h>
#include <linux/irq.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include "funeth_txrx.h"
#include "funeth.h"
#include "fun_queue.h"
#define CREATE_TRACE_POINTS
#include "funeth_trace.h"
/* Given the device's max supported MTU and pages of at least 4KB a packet can
* be scattered into at most 4 buffers.
*/
#define RX_MAX_FRAGS 4
/* Per packet headroom in non-XDP mode. Present only for 1-frag packets. */
#define FUN_RX_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
/* We try to reuse pages for our buffers. To avoid frequent page ref writes we
* take EXTRA_PAGE_REFS references at once and then hand them out one per packet
* occupying the buffer.
*/
#define EXTRA_PAGE_REFS 1000000
#define MIN_PAGE_REFS 1000
enum {
FUN_XDP_FLUSH_REDIR = 1,
FUN_XDP_FLUSH_TX = 2,
};
/* See if a page is running low on refs we are holding and if so take more. */
static void refresh_refs(struct funeth_rxbuf *buf)
{
if (unlikely(buf->pg_refs < MIN_PAGE_REFS)) {
buf->pg_refs += EXTRA_PAGE_REFS;
page_ref_add(buf->page, EXTRA_PAGE_REFS);
}
}
/* Offer a buffer to the Rx buffer cache. The cache will hold the buffer if its
* page is worth retaining and there's room for it. Otherwise the page is
* unmapped and our references released.
*/
static void cache_offer(struct funeth_rxq *q, const struct funeth_rxbuf *buf)
{
struct funeth_rx_cache *c = &q->cache;
if (c->prod_cnt - c->cons_cnt <= c->mask && buf->node == numa_mem_id()) {
c->bufs[c->prod_cnt & c->mask] = *buf;
c->prod_cnt++;
} else {
dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE,
DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
__page_frag_cache_drain(buf->page, buf->pg_refs);
}
}
/* Get a page from the Rx buffer cache. We only consider the next available
* page and return it if we own all its references.
*/
static bool cache_get(struct funeth_rxq *q, struct funeth_rxbuf *rb)
{
struct funeth_rx_cache *c = &q->cache;
struct funeth_rxbuf *buf;
if (c->prod_cnt == c->cons_cnt)
return false; /* empty cache */
buf = &c->bufs[c->cons_cnt & c->mask];
if (page_ref_count(buf->page) == buf->pg_refs) {
dma_sync_single_for_device(q->dma_dev, buf->dma_addr,
PAGE_SIZE, DMA_FROM_DEVICE);
*rb = *buf;
buf->page = NULL;
refresh_refs(rb);
c->cons_cnt++;
return true;
}
/* Page can't be reused. If the cache is full drop this page. */
if (c->prod_cnt - c->cons_cnt > c->mask) {
dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE,
DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
__page_frag_cache_drain(buf->page, buf->pg_refs);
buf->page = NULL;
c->cons_cnt++;
}
return false;
}
/* Allocate and DMA-map a page for receive. */
static int funeth_alloc_page(struct funeth_rxq *q, struct funeth_rxbuf *rb,
int node, gfp_t gfp)
{
struct page *p;
if (cache_get(q, rb))
return 0;
p = __alloc_pages_node(node, gfp | __GFP_NOWARN, 0);
if (unlikely(!p))
return -ENOMEM;
rb->dma_addr = dma_map_page(q->dma_dev, p, 0, PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(q->dma_dev, rb->dma_addr))) {
FUN_QSTAT_INC(q, rx_map_err);
__free_page(p);
return -ENOMEM;
}
FUN_QSTAT_INC(q, rx_page_alloc);
rb->page = p;
rb->pg_refs = 1;
refresh_refs(rb);
rb->node = page_is_pfmemalloc(p) ? -1 : page_to_nid(p);
return 0;
}
static void funeth_free_page(struct funeth_rxq *q, struct funeth_rxbuf *rb)
{
if (rb->page) {
dma_unmap_page(q->dma_dev, rb->dma_addr, PAGE_SIZE,
DMA_FROM_DEVICE);
__page_frag_cache_drain(rb->page, rb->pg_refs);
rb->page = NULL;
}
}
/* Run the XDP program assigned to an Rx queue.
* Return %NULL if the buffer is consumed, or the virtual address of the packet
* to turn into an skb.
*/
static void *fun_run_xdp(struct funeth_rxq *q, skb_frag_t *frags, void *buf_va,
int ref_ok, struct funeth_txq *xdp_q)
{
struct bpf_prog *xdp_prog;
struct xdp_buff xdp;
u32 act;
/* VA includes the headroom, frag size includes headroom + tailroom */
xdp_init_buff(&xdp, ALIGN(skb_frag_size(frags), FUN_EPRQ_PKT_ALIGN),
&q->xdp_rxq);
xdp_prepare_buff(&xdp, buf_va, FUN_XDP_HEADROOM, skb_frag_size(frags) -
(FUN_RX_TAILROOM + FUN_XDP_HEADROOM), false);
xdp_prog = READ_ONCE(q->xdp_prog);
act = bpf_prog_run_xdp(xdp_prog, &xdp);
switch (act) {
case XDP_PASS:
/* remove headroom, which may not be FUN_XDP_HEADROOM now */
skb_frag_size_set(frags, xdp.data_end - xdp.data);
skb_frag_off_add(frags, xdp.data - xdp.data_hard_start);
goto pass;
case XDP_TX:
if (unlikely(!ref_ok))
goto pass;
if (!fun_xdp_tx(xdp_q, xdp.data, xdp.data_end - xdp.data))
goto xdp_error;
FUN_QSTAT_INC(q, xdp_tx);
q->xdp_flush |= FUN_XDP_FLUSH_TX;
break;
case XDP_REDIRECT:
if (unlikely(!ref_ok))
goto pass;
if (unlikely(xdp_do_redirect(q->netdev, &xdp, xdp_prog)))
goto xdp_error;
FUN_QSTAT_INC(q, xdp_redir);
q->xdp_flush |= FUN_XDP_FLUSH_REDIR;
break;
default:
bpf_warn_invalid_xdp_action(q->netdev, xdp_prog, act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(q->netdev, xdp_prog, act);
xdp_error:
q->cur_buf->pg_refs++; /* return frags' page reference */
FUN_QSTAT_INC(q, xdp_err);
break;
case XDP_DROP:
q->cur_buf->pg_refs++;
FUN_QSTAT_INC(q, xdp_drops);
break;
}
return NULL;
pass:
return xdp.data;
}
/* A CQE contains a fixed completion structure along with optional metadata and
* even packet data. Given the start address of a CQE return the start of the
* contained fixed structure, which lies at the end.
*/
static const void *cqe_to_info(const void *cqe)
{
return cqe + FUNETH_CQE_INFO_OFFSET;
}
/* The inverse of cqe_to_info(). */
static const void *info_to_cqe(const void *cqe_info)
{
return cqe_info - FUNETH_CQE_INFO_OFFSET;
}
/* Return the type of hash provided by the device based on the L3 and L4
* protocols it parsed for the packet.
*/
static enum pkt_hash_types cqe_to_pkt_hash_type(u16 pkt_parse)
{
static const enum pkt_hash_types htype_map[] = {
PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3,
PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L4,
PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3,
PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3
};
u16 key;
/* Build the key from the TCP/UDP and IP/IPv6 bits */
key = ((pkt_parse >> FUN_ETH_RX_CV_OL4_PROT_S) & 6) |
((pkt_parse >> (FUN_ETH_RX_CV_OL3_PROT_S + 1)) & 1);
return htype_map[key];
}
/* Each received packet can be scattered across several Rx buffers or can
* share a buffer with previously received packets depending on the buffer
* and packet sizes and the room available in the most recently used buffer.
*
* The rules are:
* - If the buffer at the head of an RQ has not been used it gets (part of) the
* next incoming packet.
* - Otherwise, if the packet fully fits in the buffer's remaining space the
* packet is written there.
* - Otherwise, the packet goes into the next Rx buffer.
*
* This function returns the Rx buffer for a packet or fragment thereof of the
* given length. If it isn't @buf it either recycles or frees that buffer
* before advancing the queue to the next buffer.
*
* If called repeatedly with the remaining length of a packet it will walk
* through all the buffers containing the packet.
*/
static struct funeth_rxbuf *
get_buf(struct funeth_rxq *q, struct funeth_rxbuf *buf, unsigned int len)
{
if (q->buf_offset + len <= PAGE_SIZE || !q->buf_offset)
return buf; /* @buf holds (part of) the packet */
/* The packet occupies part of the next buffer. Move there after
* replenishing the current buffer slot either with the spare page or
* by reusing the slot's existing page. Note that if a spare page isn't
* available and the current packet occupies @buf it is a multi-frag
* packet that will be dropped leaving @buf available for reuse.
*/
if ((page_ref_count(buf->page) == buf->pg_refs &&
buf->node == numa_mem_id()) || !q->spare_buf.page) {
dma_sync_single_for_device(q->dma_dev, buf->dma_addr,
PAGE_SIZE, DMA_FROM_DEVICE);
refresh_refs(buf);
} else {
cache_offer(q, buf);
*buf = q->spare_buf;
q->spare_buf.page = NULL;
q->rqes[q->rq_cons & q->rq_mask] =
FUN_EPRQ_RQBUF_INIT(buf->dma_addr);
}
q->buf_offset = 0;
q->rq_cons++;
return &q->bufs[q->rq_cons & q->rq_mask];
}
/* Gather the page fragments making up the first Rx packet on @q. Its total
* length @tot_len includes optional head- and tail-rooms.
*
* Return 0 if the device retains ownership of at least some of the pages.
* In this case the caller may only copy the packet.
*
* A non-zero return value gives the caller permission to use references to the
* pages, e.g., attach them to skbs. Additionally, if the value is <0 at least
* one of the pages is PF_MEMALLOC.
*
* Regardless of outcome the caller is granted a reference to each of the pages.
*/
static int fun_gather_pkt(struct funeth_rxq *q, unsigned int tot_len,
skb_frag_t *frags)
{
struct funeth_rxbuf *buf = q->cur_buf;
unsigned int frag_len;
int ref_ok = 1;
for (;;) {
buf = get_buf(q, buf, tot_len);
/* We always keep the RQ full of buffers so before we can give
* one of our pages to the stack we require that we can obtain
* a replacement page. If we can't the packet will either be
* copied or dropped so we can retain ownership of the page and
* reuse it.
*/
if (!q->spare_buf.page &&
funeth_alloc_page(q, &q->spare_buf, numa_mem_id(),
GFP_ATOMIC | __GFP_MEMALLOC))
ref_ok = 0;
frag_len = min_t(unsigned int, tot_len,
PAGE_SIZE - q->buf_offset);
dma_sync_single_for_cpu(q->dma_dev,
buf->dma_addr + q->buf_offset,
frag_len, DMA_FROM_DEVICE);
buf->pg_refs--;
if (ref_ok)
ref_ok |= buf->node;
__skb_frag_set_page(frags, buf->page);
skb_frag_off_set(frags, q->buf_offset);
skb_frag_size_set(frags++, frag_len);
tot_len -= frag_len;
if (!tot_len)
break;
q->buf_offset = PAGE_SIZE;
}
q->buf_offset = ALIGN(q->buf_offset + frag_len, FUN_EPRQ_PKT_ALIGN);
q->cur_buf = buf;
return ref_ok;
}
static bool rx_hwtstamp_enabled(const struct net_device *dev)
{
const struct funeth_priv *d = netdev_priv(dev);
return d->hwtstamp_cfg.rx_filter == HWTSTAMP_FILTER_ALL;
}
/* Advance the CQ pointers and phase tag to the next CQE. */
static void advance_cq(struct funeth_rxq *q)
{
if (unlikely(q->cq_head == q->cq_mask)) {
q->cq_head = 0;
q->phase ^= 1;
q->next_cqe_info = cqe_to_info(q->cqes);
} else {
q->cq_head++;
q->next_cqe_info += FUNETH_CQE_SIZE;
}
prefetch(q->next_cqe_info);
}
/* Process the packet represented by the head CQE of @q. Gather the packet's
* fragments, run it through the optional XDP program, and if needed construct
* an skb and pass it to the stack.
*/
static void fun_handle_cqe_pkt(struct funeth_rxq *q, struct funeth_txq *xdp_q)
{
const struct fun_eth_cqe *rxreq = info_to_cqe(q->next_cqe_info);
unsigned int i, tot_len, pkt_len = be32_to_cpu(rxreq->pkt_len);
struct net_device *ndev = q->netdev;
skb_frag_t frags[RX_MAX_FRAGS];
struct skb_shared_info *si;
unsigned int headroom;
gro_result_t gro_res;
struct sk_buff *skb;
int ref_ok;
void *va;
u16 cv;
u64_stats_update_begin(&q->syncp);
q->stats.rx_pkts++;
q->stats.rx_bytes += pkt_len;
u64_stats_update_end(&q->syncp);
advance_cq(q);
/* account for head- and tail-room, present only for 1-buffer packets */
tot_len = pkt_len;
headroom = be16_to_cpu(rxreq->headroom);
if (likely(headroom))
tot_len += FUN_RX_TAILROOM + headroom;
ref_ok = fun_gather_pkt(q, tot_len, frags);
va = skb_frag_address(frags);
if (xdp_q && headroom == FUN_XDP_HEADROOM) {
va = fun_run_xdp(q, frags, va, ref_ok, xdp_q);
if (!va)
return;
headroom = 0; /* XDP_PASS trims it */
}
if (unlikely(!ref_ok))
goto no_mem;
if (likely(headroom)) {
/* headroom is either FUN_RX_HEADROOM or FUN_XDP_HEADROOM */
prefetch(va + headroom);
skb = napi_build_skb(va, ALIGN(tot_len, FUN_EPRQ_PKT_ALIGN));
if (unlikely(!skb))
goto no_mem;
skb_reserve(skb, headroom);
__skb_put(skb, pkt_len);
skb->protocol = eth_type_trans(skb, ndev);
} else {
prefetch(va);
skb = napi_get_frags(q->napi);
if (unlikely(!skb))
goto no_mem;
if (ref_ok < 0)
skb->pfmemalloc = 1;
si = skb_shinfo(skb);
si->nr_frags = rxreq->nsgl;
for (i = 0; i < si->nr_frags; i++)
si->frags[i] = frags[i];
skb->len = pkt_len;
skb->data_len = pkt_len;
skb->truesize += round_up(pkt_len, FUN_EPRQ_PKT_ALIGN);
}
skb_record_rx_queue(skb, q->qidx);
cv = be16_to_cpu(rxreq->pkt_cv);
if (likely((q->netdev->features & NETIF_F_RXHASH) && rxreq->hash))
skb_set_hash(skb, be32_to_cpu(rxreq->hash),
cqe_to_pkt_hash_type(cv));
if (likely((q->netdev->features & NETIF_F_RXCSUM) && rxreq->csum)) {
FUN_QSTAT_INC(q, rx_cso);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum_level = be16_to_cpu(rxreq->csum) - 1;
}
if (unlikely(rx_hwtstamp_enabled(q->netdev)))
skb_hwtstamps(skb)->hwtstamp = be64_to_cpu(rxreq->timestamp);
trace_funeth_rx(q, rxreq->nsgl, pkt_len, skb->hash, cv);
gro_res = skb->data_len ? napi_gro_frags(q->napi) :
napi_gro_receive(q->napi, skb);
if (gro_res == GRO_MERGED || gro_res == GRO_MERGED_FREE)
FUN_QSTAT_INC(q, gro_merged);
else if (gro_res == GRO_HELD)
FUN_QSTAT_INC(q, gro_pkts);
return;
no_mem:
FUN_QSTAT_INC(q, rx_mem_drops);
/* Release the references we've been granted for the frag pages.
* We return the ref of the last frag and free the rest.
*/
q->cur_buf->pg_refs++;
for (i = 0; i < rxreq->nsgl - 1; i++)
__free_page(skb_frag_page(frags + i));
}
/* Return 0 if the phase tag of the CQE at the CQ's head matches expectations
* indicating the CQE is new.
*/
static u16 cqe_phase_mismatch(const struct fun_cqe_info *ci, u16 phase)
{
u16 sf_p = be16_to_cpu(ci->sf_p);
return (sf_p & 1) ^ phase;
}
/* Walk through a CQ identifying and processing fresh CQEs up to the given
* budget. Return the remaining budget.
*/
static int fun_process_cqes(struct funeth_rxq *q, int budget)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
struct funeth_txq **xdpqs, *xdp_q = NULL;
xdpqs = rcu_dereference_bh(fp->xdpqs);
if (xdpqs)
xdp_q = xdpqs[smp_processor_id()];
while (budget && !cqe_phase_mismatch(q->next_cqe_info, q->phase)) {
/* access other descriptor fields after the phase check */
dma_rmb();
fun_handle_cqe_pkt(q, xdp_q);
budget--;
}
if (unlikely(q->xdp_flush)) {
if (q->xdp_flush & FUN_XDP_FLUSH_TX)
fun_txq_wr_db(xdp_q);
if (q->xdp_flush & FUN_XDP_FLUSH_REDIR)
xdp_do_flush();
q->xdp_flush = 0;
}
return budget;
}
/* NAPI handler for Rx queues. Calls the CQE processing loop and writes RQ/CQ
* doorbells as needed.
*/
int fun_rxq_napi_poll(struct napi_struct *napi, int budget)
{
struct fun_irq *irq = container_of(napi, struct fun_irq, napi);
struct funeth_rxq *q = irq->rxq;
int work_done = budget - fun_process_cqes(q, budget);
u32 cq_db_val = q->cq_head;
if (unlikely(work_done >= budget))
FUN_QSTAT_INC(q, rx_budget);
else if (napi_complete_done(napi, work_done))
cq_db_val |= q->irq_db_val;
/* check whether to post new Rx buffers */
if (q->rq_cons - q->rq_cons_db >= q->rq_db_thres) {
u64_stats_update_begin(&q->syncp);
q->stats.rx_bufs += q->rq_cons - q->rq_cons_db;
u64_stats_update_end(&q->syncp);
q->rq_cons_db = q->rq_cons;
writel((q->rq_cons - 1) & q->rq_mask, q->rq_db);
}
writel(cq_db_val, q->cq_db);
return work_done;
}
/* Free the Rx buffers of an Rx queue. */
static void fun_rxq_free_bufs(struct funeth_rxq *q)
{
struct funeth_rxbuf *b = q->bufs;
unsigned int i;
for (i = 0; i <= q->rq_mask; i++, b++)
funeth_free_page(q, b);
funeth_free_page(q, &q->spare_buf);
q->cur_buf = NULL;
}
/* Initially provision an Rx queue with Rx buffers. */
static int fun_rxq_alloc_bufs(struct funeth_rxq *q, int node)
{
struct funeth_rxbuf *b = q->bufs;
unsigned int i;
for (i = 0; i <= q->rq_mask; i++, b++) {
if (funeth_alloc_page(q, b, node, GFP_KERNEL)) {
fun_rxq_free_bufs(q);
return -ENOMEM;
}
q->rqes[i] = FUN_EPRQ_RQBUF_INIT(b->dma_addr);
}
q->cur_buf = q->bufs;
return 0;
}
/* Initialize a used-buffer cache of the given depth. */
static int fun_rxq_init_cache(struct funeth_rx_cache *c, unsigned int depth,
int node)
{
c->mask = depth - 1;
c->bufs = kvzalloc_node(depth * sizeof(*c->bufs), GFP_KERNEL, node);
return c->bufs ? 0 : -ENOMEM;
}
/* Deallocate an Rx queue's used-buffer cache and its contents. */
static void fun_rxq_free_cache(struct funeth_rxq *q)
{
struct funeth_rxbuf *b = q->cache.bufs;
unsigned int i;
for (i = 0; i <= q->cache.mask; i++, b++)
funeth_free_page(q, b);
kvfree(q->cache.bufs);
q->cache.bufs = NULL;
}
int fun_rxq_set_bpf(struct funeth_rxq *q, struct bpf_prog *prog)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
struct fun_admin_epcq_req cmd;
u16 headroom;
int err;
headroom = prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM;
if (headroom != q->headroom) {
cmd.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_EPCQ,
sizeof(cmd));
cmd.u.modify =
FUN_ADMIN_EPCQ_MODIFY_REQ_INIT(FUN_ADMIN_SUBOP_MODIFY,
0, q->hw_cqid, headroom);
err = fun_submit_admin_sync_cmd(fp->fdev, &cmd.common, NULL, 0,
0);
if (err)
return err;
q->headroom = headroom;
}
WRITE_ONCE(q->xdp_prog, prog);
return 0;
}
/* Create an Rx queue, allocating the host memory it needs. */
static struct funeth_rxq *fun_rxq_create_sw(struct net_device *dev,
unsigned int qidx,
unsigned int ncqe,
unsigned int nrqe,
struct fun_irq *irq)
{
struct funeth_priv *fp = netdev_priv(dev);
struct funeth_rxq *q;
int err = -ENOMEM;
int numa_node;
numa_node = fun_irq_node(irq);
q = kzalloc_node(sizeof(*q), GFP_KERNEL, numa_node);
if (!q)
goto err;
q->qidx = qidx;
q->netdev = dev;
q->cq_mask = ncqe - 1;
q->rq_mask = nrqe - 1;
q->numa_node = numa_node;
q->rq_db_thres = nrqe / 4;
u64_stats_init(&q->syncp);
q->dma_dev = &fp->pdev->dev;
q->rqes = fun_alloc_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes),
sizeof(*q->bufs), false, numa_node,
&q->rq_dma_addr, (void **)&q->bufs, NULL);
if (!q->rqes)
goto free_q;
q->cqes = fun_alloc_ring_mem(q->dma_dev, ncqe, FUNETH_CQE_SIZE, 0,
false, numa_node, &q->cq_dma_addr, NULL,
NULL);
if (!q->cqes)
goto free_rqes;
err = fun_rxq_init_cache(&q->cache, nrqe, numa_node);
if (err)
goto free_cqes;
err = fun_rxq_alloc_bufs(q, numa_node);
if (err)
goto free_cache;
q->stats.rx_bufs = q->rq_mask;
q->init_state = FUN_QSTATE_INIT_SW;
return q;
free_cache:
fun_rxq_free_cache(q);
free_cqes:
dma_free_coherent(q->dma_dev, ncqe * FUNETH_CQE_SIZE, q->cqes,
q->cq_dma_addr);
free_rqes:
fun_free_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes), false, q->rqes,
q->rq_dma_addr, q->bufs);
free_q:
kfree(q);
err:
netdev_err(dev, "Unable to allocate memory for Rx queue %u\n", qidx);
return ERR_PTR(err);
}
static void fun_rxq_free_sw(struct funeth_rxq *q)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
fun_rxq_free_cache(q);
fun_rxq_free_bufs(q);
fun_free_ring_mem(q->dma_dev, q->rq_mask + 1, sizeof(*q->rqes), false,
q->rqes, q->rq_dma_addr, q->bufs);
dma_free_coherent(q->dma_dev, (q->cq_mask + 1) * FUNETH_CQE_SIZE,
q->cqes, q->cq_dma_addr);
/* Before freeing the queue transfer key counters to the device. */
fp->rx_packets += q->stats.rx_pkts;
fp->rx_bytes += q->stats.rx_bytes;
fp->rx_dropped += q->stats.rx_map_err + q->stats.rx_mem_drops;
kfree(q);
}
/* Create an Rx queue's resources on the device. */
int fun_rxq_create_dev(struct funeth_rxq *q, struct fun_irq *irq)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
unsigned int ncqe = q->cq_mask + 1;
unsigned int nrqe = q->rq_mask + 1;
int err;
err = xdp_rxq_info_reg(&q->xdp_rxq, q->netdev, q->qidx,
irq->napi.napi_id);
if (err)
goto out;
err = xdp_rxq_info_reg_mem_model(&q->xdp_rxq, MEM_TYPE_PAGE_SHARED,
NULL);
if (err)
goto xdp_unreg;
q->phase = 1;
q->irq_cnt = 0;
q->cq_head = 0;
q->rq_cons = 0;
q->rq_cons_db = 0;
q->buf_offset = 0;
q->napi = &irq->napi;
q->irq_db_val = fp->cq_irq_db;
q->next_cqe_info = cqe_to_info(q->cqes);
q->xdp_prog = fp->xdp_prog;
q->headroom = fp->xdp_prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM;
err = fun_sq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR |
FUN_ADMIN_EPSQ_CREATE_FLAG_RQ, 0,
FUN_HCI_ID_INVALID, 0, nrqe, q->rq_dma_addr, 0, 0,
0, 0, fp->fdev->kern_end_qid, PAGE_SHIFT,
&q->hw_sqid, &q->rq_db);
if (err)
goto xdp_unreg;
err = fun_cq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR |
FUN_ADMIN_EPCQ_CREATE_FLAG_RQ, 0,
q->hw_sqid, ilog2(FUNETH_CQE_SIZE), ncqe,
q->cq_dma_addr, q->headroom, FUN_RX_TAILROOM, 0, 0,
irq->irq_idx, 0, fp->fdev->kern_end_qid,
&q->hw_cqid, &q->cq_db);
if (err)
goto free_rq;
irq->rxq = q;
writel(q->rq_mask, q->rq_db);
q->init_state = FUN_QSTATE_INIT_FULL;
netif_info(fp, ifup, q->netdev,
"Rx queue %u, depth %u/%u, HW qid %u/%u, IRQ idx %u, node %d, headroom %u\n",
q->qidx, ncqe, nrqe, q->hw_cqid, q->hw_sqid, irq->irq_idx,
q->numa_node, q->headroom);
return 0;
free_rq:
fun_destroy_sq(fp->fdev, q->hw_sqid);
xdp_unreg:
xdp_rxq_info_unreg(&q->xdp_rxq);
out:
netdev_err(q->netdev,
"Failed to create Rx queue %u on device, error %d\n",
q->qidx, err);
return err;
}
static void fun_rxq_free_dev(struct funeth_rxq *q)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
struct fun_irq *irq;
if (q->init_state < FUN_QSTATE_INIT_FULL)
return;
irq = container_of(q->napi, struct fun_irq, napi);
netif_info(fp, ifdown, q->netdev,
"Freeing Rx queue %u (id %u/%u), IRQ %u\n",
q->qidx, q->hw_cqid, q->hw_sqid, irq->irq_idx);
irq->rxq = NULL;
xdp_rxq_info_unreg(&q->xdp_rxq);
fun_destroy_sq(fp->fdev, q->hw_sqid);
fun_destroy_cq(fp->fdev, q->hw_cqid);
q->init_state = FUN_QSTATE_INIT_SW;
}
/* Create or advance an Rx queue, allocating all the host and device resources
* needed to reach the target state.
*/
int funeth_rxq_create(struct net_device *dev, unsigned int qidx,
unsigned int ncqe, unsigned int nrqe, struct fun_irq *irq,
int state, struct funeth_rxq **qp)
{
struct funeth_rxq *q = *qp;
int err;
if (!q) {
q = fun_rxq_create_sw(dev, qidx, ncqe, nrqe, irq);
if (IS_ERR(q))
return PTR_ERR(q);
}
if (q->init_state >= state)
goto out;
err = fun_rxq_create_dev(q, irq);
if (err) {
if (!*qp)
fun_rxq_free_sw(q);
return err;
}
out:
*qp = q;
return 0;
}
/* Free Rx queue resources until it reaches the target state. */
struct funeth_rxq *funeth_rxq_free(struct funeth_rxq *q, int state)
{
if (state < FUN_QSTATE_INIT_FULL)
fun_rxq_free_dev(q);
if (state == FUN_QSTATE_DESTROYED) {
fun_rxq_free_sw(q);
q = NULL;
}
return q;
}

View File

@ -0,0 +1,117 @@
/* SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) */
#undef TRACE_SYSTEM
#define TRACE_SYSTEM funeth
#if !defined(_TRACE_FUNETH_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_FUNETH_H
#include <linux/tracepoint.h>
#include "funeth_txrx.h"
TRACE_EVENT(funeth_tx,
TP_PROTO(const struct funeth_txq *txq,
u32 len,
u32 sqe_idx,
u32 ngle),
TP_ARGS(txq, len, sqe_idx, ngle),
TP_STRUCT__entry(
__field(u32, qidx)
__field(u32, len)
__field(u32, sqe_idx)
__field(u32, ngle)
__string(devname, txq->netdev->name)
),
TP_fast_assign(
__entry->qidx = txq->qidx;
__entry->len = len;
__entry->sqe_idx = sqe_idx;
__entry->ngle = ngle;
__assign_str(devname, txq->netdev->name);
),
TP_printk("%s: Txq %u, SQE idx %u, len %u, num GLEs %u",
__get_str(devname), __entry->qidx, __entry->sqe_idx,
__entry->len, __entry->ngle)
);
TRACE_EVENT(funeth_tx_free,
TP_PROTO(const struct funeth_txq *txq,
u32 sqe_idx,
u32 num_sqes,
u32 hw_head),
TP_ARGS(txq, sqe_idx, num_sqes, hw_head),
TP_STRUCT__entry(
__field(u32, qidx)
__field(u32, sqe_idx)
__field(u32, num_sqes)
__field(u32, hw_head)
__string(devname, txq->netdev->name)
),
TP_fast_assign(
__entry->qidx = txq->qidx;
__entry->sqe_idx = sqe_idx;
__entry->num_sqes = num_sqes;
__entry->hw_head = hw_head;
__assign_str(devname, txq->netdev->name);
),
TP_printk("%s: Txq %u, SQE idx %u, SQEs %u, HW head %u",
__get_str(devname), __entry->qidx, __entry->sqe_idx,
__entry->num_sqes, __entry->hw_head)
);
TRACE_EVENT(funeth_rx,
TP_PROTO(const struct funeth_rxq *rxq,
u32 num_rqes,
u32 pkt_len,
u32 hash,
u32 cls_vec),
TP_ARGS(rxq, num_rqes, pkt_len, hash, cls_vec),
TP_STRUCT__entry(
__field(u32, qidx)
__field(u32, cq_head)
__field(u32, num_rqes)
__field(u32, len)
__field(u32, hash)
__field(u32, cls_vec)
__string(devname, rxq->netdev->name)
),
TP_fast_assign(
__entry->qidx = rxq->qidx;
__entry->cq_head = rxq->cq_head;
__entry->num_rqes = num_rqes;
__entry->len = pkt_len;
__entry->hash = hash;
__entry->cls_vec = cls_vec;
__assign_str(devname, rxq->netdev->name);
),
TP_printk("%s: Rxq %u, CQ head %u, RQEs %u, len %u, hash %u, CV %#x",
__get_str(devname), __entry->qidx, __entry->cq_head,
__entry->num_rqes, __entry->len, __entry->hash,
__entry->cls_vec)
);
#endif /* _TRACE_FUNETH_H */
/* Below must be outside protection. */
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH .
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE funeth_trace
#include <trace/define_trace.h>

View File

@ -0,0 +1,762 @@
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
#include <linux/dma-mapping.h>
#include <linux/ip.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include <linux/tcp.h>
#include <uapi/linux/udp.h>
#include "funeth.h"
#include "funeth_txrx.h"
#include "funeth_trace.h"
#include "fun_queue.h"
#define FUN_XDP_CLEAN_THRES 32
#define FUN_XDP_CLEAN_BATCH 16
/* DMA-map a packet and return the (length, DMA_address) pairs for its
* segments. If a mapping error occurs -ENOMEM is returned.
*/
static int map_skb(const struct sk_buff *skb, struct device *dev,
dma_addr_t *addr, unsigned int *len)
{
const struct skb_shared_info *si;
const skb_frag_t *fp, *end;
*len = skb_headlen(skb);
*addr = dma_map_single(dev, skb->data, *len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, *addr))
return -ENOMEM;
si = skb_shinfo(skb);
end = &si->frags[si->nr_frags];
for (fp = si->frags; fp < end; fp++) {
*++len = skb_frag_size(fp);
*++addr = skb_frag_dma_map(dev, fp, 0, *len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, *addr))
goto unwind;
}
return 0;
unwind:
while (fp-- > si->frags)
dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
return -ENOMEM;
}
/* Return the address just past the end of a Tx queue's descriptor ring.
* It exploits the fact that the HW writeback area is just after the end
* of the descriptor ring.
*/
static void *txq_end(const struct funeth_txq *q)
{
return (void *)q->hw_wb;
}
/* Return the amount of space within a Tx ring from the given address to the
* end.
*/
static unsigned int txq_to_end(const struct funeth_txq *q, void *p)
{
return txq_end(q) - p;
}
/* Return the number of Tx descriptors occupied by a Tx request. */
static unsigned int tx_req_ndesc(const struct fun_eth_tx_req *req)
{
return DIV_ROUND_UP(req->len8, FUNETH_SQE_SIZE / 8);
}
static __be16 tcp_hdr_doff_flags(const struct tcphdr *th)
{
return *(__be16 *)&tcp_flag_word(th);
}
#if IS_ENABLED(CONFIG_TLS_DEVICE)
#include "funeth_ktls.h"
static struct sk_buff *fun_tls_tx(struct sk_buff *skb, struct funeth_txq *q,
unsigned int *tls_len)
{
const struct fun_ktls_tx_ctx *tls_ctx;
u32 datalen, seq;
datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
if (!datalen)
return skb;
if (likely(!tls_offload_tx_resync_pending(skb->sk))) {
seq = ntohl(tcp_hdr(skb)->seq);
tls_ctx = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
if (likely(tls_ctx->next_seq == seq)) {
*tls_len = datalen;
return skb;
}
if (seq - tls_ctx->next_seq < U32_MAX / 4) {
tls_offload_tx_resync_request(skb->sk, seq,
tls_ctx->next_seq);
}
}
FUN_QSTAT_INC(q, tx_tls_fallback);
skb = tls_encrypt_skb(skb);
if (!skb)
FUN_QSTAT_INC(q, tx_tls_drops);
return skb;
}
#endif
/* Write as many descriptors as needed for the supplied skb starting at the
* current producer location. The caller has made certain enough descriptors
* are available.
*
* Returns the number of descriptors written, 0 on error.
*/
static unsigned int write_pkt_desc(struct sk_buff *skb, struct funeth_txq *q,
unsigned int tls_len)
{
unsigned int extra_bytes = 0, extra_pkts = 0;
unsigned int idx = q->prod_cnt & q->mask;
const struct skb_shared_info *shinfo;
unsigned int lens[MAX_SKB_FRAGS + 1];
dma_addr_t addrs[MAX_SKB_FRAGS + 1];
struct fun_eth_tx_req *req;
struct fun_dataop_gl *gle;
const struct tcphdr *th;
unsigned int ngle, i;
u16 flags;
if (unlikely(map_skb(skb, q->dma_dev, addrs, lens))) {
FUN_QSTAT_INC(q, tx_map_err);
return 0;
}
req = fun_tx_desc_addr(q, idx);
req->op = FUN_ETH_OP_TX;
req->len8 = 0;
req->flags = 0;
req->suboff8 = offsetof(struct fun_eth_tx_req, dataop);
req->repr_idn = 0;
req->encap_proto = 0;
shinfo = skb_shinfo(skb);
if (likely(shinfo->gso_size)) {
if (skb->encapsulation) {
u16 ol4_ofst;
flags = FUN_ETH_OUTER_EN | FUN_ETH_INNER_LSO |
FUN_ETH_UPDATE_INNER_L4_CKSUM |
FUN_ETH_UPDATE_OUTER_L3_LEN;
if (shinfo->gso_type & (SKB_GSO_UDP_TUNNEL |
SKB_GSO_UDP_TUNNEL_CSUM)) {
flags |= FUN_ETH_UPDATE_OUTER_L4_LEN |
FUN_ETH_OUTER_UDP;
if (shinfo->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
flags |= FUN_ETH_UPDATE_OUTER_L4_CKSUM;
ol4_ofst = skb_transport_offset(skb);
} else {
ol4_ofst = skb_inner_network_offset(skb);
}
if (ip_hdr(skb)->version == 4)
flags |= FUN_ETH_UPDATE_OUTER_L3_CKSUM;
else
flags |= FUN_ETH_OUTER_IPV6;
if (skb->inner_network_header) {
if (inner_ip_hdr(skb)->version == 4)
flags |= FUN_ETH_UPDATE_INNER_L3_CKSUM |
FUN_ETH_UPDATE_INNER_L3_LEN;
else
flags |= FUN_ETH_INNER_IPV6 |
FUN_ETH_UPDATE_INNER_L3_LEN;
}
th = inner_tcp_hdr(skb);
fun_eth_offload_init(&req->offload, flags,
shinfo->gso_size,
tcp_hdr_doff_flags(th), 0,
skb_inner_network_offset(skb),
skb_inner_transport_offset(skb),
skb_network_offset(skb), ol4_ofst);
FUN_QSTAT_INC(q, tx_encap_tso);
} else {
/* HW considers one set of headers as inner */
flags = FUN_ETH_INNER_LSO |
FUN_ETH_UPDATE_INNER_L4_CKSUM |
FUN_ETH_UPDATE_INNER_L3_LEN;
if (shinfo->gso_type & SKB_GSO_TCPV6)
flags |= FUN_ETH_INNER_IPV6;
else
flags |= FUN_ETH_UPDATE_INNER_L3_CKSUM;
th = tcp_hdr(skb);
fun_eth_offload_init(&req->offload, flags,
shinfo->gso_size,
tcp_hdr_doff_flags(th), 0,
skb_network_offset(skb),
skb_transport_offset(skb), 0, 0);
FUN_QSTAT_INC(q, tx_tso);
}
u64_stats_update_begin(&q->syncp);
q->stats.tx_cso += shinfo->gso_segs;
u64_stats_update_end(&q->syncp);
extra_pkts = shinfo->gso_segs - 1;
extra_bytes = (be16_to_cpu(req->offload.inner_l4_off) +
__tcp_hdrlen(th)) * extra_pkts;
} else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
flags = FUN_ETH_UPDATE_INNER_L4_CKSUM;
if (skb->csum_offset == offsetof(struct udphdr, check))
flags |= FUN_ETH_INNER_UDP;
fun_eth_offload_init(&req->offload, flags, 0, 0, 0, 0,
skb_checksum_start_offset(skb), 0, 0);
FUN_QSTAT_INC(q, tx_cso);
} else {
fun_eth_offload_init(&req->offload, 0, 0, 0, 0, 0, 0, 0, 0);
}
ngle = shinfo->nr_frags + 1;
req->len8 = (sizeof(*req) + ngle * sizeof(*gle)) / 8;
req->dataop = FUN_DATAOP_HDR_INIT(ngle, 0, ngle, 0, skb->len);
for (i = 0, gle = (struct fun_dataop_gl *)req->dataop.imm;
i < ngle && txq_to_end(q, gle); i++, gle++)
fun_dataop_gl_init(gle, 0, 0, lens[i], addrs[i]);
if (txq_to_end(q, gle) == 0) {
gle = (struct fun_dataop_gl *)q->desc;
for ( ; i < ngle; i++, gle++)
fun_dataop_gl_init(gle, 0, 0, lens[i], addrs[i]);
}
if (IS_ENABLED(CONFIG_TLS_DEVICE) && unlikely(tls_len)) {
struct fun_eth_tls *tls = (struct fun_eth_tls *)gle;
struct fun_ktls_tx_ctx *tls_ctx;
req->len8 += FUNETH_TLS_SZ / 8;
req->flags = cpu_to_be16(FUN_ETH_TX_TLS);
tls_ctx = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
tls->tlsid = tls_ctx->tlsid;
tls_ctx->next_seq += tls_len;
u64_stats_update_begin(&q->syncp);
q->stats.tx_tls_bytes += tls_len;
q->stats.tx_tls_pkts += 1 + extra_pkts;
u64_stats_update_end(&q->syncp);
}
u64_stats_update_begin(&q->syncp);
q->stats.tx_bytes += skb->len + extra_bytes;
q->stats.tx_pkts += 1 + extra_pkts;
u64_stats_update_end(&q->syncp);
q->info[idx].skb = skb;
trace_funeth_tx(q, skb->len, idx, req->dataop.ngather);
return tx_req_ndesc(req);
}
/* Return the number of available descriptors of a Tx queue.
* HW assumes head==tail means the ring is empty so we need to keep one
* descriptor unused.
*/
static unsigned int fun_txq_avail(const struct funeth_txq *q)
{
return q->mask - q->prod_cnt + q->cons_cnt;
}
/* Stop a queue if it can't handle another worst-case packet. */
static void fun_tx_check_stop(struct funeth_txq *q)
{
if (likely(fun_txq_avail(q) >= FUNETH_MAX_PKT_DESC))
return;
netif_tx_stop_queue(q->ndq);
/* NAPI reclaim is freeing packets in parallel with us and we may race.
* We have stopped the queue but check again after synchronizing with
* reclaim.
*/
smp_mb();
if (likely(fun_txq_avail(q) < FUNETH_MAX_PKT_DESC))
FUN_QSTAT_INC(q, tx_nstops);
else
netif_tx_start_queue(q->ndq);
}
/* Return true if a queue has enough space to restart. Current condition is
* that the queue must be >= 1/4 empty.
*/
static bool fun_txq_may_restart(struct funeth_txq *q)
{
return fun_txq_avail(q) >= q->mask / 4;
}
netdev_tx_t fun_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct funeth_priv *fp = netdev_priv(netdev);
unsigned int qid = skb_get_queue_mapping(skb);
struct funeth_txq *q = fp->txqs[qid];
unsigned int tls_len = 0;
unsigned int ndesc;
if (IS_ENABLED(CONFIG_TLS_DEVICE) && skb->sk &&
tls_is_sk_tx_device_offloaded(skb->sk)) {
skb = fun_tls_tx(skb, q, &tls_len);
if (unlikely(!skb))
goto dropped;
}
ndesc = write_pkt_desc(skb, q, tls_len);
if (unlikely(!ndesc)) {
dev_kfree_skb_any(skb);
goto dropped;
}
q->prod_cnt += ndesc;
fun_tx_check_stop(q);
skb_tx_timestamp(skb);
if (__netdev_tx_sent_queue(q->ndq, skb->len, netdev_xmit_more()))
fun_txq_wr_db(q);
else
FUN_QSTAT_INC(q, tx_more);
return NETDEV_TX_OK;
dropped:
/* A dropped packet may be the last one in a xmit_more train,
* ring the doorbell just in case.
*/
if (!netdev_xmit_more())
fun_txq_wr_db(q);
return NETDEV_TX_OK;
}
/* Return a Tx queue's HW head index written back to host memory. */
static u16 txq_hw_head(const struct funeth_txq *q)
{
return (u16)be64_to_cpu(*q->hw_wb);
}
/* Unmap the Tx packet starting at the given descriptor index and
* return the number of Tx descriptors it occupied.
*/
static unsigned int unmap_skb(const struct funeth_txq *q, unsigned int idx)
{
const struct fun_eth_tx_req *req = fun_tx_desc_addr(q, idx);
unsigned int ngle = req->dataop.ngather;
struct fun_dataop_gl *gle;
if (ngle) {
gle = (struct fun_dataop_gl *)req->dataop.imm;
dma_unmap_single(q->dma_dev, be64_to_cpu(gle->sgl_data),
be32_to_cpu(gle->sgl_len), DMA_TO_DEVICE);
for (gle++; --ngle && txq_to_end(q, gle); gle++)
dma_unmap_page(q->dma_dev, be64_to_cpu(gle->sgl_data),
be32_to_cpu(gle->sgl_len),
DMA_TO_DEVICE);
for (gle = (struct fun_dataop_gl *)q->desc; ngle; ngle--, gle++)
dma_unmap_page(q->dma_dev, be64_to_cpu(gle->sgl_data),
be32_to_cpu(gle->sgl_len),
DMA_TO_DEVICE);
}
return tx_req_ndesc(req);
}
/* Reclaim completed Tx descriptors and free their packets. Restart a stopped
* queue if we freed enough descriptors.
*
* Return true if we exhausted the budget while there is more work to be done.
*/
static bool fun_txq_reclaim(struct funeth_txq *q, int budget)
{
unsigned int npkts = 0, nbytes = 0, ndesc = 0;
unsigned int head, limit, reclaim_idx;
/* budget may be 0, e.g., netpoll */
limit = budget ? budget : UINT_MAX;
for (head = txq_hw_head(q), reclaim_idx = q->cons_cnt & q->mask;
head != reclaim_idx && npkts < limit; head = txq_hw_head(q)) {
/* The HW head is continually updated, ensure we don't read
* descriptor state before the head tells us to reclaim it.
* On the enqueue side the doorbell is an implicit write
* barrier.
*/
rmb();
do {
unsigned int pkt_desc = unmap_skb(q, reclaim_idx);
struct sk_buff *skb = q->info[reclaim_idx].skb;
trace_funeth_tx_free(q, reclaim_idx, pkt_desc, head);
nbytes += skb->len;
napi_consume_skb(skb, budget);
ndesc += pkt_desc;
reclaim_idx = (reclaim_idx + pkt_desc) & q->mask;
npkts++;
} while (reclaim_idx != head && npkts < limit);
}
q->cons_cnt += ndesc;
netdev_tx_completed_queue(q->ndq, npkts, nbytes);
smp_mb(); /* pairs with the one in fun_tx_check_stop() */
if (unlikely(netif_tx_queue_stopped(q->ndq) &&
fun_txq_may_restart(q))) {
netif_tx_wake_queue(q->ndq);
FUN_QSTAT_INC(q, tx_nrestarts);
}
return reclaim_idx != head;
}
/* The NAPI handler for Tx queues. */
int fun_txq_napi_poll(struct napi_struct *napi, int budget)
{
struct fun_irq *irq = container_of(napi, struct fun_irq, napi);
struct funeth_txq *q = irq->txq;
unsigned int db_val;
if (fun_txq_reclaim(q, budget))
return budget; /* exhausted budget */
napi_complete(napi); /* exhausted pending work */
db_val = READ_ONCE(q->irq_db_val) | (q->cons_cnt & q->mask);
writel(db_val, q->db);
return 0;
}
static void fun_xdp_unmap(const struct funeth_txq *q, unsigned int idx)
{
const struct fun_eth_tx_req *req = fun_tx_desc_addr(q, idx);
const struct fun_dataop_gl *gle;
gle = (const struct fun_dataop_gl *)req->dataop.imm;
dma_unmap_single(q->dma_dev, be64_to_cpu(gle->sgl_data),
be32_to_cpu(gle->sgl_len), DMA_TO_DEVICE);
}
/* Reclaim up to @budget completed Tx descriptors from a TX XDP queue. */
static unsigned int fun_xdpq_clean(struct funeth_txq *q, unsigned int budget)
{
unsigned int npkts = 0, head, reclaim_idx;
for (head = txq_hw_head(q), reclaim_idx = q->cons_cnt & q->mask;
head != reclaim_idx && npkts < budget; head = txq_hw_head(q)) {
/* The HW head is continually updated, ensure we don't read
* descriptor state before the head tells us to reclaim it.
* On the enqueue side the doorbell is an implicit write
* barrier.
*/
rmb();
do {
fun_xdp_unmap(q, reclaim_idx);
page_frag_free(q->info[reclaim_idx].vaddr);
trace_funeth_tx_free(q, reclaim_idx, 1, head);
reclaim_idx = (reclaim_idx + 1) & q->mask;
npkts++;
} while (reclaim_idx != head && npkts < budget);
}
q->cons_cnt += npkts;
return npkts;
}
bool fun_xdp_tx(struct funeth_txq *q, void *data, unsigned int len)
{
struct fun_eth_tx_req *req;
struct fun_dataop_gl *gle;
unsigned int idx;
dma_addr_t dma;
if (fun_txq_avail(q) < FUN_XDP_CLEAN_THRES)
fun_xdpq_clean(q, FUN_XDP_CLEAN_BATCH);
if (!unlikely(fun_txq_avail(q))) {
FUN_QSTAT_INC(q, tx_xdp_full);
return false;
}
dma = dma_map_single(q->dma_dev, data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(q->dma_dev, dma))) {
FUN_QSTAT_INC(q, tx_map_err);
return false;
}
idx = q->prod_cnt & q->mask;
req = fun_tx_desc_addr(q, idx);
req->op = FUN_ETH_OP_TX;
req->len8 = (sizeof(*req) + sizeof(*gle)) / 8;
req->flags = 0;
req->suboff8 = offsetof(struct fun_eth_tx_req, dataop);
req->repr_idn = 0;
req->encap_proto = 0;
fun_eth_offload_init(&req->offload, 0, 0, 0, 0, 0, 0, 0, 0);
req->dataop = FUN_DATAOP_HDR_INIT(1, 0, 1, 0, len);
gle = (struct fun_dataop_gl *)req->dataop.imm;
fun_dataop_gl_init(gle, 0, 0, len, dma);
q->info[idx].vaddr = data;
u64_stats_update_begin(&q->syncp);
q->stats.tx_bytes += len;
q->stats.tx_pkts++;
u64_stats_update_end(&q->syncp);
trace_funeth_tx(q, len, idx, 1);
q->prod_cnt++;
return true;
}
int fun_xdp_xmit_frames(struct net_device *dev, int n,
struct xdp_frame **frames, u32 flags)
{
struct funeth_priv *fp = netdev_priv(dev);
struct funeth_txq *q, **xdpqs;
int i, q_idx;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
xdpqs = rcu_dereference_bh(fp->xdpqs);
if (unlikely(!xdpqs))
return -ENETDOWN;
q_idx = smp_processor_id();
if (unlikely(q_idx >= fp->num_xdpqs))
return -ENXIO;
for (q = xdpqs[q_idx], i = 0; i < n; i++) {
const struct xdp_frame *xdpf = frames[i];
if (!fun_xdp_tx(q, xdpf->data, xdpf->len))
break;
}
if (unlikely(flags & XDP_XMIT_FLUSH))
fun_txq_wr_db(q);
return i;
}
/* Purge a Tx queue of any queued packets. Should be called once HW access
* to the packets has been revoked, e.g., after the queue has been disabled.
*/
static void fun_txq_purge(struct funeth_txq *q)
{
while (q->cons_cnt != q->prod_cnt) {
unsigned int idx = q->cons_cnt & q->mask;
q->cons_cnt += unmap_skb(q, idx);
dev_kfree_skb_any(q->info[idx].skb);
}
netdev_tx_reset_queue(q->ndq);
}
static void fun_xdpq_purge(struct funeth_txq *q)
{
while (q->cons_cnt != q->prod_cnt) {
unsigned int idx = q->cons_cnt & q->mask;
fun_xdp_unmap(q, idx);
page_frag_free(q->info[idx].vaddr);
q->cons_cnt++;
}
}
/* Create a Tx queue, allocating all the host resources needed. */
static struct funeth_txq *fun_txq_create_sw(struct net_device *dev,
unsigned int qidx,
unsigned int ndesc,
struct fun_irq *irq)
{
struct funeth_priv *fp = netdev_priv(dev);
struct funeth_txq *q;
int numa_node;
if (irq)
numa_node = fun_irq_node(irq); /* skb Tx queue */
else
numa_node = cpu_to_node(qidx); /* XDP Tx queue */
q = kzalloc_node(sizeof(*q), GFP_KERNEL, numa_node);
if (!q)
goto err;
q->dma_dev = &fp->pdev->dev;
q->desc = fun_alloc_ring_mem(q->dma_dev, ndesc, FUNETH_SQE_SIZE,
sizeof(*q->info), true, numa_node,
&q->dma_addr, (void **)&q->info,
&q->hw_wb);
if (!q->desc)
goto free_q;
q->netdev = dev;
q->mask = ndesc - 1;
q->qidx = qidx;
q->numa_node = numa_node;
u64_stats_init(&q->syncp);
q->init_state = FUN_QSTATE_INIT_SW;
return q;
free_q:
kfree(q);
err:
netdev_err(dev, "Can't allocate memory for %s queue %u\n",
irq ? "Tx" : "XDP", qidx);
return NULL;
}
static void fun_txq_free_sw(struct funeth_txq *q)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
fun_free_ring_mem(q->dma_dev, q->mask + 1, FUNETH_SQE_SIZE, true,
q->desc, q->dma_addr, q->info);
fp->tx_packets += q->stats.tx_pkts;
fp->tx_bytes += q->stats.tx_bytes;
fp->tx_dropped += q->stats.tx_map_err;
kfree(q);
}
/* Allocate the device portion of a Tx queue. */
int fun_txq_create_dev(struct funeth_txq *q, struct fun_irq *irq)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
unsigned int irq_idx, ndesc = q->mask + 1;
int err;
q->irq = irq;
*q->hw_wb = 0;
q->prod_cnt = 0;
q->cons_cnt = 0;
irq_idx = irq ? irq->irq_idx : 0;
err = fun_sq_create(fp->fdev,
FUN_ADMIN_EPSQ_CREATE_FLAG_HEAD_WB_ADDRESS |
FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR, 0,
FUN_HCI_ID_INVALID, ilog2(FUNETH_SQE_SIZE), ndesc,
q->dma_addr, fp->tx_coal_count, fp->tx_coal_usec,
irq_idx, 0, fp->fdev->kern_end_qid, 0,
&q->hw_qid, &q->db);
if (err)
goto out;
err = fun_create_and_bind_tx(fp, q->hw_qid);
if (err < 0)
goto free_devq;
q->ethid = err;
if (irq) {
irq->txq = q;
q->ndq = netdev_get_tx_queue(q->netdev, q->qidx);
q->irq_db_val = FUN_IRQ_SQ_DB(fp->tx_coal_usec,
fp->tx_coal_count);
writel(q->irq_db_val, q->db);
}
q->init_state = FUN_QSTATE_INIT_FULL;
netif_info(fp, ifup, q->netdev,
"%s queue %u, depth %u, HW qid %u, IRQ idx %u, eth id %u, node %d\n",
irq ? "Tx" : "XDP", q->qidx, ndesc, q->hw_qid, irq_idx,
q->ethid, q->numa_node);
return 0;
free_devq:
fun_destroy_sq(fp->fdev, q->hw_qid);
out:
netdev_err(q->netdev,
"Failed to create %s queue %u on device, error %d\n",
irq ? "Tx" : "XDP", q->qidx, err);
return err;
}
static void fun_txq_free_dev(struct funeth_txq *q)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
if (q->init_state < FUN_QSTATE_INIT_FULL)
return;
netif_info(fp, ifdown, q->netdev,
"Freeing %s queue %u (id %u), IRQ %u, ethid %u\n",
q->irq ? "Tx" : "XDP", q->qidx, q->hw_qid,
q->irq ? q->irq->irq_idx : 0, q->ethid);
fun_destroy_sq(fp->fdev, q->hw_qid);
fun_res_destroy(fp->fdev, FUN_ADMIN_OP_ETH, 0, q->ethid);
if (q->irq) {
q->irq->txq = NULL;
fun_txq_purge(q);
} else {
fun_xdpq_purge(q);
}
q->init_state = FUN_QSTATE_INIT_SW;
}
/* Create or advance a Tx queue, allocating all the host and device resources
* needed to reach the target state.
*/
int funeth_txq_create(struct net_device *dev, unsigned int qidx,
unsigned int ndesc, struct fun_irq *irq, int state,
struct funeth_txq **qp)
{
struct funeth_txq *q = *qp;
int err;
if (!q)
q = fun_txq_create_sw(dev, qidx, ndesc, irq);
if (!q)
return -ENOMEM;
if (q->init_state >= state)
goto out;
err = fun_txq_create_dev(q, irq);
if (err) {
if (!*qp)
fun_txq_free_sw(q);
return err;
}
out:
*qp = q;
return 0;
}
/* Free Tx queue resources until it reaches the target state.
* The queue must be already disconnected from the stack.
*/
struct funeth_txq *funeth_txq_free(struct funeth_txq *q, int state)
{
if (state < FUN_QSTATE_INIT_FULL)
fun_txq_free_dev(q);
if (state == FUN_QSTATE_DESTROYED) {
fun_txq_free_sw(q);
q = NULL;
}
return q;
}

View File

@ -0,0 +1,264 @@
/* SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) */
#ifndef _FUNETH_TXRX_H
#define _FUNETH_TXRX_H
#include <linux/netdevice.h>
#include <linux/u64_stats_sync.h>
/* Tx descriptor size */
#define FUNETH_SQE_SIZE 64U
/* Size of device headers per Tx packet */
#define FUNETH_FUNOS_HDR_SZ (sizeof(struct fun_eth_tx_req))
/* Number of gather list entries per Tx descriptor */
#define FUNETH_GLE_PER_DESC (FUNETH_SQE_SIZE / sizeof(struct fun_dataop_gl))
/* Max gather list size in bytes for an sk_buff. */
#define FUNETH_MAX_GL_SZ ((MAX_SKB_FRAGS + 1) * sizeof(struct fun_dataop_gl))
#if IS_ENABLED(CONFIG_TLS_DEVICE)
# define FUNETH_TLS_SZ sizeof(struct fun_eth_tls)
#else
# define FUNETH_TLS_SZ 0
#endif
/* Max number of Tx descriptors for an sk_buff using a gather list. */
#define FUNETH_MAX_GL_DESC \
DIV_ROUND_UP((FUNETH_FUNOS_HDR_SZ + FUNETH_MAX_GL_SZ + FUNETH_TLS_SZ), \
FUNETH_SQE_SIZE)
/* Max number of Tx descriptors for any packet. */
#define FUNETH_MAX_PKT_DESC FUNETH_MAX_GL_DESC
/* Rx CQ descriptor size. */
#define FUNETH_CQE_SIZE 64U
/* Offset of cqe_info within a CQE. */
#define FUNETH_CQE_INFO_OFFSET (FUNETH_CQE_SIZE - sizeof(struct fun_cqe_info))
/* Construct the IRQ portion of a CQ doorbell. The resulting value arms the
* interrupt with the supplied time delay and packet count moderation settings.
*/
#define FUN_IRQ_CQ_DB(usec, pkts) \
(FUN_DB_IRQ_ARM_F | ((usec) << FUN_DB_INTCOAL_USEC_S) | \
((pkts) << FUN_DB_INTCOAL_ENTRIES_S))
/* As above for SQ doorbells. */
#define FUN_IRQ_SQ_DB(usec, pkts) \
(FUN_DB_IRQ_ARM_F | \
((usec) << FUN_DB_INTCOAL_USEC_S) | \
((pkts) << FUN_DB_INTCOAL_ENTRIES_S))
/* Per packet tailroom. Present only for 1-frag packets. */
#define FUN_RX_TAILROOM SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
/* Per packet headroom for XDP. Preferred over XDP_PACKET_HEADROOM to
* accommodate two packets per buffer for 4K pages and 1500B MTUs.
*/
#define FUN_XDP_HEADROOM 192
/* Initialization state of a queue. */
enum {
FUN_QSTATE_DESTROYED, /* what queue? */
FUN_QSTATE_INIT_SW, /* exists in SW, not on the device */
FUN_QSTATE_INIT_FULL, /* exists both in SW and on device */
};
/* Initialization state of an interrupt. */
enum {
FUN_IRQ_INIT, /* initialized and in the XArray but inactive */
FUN_IRQ_REQUESTED, /* request_irq() done */
FUN_IRQ_ENABLED, /* processing enabled */
FUN_IRQ_DISABLED, /* processing disabled */
};
struct bpf_prog;
struct funeth_txq_stats { /* per Tx queue SW counters */
u64 tx_pkts; /* # of Tx packets */
u64 tx_bytes; /* total bytes of Tx packets */
u64 tx_cso; /* # of packets with checksum offload */
u64 tx_tso; /* # of non-encapsulated TSO super-packets */
u64 tx_encap_tso; /* # of encapsulated TSO super-packets */
u64 tx_more; /* # of DBs elided due to xmit_more */
u64 tx_nstops; /* # of times the queue has stopped */
u64 tx_nrestarts; /* # of times the queue has restarted */
u64 tx_map_err; /* # of packets dropped due to DMA mapping errors */
u64 tx_xdp_full; /* # of XDP packets that could not be enqueued */
u64 tx_tls_pkts; /* # of Tx TLS packets offloaded to HW */
u64 tx_tls_bytes; /* Tx bytes of HW-handled TLS payload */
u64 tx_tls_fallback; /* attempted Tx TLS offloads punted to SW */
u64 tx_tls_drops; /* attempted Tx TLS offloads dropped */
};
struct funeth_tx_info { /* per Tx descriptor state */
union {
struct sk_buff *skb; /* associated packet */
void *vaddr; /* start address for XDP */
};
};
struct funeth_txq {
/* RO cacheline of frequently accessed data */
u32 mask; /* queue depth - 1 */
u32 hw_qid; /* device ID of the queue */
void *desc; /* base address of descriptor ring */
struct funeth_tx_info *info;
struct device *dma_dev; /* device for DMA mappings */
volatile __be64 *hw_wb; /* HW write-back location */
u32 __iomem *db; /* SQ doorbell register address */
struct netdev_queue *ndq;
dma_addr_t dma_addr; /* DMA address of descriptor ring */
/* producer R/W cacheline */
u16 qidx; /* queue index within net_device */
u16 ethid;
u32 prod_cnt; /* producer counter */
struct funeth_txq_stats stats;
/* shared R/W cacheline, primarily accessed by consumer */
u32 irq_db_val; /* value written to IRQ doorbell */
u32 cons_cnt; /* consumer (cleanup) counter */
struct net_device *netdev;
struct fun_irq *irq;
int numa_node;
u8 init_state; /* queue initialization state */
struct u64_stats_sync syncp;
};
struct funeth_rxq_stats { /* per Rx queue SW counters */
u64 rx_pkts; /* # of received packets, including SW drops */
u64 rx_bytes; /* total size of received packets */
u64 rx_cso; /* # of packets with checksum offload */
u64 rx_bufs; /* total # of Rx buffers provided to device */
u64 gro_pkts; /* # of GRO superpackets */
u64 gro_merged; /* # of pkts merged into existing GRO superpackets */
u64 rx_page_alloc; /* # of page allocations for Rx buffers */
u64 rx_budget; /* NAPI iterations that exhausted their budget */
u64 rx_mem_drops; /* # of packets dropped due to memory shortage */
u64 rx_map_err; /* # of page DMA mapping errors */
u64 xdp_drops; /* XDP_DROPped packets */
u64 xdp_tx; /* successful XDP transmits */
u64 xdp_redir; /* successful XDP redirects */
u64 xdp_err; /* packets dropped due to XDP errors */
};
struct funeth_rxbuf { /* per Rx buffer state */
struct page *page; /* associated page */
dma_addr_t dma_addr; /* DMA address of page start */
int pg_refs; /* page refs held by driver */
int node; /* page node, or -1 if it is PF_MEMALLOC */
};
struct funeth_rx_cache { /* cache of DMA-mapped previously used buffers */
struct funeth_rxbuf *bufs; /* base of Rx buffer state ring */
unsigned int prod_cnt; /* producer counter */
unsigned int cons_cnt; /* consumer counter */
unsigned int mask; /* depth - 1 */
};
/* An Rx queue consists of a CQ and an SQ used to provide Rx buffers. */
struct funeth_rxq {
struct net_device *netdev;
struct napi_struct *napi;
struct device *dma_dev; /* device for DMA mappings */
void *cqes; /* base of CQ descriptor ring */
const void *next_cqe_info; /* fun_cqe_info of next CQE */
u32 __iomem *cq_db; /* CQ doorbell register address */
unsigned int cq_head; /* CQ head index */
unsigned int cq_mask; /* CQ depth - 1 */
u16 phase; /* CQ phase tag */
u16 qidx; /* queue index within net_device */
unsigned int irq_db_val; /* IRQ info for CQ doorbell */
struct fun_eprq_rqbuf *rqes; /* base of RQ descriptor ring */
struct funeth_rxbuf *bufs; /* base of Rx buffer state ring */
struct funeth_rxbuf *cur_buf; /* currently active buffer */
u32 __iomem *rq_db; /* RQ doorbell register address */
unsigned int rq_cons; /* RQ consumer counter */
unsigned int rq_mask; /* RQ depth - 1 */
unsigned int buf_offset; /* offset of next pkt in head buffer */
u8 xdp_flush; /* XDP flush types needed at NAPI end */
u8 init_state; /* queue initialization state */
u16 headroom; /* per packet headroom */
unsigned int rq_cons_db; /* value of rq_cons at last RQ db */
unsigned int rq_db_thres; /* # of new buffers needed to write RQ db */
struct funeth_rxbuf spare_buf; /* spare for next buffer replacement */
struct funeth_rx_cache cache; /* used buffer cache */
struct bpf_prog *xdp_prog; /* optional XDP BPF program */
struct funeth_rxq_stats stats;
dma_addr_t cq_dma_addr; /* DMA address of CQE ring */
dma_addr_t rq_dma_addr; /* DMA address of RQE ring */
u16 irq_cnt;
u32 hw_cqid; /* device ID of the queue's CQ */
u32 hw_sqid; /* device ID of the queue's SQ */
int numa_node;
struct u64_stats_sync syncp;
struct xdp_rxq_info xdp_rxq;
};
#define FUN_QSTAT_INC(q, counter) \
do { \
u64_stats_update_begin(&(q)->syncp); \
(q)->stats.counter++; \
u64_stats_update_end(&(q)->syncp); \
} while (0)
#define FUN_QSTAT_READ(q, seq, stats_copy) \
do { \
seq = u64_stats_fetch_begin(&(q)->syncp); \
stats_copy = (q)->stats; \
} while (u64_stats_fetch_retry(&(q)->syncp, (seq)))
#define FUN_INT_NAME_LEN (IFNAMSIZ + 16)
struct fun_irq {
struct napi_struct napi;
struct funeth_txq *txq;
struct funeth_rxq *rxq;
u8 state;
u16 irq_idx; /* index of MSI-X interrupt */
int irq; /* Linux IRQ vector */
cpumask_t affinity_mask; /* IRQ affinity */
struct irq_affinity_notify aff_notify;
char name[FUN_INT_NAME_LEN];
} ____cacheline_internodealigned_in_smp;
/* Return the start address of the idx-th Tx descriptor. */
static inline void *fun_tx_desc_addr(const struct funeth_txq *q,
unsigned int idx)
{
return q->desc + idx * FUNETH_SQE_SIZE;
}
static inline void fun_txq_wr_db(const struct funeth_txq *q)
{
unsigned int tail = q->prod_cnt & q->mask;
writel(tail, q->db);
}
static inline int fun_irq_node(const struct fun_irq *p)
{
return local_memory_node(cpu_to_node(cpumask_first(&p->affinity_mask)));
}
int fun_rxq_napi_poll(struct napi_struct *napi, int budget);
int fun_txq_napi_poll(struct napi_struct *napi, int budget);
netdev_tx_t fun_start_xmit(struct sk_buff *skb, struct net_device *netdev);
bool fun_xdp_tx(struct funeth_txq *q, void *data, unsigned int len);
int fun_xdp_xmit_frames(struct net_device *dev, int n,
struct xdp_frame **frames, u32 flags);
int funeth_txq_create(struct net_device *dev, unsigned int qidx,
unsigned int ndesc, struct fun_irq *irq, int state,
struct funeth_txq **qp);
int fun_txq_create_dev(struct funeth_txq *q, struct fun_irq *irq);
struct funeth_txq *funeth_txq_free(struct funeth_txq *q, int state);
int funeth_rxq_create(struct net_device *dev, unsigned int qidx,
unsigned int ncqe, unsigned int nrqe, struct fun_irq *irq,
int state, struct funeth_rxq **qp);
int fun_rxq_create_dev(struct funeth_rxq *q, struct fun_irq *irq);
struct funeth_rxq *funeth_rxq_free(struct funeth_rxq *q, int state);
int fun_rxq_set_bpf(struct funeth_rxq *q, struct bpf_prog *prog);
#endif /* _FUNETH_TXRX_H */