habanalabs: add command buffer module

This patch adds the command buffer (CB) module, which allows the user to
create and destroy CBs and to map them to the user's process
address-space.

A command buffer is a memory blocks that reside in DMA-able address-space
and is physically contiguous so it can be accessed by the device without
MMU translation. The command buffer memory is allocated using the
coherent DMA API.

When creating a new CB, the IOCTL returns a handle of it, and the
user-space process needs to use that handle to mmap the buffer to get a VA
in the user's address-space.

Before destroying (freeing) a CB, the user must unmap the CB's VA using the
CB handle.

Each CB has a reference counter, which tracks its usage in command
submissions and also its mmaps (only a single mmap is allowed).

The driver maintains a pool of pre-allocated CBs in order to reduce
latency during command submissions. In case the pool is empty, the driver
will go to the slow-path of allocating a new CB, i.e. calling
dma_alloc_coherent.

Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Oded Gabbay 2019-02-16 00:39:15 +02:00 committed by Greg Kroah-Hartman
parent 0861e41de5
commit be5d926b5c
8 changed files with 738 additions and 2 deletions

View File

@ -4,7 +4,8 @@
obj-m := habanalabs.o
habanalabs-y := habanalabs_drv.o device.o context.o asid.o
habanalabs-y := habanalabs_drv.o device.o context.o asid.o habanalabs_ioctl.o \
command_buffer.o
include $(src)/goya/Makefile
habanalabs-y += $(HL_GOYA_FILES)

View File

@ -0,0 +1,433 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include <uapi/misc/habanalabs.h>
#include "habanalabs.h"
#include <linux/mm.h>
#include <linux/slab.h>
static void cb_fini(struct hl_device *hdev, struct hl_cb *cb)
{
hdev->asic_funcs->dma_free_coherent(hdev, cb->size,
(void *) (uintptr_t) cb->kernel_address,
cb->bus_address);
kfree(cb);
}
static void cb_do_release(struct hl_device *hdev, struct hl_cb *cb)
{
if (cb->is_pool) {
spin_lock(&hdev->cb_pool_lock);
list_add(&cb->pool_list, &hdev->cb_pool);
spin_unlock(&hdev->cb_pool_lock);
} else {
cb_fini(hdev, cb);
}
}
static void cb_release(struct kref *ref)
{
struct hl_device *hdev;
struct hl_cb *cb;
cb = container_of(ref, struct hl_cb, refcount);
hdev = cb->hdev;
cb_do_release(hdev, cb);
}
static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size,
int ctx_id)
{
struct hl_cb *cb;
void *p;
/*
* We use of GFP_ATOMIC here because this function can be called from
* the latency-sensitive code path for command submission. Due to H/W
* limitations in some of the ASICs, the kernel must copy the user CB
* that is designated for an external queue and actually enqueue
* the kernel's copy. Hence, we must never sleep in this code section
* and must use GFP_ATOMIC for all memory allocations.
*/
if (ctx_id == HL_KERNEL_ASID_ID)
cb = kzalloc(sizeof(*cb), GFP_ATOMIC);
else
cb = kzalloc(sizeof(*cb), GFP_KERNEL);
if (!cb)
return NULL;
if (ctx_id == HL_KERNEL_ASID_ID)
p = hdev->asic_funcs->dma_alloc_coherent(hdev, cb_size,
&cb->bus_address, GFP_ATOMIC);
else
p = hdev->asic_funcs->dma_alloc_coherent(hdev, cb_size,
&cb->bus_address,
GFP_USER | __GFP_ZERO);
if (!p) {
dev_err(hdev->dev,
"failed to allocate %d of dma memory for CB\n",
cb_size);
kfree(cb);
return NULL;
}
cb->kernel_address = (u64) (uintptr_t) p;
cb->size = cb_size;
return cb;
}
int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
u32 cb_size, u64 *handle, int ctx_id)
{
struct hl_cb *cb;
bool alloc_new_cb = true;
int rc;
if (hdev->disabled) {
dev_warn_ratelimited(hdev->dev,
"Device is disabled. Can't create new CBs\n");
rc = -EBUSY;
goto out_err;
}
if (cb_size > HL_MAX_CB_SIZE) {
dev_err(hdev->dev,
"CB size %d must be less then %d\n",
cb_size, HL_MAX_CB_SIZE);
rc = -EINVAL;
goto out_err;
}
/* Minimum allocation must be PAGE SIZE */
if (cb_size < PAGE_SIZE)
cb_size = PAGE_SIZE;
if (ctx_id == HL_KERNEL_ASID_ID &&
cb_size <= hdev->asic_prop.cb_pool_cb_size) {
spin_lock(&hdev->cb_pool_lock);
if (!list_empty(&hdev->cb_pool)) {
cb = list_first_entry(&hdev->cb_pool, typeof(*cb),
pool_list);
list_del(&cb->pool_list);
spin_unlock(&hdev->cb_pool_lock);
alloc_new_cb = false;
} else {
spin_unlock(&hdev->cb_pool_lock);
dev_dbg(hdev->dev, "CB pool is empty\n");
}
}
if (alloc_new_cb) {
cb = hl_cb_alloc(hdev, cb_size, ctx_id);
if (!cb) {
rc = -ENOMEM;
goto out_err;
}
}
cb->hdev = hdev;
cb->ctx_id = ctx_id;
spin_lock(&mgr->cb_lock);
rc = idr_alloc(&mgr->cb_handles, cb, 1, 0, GFP_ATOMIC);
spin_unlock(&mgr->cb_lock);
if (rc < 0) {
dev_err(hdev->dev, "Failed to allocate IDR for a new CB\n");
goto release_cb;
}
cb->id = rc;
kref_init(&cb->refcount);
spin_lock_init(&cb->lock);
/*
* idr is 32-bit so we can safely OR it with a mask that is above
* 32 bit
*/
*handle = cb->id | HL_MMAP_CB_MASK;
*handle <<= PAGE_SHIFT;
return 0;
release_cb:
cb_do_release(hdev, cb);
out_err:
*handle = 0;
return rc;
}
int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle)
{
struct hl_cb *cb;
u32 handle;
int rc = 0;
/*
* handle was given to user to do mmap, I need to shift it back to
* how the idr module gave it to me
*/
cb_handle >>= PAGE_SHIFT;
handle = (u32) cb_handle;
spin_lock(&mgr->cb_lock);
cb = idr_find(&mgr->cb_handles, handle);
if (cb) {
idr_remove(&mgr->cb_handles, handle);
spin_unlock(&mgr->cb_lock);
kref_put(&cb->refcount, cb_release);
} else {
spin_unlock(&mgr->cb_lock);
dev_err(hdev->dev,
"CB destroy failed, no match to handle 0x%x\n", handle);
rc = -EINVAL;
}
return rc;
}
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data)
{
union hl_cb_args *args = data;
struct hl_device *hdev = hpriv->hdev;
u64 handle;
int rc;
switch (args->in.op) {
case HL_CB_OP_CREATE:
rc = hl_cb_create(hdev, &hpriv->cb_mgr, args->in.cb_size,
&handle, hpriv->ctx->asid);
memset(args, 0, sizeof(*args));
args->out.cb_handle = handle;
break;
case HL_CB_OP_DESTROY:
rc = hl_cb_destroy(hdev, &hpriv->cb_mgr,
args->in.cb_handle);
break;
default:
rc = -ENOTTY;
break;
}
return rc;
}
static void cb_vm_close(struct vm_area_struct *vma)
{
struct hl_cb *cb = (struct hl_cb *) vma->vm_private_data;
cb->mmap_size -= vma->vm_end - vma->vm_start;
if (cb->mmap_size)
return;
spin_lock(&cb->lock);
cb->mmap = false;
spin_unlock(&cb->lock);
hl_cb_put(cb);
vma->vm_private_data = NULL;
}
static const struct vm_operations_struct cb_vm_ops = {
.close = cb_vm_close
};
int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_cb *cb;
phys_addr_t address;
u32 handle;
int rc;
handle = vma->vm_pgoff;
/* reference was taken here */
cb = hl_cb_get(hdev, &hpriv->cb_mgr, handle);
if (!cb) {
dev_err(hdev->dev,
"CB mmap failed, no match to handle %d\n", handle);
return -EINVAL;
}
/* Validation check */
if ((vma->vm_end - vma->vm_start) != cb->size) {
dev_err(hdev->dev,
"CB mmap failed, mmap size 0x%lx != 0x%x cb size\n",
vma->vm_end - vma->vm_start, cb->size);
rc = -EINVAL;
goto put_cb;
}
spin_lock(&cb->lock);
if (cb->mmap) {
dev_err(hdev->dev,
"CB mmap failed, CB already mmaped to user\n");
rc = -EINVAL;
goto release_lock;
}
cb->mmap = true;
spin_unlock(&cb->lock);
vma->vm_ops = &cb_vm_ops;
/*
* Note: We're transferring the cb reference to
* vma->vm_private_data here.
*/
vma->vm_private_data = cb;
/* Calculate address for CB */
address = virt_to_phys((void *) (uintptr_t) cb->kernel_address);
rc = hdev->asic_funcs->cb_mmap(hdev, vma, cb->kernel_address,
address, cb->size);
if (rc) {
spin_lock(&cb->lock);
cb->mmap = false;
goto release_lock;
}
cb->mmap_size = cb->size;
return 0;
release_lock:
spin_unlock(&cb->lock);
put_cb:
hl_cb_put(cb);
return rc;
}
struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr,
u32 handle)
{
struct hl_cb *cb;
spin_lock(&mgr->cb_lock);
cb = idr_find(&mgr->cb_handles, handle);
if (!cb) {
spin_unlock(&mgr->cb_lock);
dev_warn(hdev->dev,
"CB get failed, no match to handle %d\n", handle);
return NULL;
}
kref_get(&cb->refcount);
spin_unlock(&mgr->cb_lock);
return cb;
}
void hl_cb_put(struct hl_cb *cb)
{
kref_put(&cb->refcount, cb_release);
}
void hl_cb_mgr_init(struct hl_cb_mgr *mgr)
{
spin_lock_init(&mgr->cb_lock);
idr_init(&mgr->cb_handles);
}
void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr)
{
struct hl_cb *cb;
struct idr *idp;
u32 id;
idp = &mgr->cb_handles;
idr_for_each_entry(idp, cb, id) {
if (kref_put(&cb->refcount, cb_release) != 1)
dev_err(hdev->dev,
"CB %d for CTX ID %d is still alive\n",
id, cb->ctx_id);
}
idr_destroy(&mgr->cb_handles);
}
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size)
{
u64 cb_handle;
struct hl_cb *cb;
int rc;
rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, cb_size, &cb_handle,
HL_KERNEL_ASID_ID);
if (rc) {
dev_err(hdev->dev, "Failed to allocate CB for KMD %d\n", rc);
return NULL;
}
cb_handle >>= PAGE_SHIFT;
cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr, (u32) cb_handle);
/* hl_cb_get should never fail here so use kernel WARN */
WARN(!cb, "Kernel CB handle invalid 0x%x\n", (u32) cb_handle);
if (!cb)
goto destroy_cb;
return cb;
destroy_cb:
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb_handle << PAGE_SHIFT);
return NULL;
}
int hl_cb_pool_init(struct hl_device *hdev)
{
struct hl_cb *cb;
int i;
INIT_LIST_HEAD(&hdev->cb_pool);
spin_lock_init(&hdev->cb_pool_lock);
for (i = 0 ; i < hdev->asic_prop.cb_pool_cb_cnt ; i++) {
cb = hl_cb_alloc(hdev, hdev->asic_prop.cb_pool_cb_size,
HL_KERNEL_ASID_ID);
if (cb) {
cb->is_pool = true;
list_add(&cb->pool_list, &hdev->cb_pool);
} else {
hl_cb_pool_fini(hdev);
return -ENOMEM;
}
}
return 0;
}
int hl_cb_pool_fini(struct hl_device *hdev)
{
struct hl_cb *cb, *tmp;
list_for_each_entry_safe(cb, tmp, &hdev->cb_pool, pool_list) {
list_del(&cb->pool_list);
cb_fini(hdev, cb);
}
return 0;
}

View File

@ -52,6 +52,7 @@ static int hl_device_release(struct inode *inode, struct file *filp)
{
struct hl_fpriv *hpriv = filp->private_data;
hl_cb_mgr_fini(hpriv->hdev, &hpriv->cb_mgr);
hl_ctx_mgr_fini(hpriv->hdev, &hpriv->ctx_mgr);
filp->private_data = NULL;
@ -61,10 +62,34 @@ static int hl_device_release(struct inode *inode, struct file *filp)
return 0;
}
/*
* hl_mmap - mmap function for habanalabs device
*
* @*filp: pointer to file structure
* @*vma: pointer to vm_area_struct of the process
*
* Called when process does an mmap on habanalabs device. Call the device's mmap
* function at the end of the common code.
*/
static int hl_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct hl_fpriv *hpriv = filp->private_data;
if ((vma->vm_pgoff & HL_MMAP_CB_MASK) == HL_MMAP_CB_MASK) {
vma->vm_pgoff ^= HL_MMAP_CB_MASK;
return hl_cb_mmap(hpriv, vma);
}
return hpriv->hdev->asic_funcs->mmap(hpriv, vma);
}
static const struct file_operations hl_ops = {
.owner = THIS_MODULE,
.open = hl_device_open,
.release = hl_device_release
.release = hl_device_release,
.mmap = hl_mmap,
.unlocked_ioctl = hl_ioctl,
.compat_ioctl = hl_ioctl
};
/*
@ -149,6 +174,8 @@ static int device_early_init(struct hl_device *hdev)
if (rc)
goto early_fini;
hl_cb_mgr_init(&hdev->kernel_cb_mgr);
mutex_init(&hdev->fd_open_cnt_lock);
atomic_set(&hdev->fd_open_cnt, 0);
@ -170,6 +197,8 @@ early_fini:
static void device_early_fini(struct hl_device *hdev)
{
hl_cb_mgr_fini(hdev, &hdev->kernel_cb_mgr);
hl_asid_fini(hdev);
if (hdev->asic_funcs->early_fini)
@ -284,11 +313,21 @@ int hl_device_init(struct hl_device *hdev, struct class *hclass)
goto free_ctx;
}
rc = hl_cb_pool_init(hdev);
if (rc) {
dev_err(hdev->dev, "failed to initialize CB pool\n");
goto release_ctx;
}
dev_notice(hdev->dev,
"Successfully added device to habanalabs driver\n");
return 0;
release_ctx:
if (hl_ctx_put(hdev->kernel_ctx) != 1)
dev_err(hdev->dev,
"kernel ctx is still alive on initialization failure\n");
free_ctx:
kfree(hdev->kernel_ctx);
sw_fini:
@ -325,6 +364,8 @@ void hl_device_fini(struct hl_device *hdev)
/* Mark device as disabled */
hdev->disabled = true;
hl_cb_pool_fini(hdev);
/* Release kernel context */
if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
dev_err(hdev->dev, "kernel ctx is still alive\n");

View File

@ -82,6 +82,9 @@
#define GOYA_MAX_INITIATORS 20
#define GOYA_CB_POOL_CB_CNT 512
#define GOYA_CB_POOL_CB_SIZE 0x20000 /* 128KB */
static void goya_get_fixed_properties(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
@ -109,6 +112,8 @@ static void goya_get_fixed_properties(struct hl_device *hdev)
prop->tpc_enabled_mask = TPC_ENABLED_MASK;
prop->high_pll = PLL_HIGH_DEFAULT;
prop->cb_pool_cb_cnt = GOYA_CB_POOL_CB_CNT;
prop->cb_pool_cb_size = GOYA_CB_POOL_CB_SIZE;
}
/*
@ -597,6 +602,27 @@ int goya_resume(struct hl_device *hdev)
return 0;
}
int goya_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
{
return -EINVAL;
}
int goya_cb_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
u64 kaddress, phys_addr_t paddress, u32 size)
{
int rc;
vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
VM_DONTCOPY | VM_NORESERVE;
rc = remap_pfn_range(vma, vma->vm_start, paddress >> PAGE_SHIFT,
size, vma->vm_page_prot);
if (rc)
dev_err(hdev->dev, "remap_pfn_range error %d", rc);
return rc;
}
void *goya_dma_alloc_coherent(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags)
{
@ -616,6 +642,8 @@ static const struct hl_asic_funcs goya_funcs = {
.sw_fini = goya_sw_fini,
.suspend = goya_suspend,
.resume = goya_resume,
.mmap = goya_mmap,
.cb_mmap = goya_cb_mmap,
.dma_alloc_coherent = goya_dma_alloc_coherent,
.dma_free_coherent = goya_dma_free_coherent,
};

View File

@ -14,9 +14,12 @@
#define HL_NAME "habanalabs"
#define HL_MMAP_CB_MASK (0x8000000000000000ull >> PAGE_SHIFT)
#define HL_MAX_QUEUES 128
struct hl_device;
struct hl_fpriv;
/**
@ -44,6 +47,8 @@ struct hl_device;
* @max_asid: maximum number of open contexts (ASIDs).
* @completion_queues_count: number of completion queues.
* @high_pll: high PLL frequency used by the device.
* @cb_pool_cb_cnt: number of CBs in the CB pool.
* @cb_pool_cb_size: size of each CB in the CB pool.
* @tpc_enabled_mask: which TPCs are enabled.
*/
struct asic_fixed_properties {
@ -64,11 +69,60 @@ struct asic_fixed_properties {
u32 sram_size;
u32 max_asid;
u32 high_pll;
u32 cb_pool_cb_cnt;
u32 cb_pool_cb_size;
u8 completion_queues_count;
u8 tpc_enabled_mask;
};
/*
* Command Buffers
*/
#define HL_MAX_CB_SIZE 0x200000 /* 2MB */
/**
* struct hl_cb_mgr - describes a Command Buffer Manager.
* @cb_lock: protects cb_handles.
* @cb_handles: an idr to hold all command buffer handles.
*/
struct hl_cb_mgr {
spinlock_t cb_lock;
struct idr cb_handles; /* protected by cb_lock */
};
/**
* struct hl_cb - describes a Command Buffer.
* @refcount: reference counter for usage of the CB.
* @hdev: pointer to device this CB belongs to.
* @lock: spinlock to protect mmap/cs flows.
* @pool_list: node in pool list of command buffers.
* @kernel_address: Holds the CB's kernel virtual address.
* @bus_address: Holds the CB's DMA address.
* @mmap_size: Holds the CB's size that was mmaped.
* @size: holds the CB's size.
* @id: the CB's ID.
* @ctx_id: holds the ID of the owner's context.
* @mmap: true if the CB is currently mmaped to user.
* @is_pool: true if CB was acquired from the pool, false otherwise.
*/
struct hl_cb {
struct kref refcount;
struct hl_device *hdev;
spinlock_t lock;
struct list_head pool_list;
u64 kernel_address;
dma_addr_t bus_address;
u32 mmap_size;
u32 size;
u32 id;
u32 ctx_id;
u8 mmap;
u8 is_pool;
};
#define HL_QUEUE_LENGTH 256
@ -97,6 +151,8 @@ enum hl_asic_type {
* @sw_fini: tears down driver state, does not configure H/W.
* @suspend: handles IP specific H/W or SW changes for suspend.
* @resume: handles IP specific H/W or SW changes for resume.
* @mmap: mmap function, does nothing.
* @cb_mmap: maps a CB.
* @dma_alloc_coherent: Allocate coherent DMA memory by calling
* dma_alloc_coherent(). This is ASIC function because its
* implementation is not trivial when the driver is loaded
@ -113,6 +169,9 @@ struct hl_asic_funcs {
int (*sw_fini)(struct hl_device *hdev);
int (*suspend)(struct hl_device *hdev);
int (*resume)(struct hl_device *hdev);
int (*mmap)(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
u64 kaddress, phys_addr_t paddress, u32 size);
void* (*dma_alloc_coherent)(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
void (*dma_free_coherent)(struct hl_device *hdev, size_t size,
@ -163,6 +222,7 @@ struct hl_ctx_mgr {
* @taskpid: current process ID.
* @ctx: current executing context.
* @ctx_mgr: context manager to handle multiple context for this FD.
* @cb_mgr: command buffer manager to handle multiple buffers for this FD.
* @refcount: number of related contexts.
*/
struct hl_fpriv {
@ -171,6 +231,7 @@ struct hl_fpriv {
struct pid *taskpid;
struct hl_ctx *ctx; /* TODO: remove for multiple ctx */
struct hl_ctx_mgr ctx_mgr;
struct hl_cb_mgr cb_mgr;
struct kref refcount;
};
@ -225,6 +286,7 @@ void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
* @asic_name: ASIC specific nmae.
* @asic_type: ASIC specific type.
* @kernel_ctx: KMD context structure.
* @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
* @dma_pool: DMA pool for small allocations.
* @cpu_accessible_dma_mem: KMD <-> ArmCP shared memory CPU address.
* @cpu_accessible_dma_address: KMD <-> ArmCP shared memory DMA address.
@ -240,6 +302,8 @@ void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
* @asic_prop: ASIC specific immutable properties.
* @asic_funcs: ASIC specific functions.
* @asic_specific: ASIC specific information to use only from ASIC files.
* @cb_pool: list of preallocated CBs.
* @cb_pool_lock: protects the CB pool.
* @user_ctx: current user context executing.
* @fd_open_cnt: number of open user processes.
* @major: habanalabs KMD major.
@ -255,6 +319,7 @@ struct hl_device {
char asic_name[16];
enum hl_asic_type asic_type;
struct hl_ctx *kernel_ctx;
struct hl_cb_mgr kernel_cb_mgr;
struct dma_pool *dma_pool;
void *cpu_accessible_dma_mem;
dma_addr_t cpu_accessible_dma_address;
@ -266,6 +331,10 @@ struct hl_device {
struct asic_fixed_properties asic_prop;
const struct hl_asic_funcs *asic_funcs;
void *asic_specific;
struct list_head cb_pool;
spinlock_t cb_pool_lock;
/* TODO: remove user_ctx for multiple process support */
struct hl_ctx *user_ctx;
atomic_t fd_open_cnt;
@ -334,6 +403,23 @@ int hl_device_resume(struct hl_device *hdev);
void hl_hpriv_get(struct hl_fpriv *hpriv);
void hl_hpriv_put(struct hl_fpriv *hpriv);
int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 cb_size,
u64 *handle, int ctx_id);
int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr,
u32 handle);
void hl_cb_put(struct hl_cb *cb);
void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size);
int hl_cb_pool_init(struct hl_device *hdev);
int hl_cb_pool_fini(struct hl_device *hdev);
void goya_set_asic_funcs(struct hl_device *hdev);
/* IOCTLs */
long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
#endif /* HABANALABSP_H_ */

View File

@ -116,6 +116,7 @@ int hl_device_open(struct inode *inode, struct file *filp)
kref_init(&hpriv->refcount);
nonseekable_open(inode, filp);
hl_cb_mgr_init(&hpriv->cb_mgr);
hl_ctx_mgr_init(&hpriv->ctx_mgr);
rc = hl_ctx_create(hdev, hpriv);
@ -131,6 +132,7 @@ int hl_device_open(struct inode *inode, struct file *filp)
out_err:
filp->private_data = NULL;
hl_ctx_mgr_fini(hpriv->hdev, &hpriv->ctx_mgr);
hl_cb_mgr_fini(hpriv->hdev, &hpriv->cb_mgr);
kfree(hpriv);
close_device:

View File

@ -0,0 +1,99 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include <uapi/misc/habanalabs.h>
#include "habanalabs.h"
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#define HL_IOCTL_DEF(ioctl, _func) \
[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func}
static const struct hl_ioctl_desc hl_ioctls[] = {
HL_IOCTL_DEF(HL_IOCTL_CB, hl_cb_ioctl)
};
#define HL_CORE_IOCTL_COUNT ARRAY_SIZE(hl_ioctls)
long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
{
struct hl_fpriv *hpriv = filep->private_data;
struct hl_device *hdev = hpriv->hdev;
hl_ioctl_t *func;
const struct hl_ioctl_desc *ioctl = NULL;
unsigned int nr = _IOC_NR(cmd);
char stack_kdata[128] = {0};
char *kdata = NULL;
unsigned int usize, asize;
int retcode;
if ((nr >= HL_COMMAND_START) && (nr < HL_COMMAND_END)) {
u32 hl_size;
ioctl = &hl_ioctls[nr];
hl_size = _IOC_SIZE(ioctl->cmd);
usize = asize = _IOC_SIZE(cmd);
if (hl_size > asize)
asize = hl_size;
cmd = ioctl->cmd;
} else {
dev_err(hdev->dev, "invalid ioctl: pid=%d, nr=0x%02x\n",
task_pid_nr(current), nr);
return -ENOTTY;
}
/* Do not trust userspace, use our own definition */
func = ioctl->func;
if (unlikely(!func)) {
dev_dbg(hdev->dev, "no function\n");
retcode = -ENOTTY;
goto out_err;
}
if (cmd & (IOC_IN | IOC_OUT)) {
if (asize <= sizeof(stack_kdata)) {
kdata = stack_kdata;
} else {
kdata = kzalloc(asize, GFP_KERNEL);
if (!kdata) {
retcode = -ENOMEM;
goto out_err;
}
}
}
if (cmd & IOC_IN) {
if (copy_from_user(kdata, (void __user *)arg, usize)) {
retcode = -EFAULT;
goto out_err;
}
} else if (cmd & IOC_OUT) {
memset(kdata, 0, usize);
}
retcode = func(hpriv, kdata);
if (cmd & IOC_OUT)
if (copy_to_user((void __user *)arg, kdata, usize))
retcode = -EFAULT;
out_err:
if (retcode)
dev_dbg(hdev->dev,
"error in ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
task_pid_nr(current), cmd, nr);
if (kdata != stack_kdata)
kfree(kdata);
return retcode;
}

View File

@ -17,4 +17,50 @@
*/
#define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START 0x8000 /* 32KB */
/* Opcode to create a new command buffer */
#define HL_CB_OP_CREATE 0
/* Opcode to destroy previously created command buffer */
#define HL_CB_OP_DESTROY 1
struct hl_cb_in {
/* Handle of CB or 0 if we want to create one */
__u64 cb_handle;
/* HL_CB_OP_* */
__u32 op;
/* Size of CB. Minimum requested size must be PAGE_SIZE */
__u32 cb_size;
/* Context ID - Currently not in use */
__u32 ctx_id;
__u32 pad;
};
struct hl_cb_out {
/* Handle of CB */
__u64 cb_handle;
};
union hl_cb_args {
struct hl_cb_in in;
struct hl_cb_out out;
};
/*
* Command Buffer
* - Request a Command Buffer
* - Destroy a Command Buffer
*
* The command buffers are memory blocks that reside in DMA-able address
* space and are physically contiguous so they can be accessed by the device
* directly. They are allocated using the coherent DMA API.
*
* When creating a new CB, the IOCTL returns a handle of it, and the user-space
* process needs to use that handle to mmap the buffer so it can access them.
*
*/
#define HL_IOCTL_CB \
_IOWR('H', 0x02, union hl_cb_args)
#define HL_COMMAND_START 0x02
#define HL_COMMAND_END 0x03
#endif /* HABANALABS_H_ */