mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 14:11:52 +00:00
Merge branches 'pm-cpufreq', 'pm-sleep' and 'pm-em'
* pm-cpufreq: cpufreq: intel_pstate: hybrid: Rework HWP calibration ACPI: CPPC: Introduce cppc_get_nominal_perf() * pm-sleep: PM: sleep: core: Avoid setting power.must_resume to false PM: sleep: wakeirq: drop useless parameter from dev_pm_attach_wake_irq() * pm-em: Documentation: power: include kernel-doc in Energy Model doc PM: EM: fix kernel-doc comments
This commit is contained in:
commit
be2d24336f
@ -101,8 +101,7 @@ subsystems which use EM might rely on this flag to check if all EM devices use
|
||||
the same scale. If there are different scales, these subsystems might decide
|
||||
to: return warning/error, stop working or panic.
|
||||
See Section 3. for an example of driver implementing this
|
||||
callback, and kernel/power/energy_model.c for further documentation on this
|
||||
API.
|
||||
callback, or Section 2.4 for further documentation on this API
|
||||
|
||||
|
||||
2.3 Accessing performance domains
|
||||
@ -123,7 +122,17 @@ em_cpu_energy() API. The estimation is performed assuming that the schedutil
|
||||
CPUfreq governor is in use in case of CPU device. Currently this calculation is
|
||||
not provided for other type of devices.
|
||||
|
||||
More details about the above APIs can be found in include/linux/energy_model.h.
|
||||
More details about the above APIs can be found in ``<linux/energy_model.h>``
|
||||
or in Section 2.4
|
||||
|
||||
|
||||
2.4 Description details of this API
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
.. kernel-doc:: include/linux/energy_model.h
|
||||
:internal:
|
||||
|
||||
.. kernel-doc:: kernel/power/energy_model.c
|
||||
:export:
|
||||
|
||||
|
||||
3. Example driver
|
||||
|
@ -1008,23 +1008,14 @@ static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/**
|
||||
* cppc_get_desired_perf - Get the value of desired performance register.
|
||||
* @cpunum: CPU from which to get desired performance.
|
||||
* @desired_perf: address of a variable to store the returned desired performance
|
||||
*
|
||||
* Return: 0 for success, -EIO otherwise.
|
||||
*/
|
||||
int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
|
||||
static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
|
||||
{
|
||||
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
|
||||
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
|
||||
struct cpc_register_resource *desired_reg;
|
||||
struct cppc_pcc_data *pcc_ss_data = NULL;
|
||||
struct cpc_register_resource *reg = &cpc_desc->cpc_regs[reg_idx];
|
||||
|
||||
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
|
||||
|
||||
if (CPC_IN_PCC(desired_reg)) {
|
||||
if (CPC_IN_PCC(reg)) {
|
||||
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
|
||||
struct cppc_pcc_data *pcc_ss_data = NULL;
|
||||
int ret = 0;
|
||||
|
||||
if (pcc_ss_id < 0)
|
||||
@ -1035,7 +1026,7 @@ int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
|
||||
down_write(&pcc_ss_data->pcc_lock);
|
||||
|
||||
if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
|
||||
cpc_read(cpunum, desired_reg, desired_perf);
|
||||
cpc_read(cpunum, reg, perf);
|
||||
else
|
||||
ret = -EIO;
|
||||
|
||||
@ -1044,12 +1035,36 @@ int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
|
||||
return ret;
|
||||
}
|
||||
|
||||
cpc_read(cpunum, desired_reg, desired_perf);
|
||||
cpc_read(cpunum, reg, perf);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* cppc_get_desired_perf - Get the desired performance register value.
|
||||
* @cpunum: CPU from which to get desired performance.
|
||||
* @desired_perf: Return address.
|
||||
*
|
||||
* Return: 0 for success, -EIO otherwise.
|
||||
*/
|
||||
int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
|
||||
{
|
||||
return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
|
||||
|
||||
/**
|
||||
* cppc_get_nominal_perf - Get the nominal performance register value.
|
||||
* @cpunum: CPU from which to get nominal performance.
|
||||
* @nominal_perf: Return address.
|
||||
*
|
||||
* Return: 0 for success, -EIO otherwise.
|
||||
*/
|
||||
int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
|
||||
{
|
||||
return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
|
||||
}
|
||||
|
||||
/**
|
||||
* cppc_get_perf_caps - Get a CPU's performance capabilities.
|
||||
* @cpunum: CPU from which to get capabilities info.
|
||||
|
@ -1642,7 +1642,7 @@ static int __device_suspend(struct device *dev, pm_message_t state, bool async)
|
||||
}
|
||||
|
||||
dev->power.may_skip_resume = true;
|
||||
dev->power.must_resume = false;
|
||||
dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
|
||||
|
||||
dpm_watchdog_set(&wd, dev);
|
||||
device_lock(dev);
|
||||
|
@ -12,14 +12,11 @@
|
||||
/**
|
||||
* dev_pm_attach_wake_irq - Attach device interrupt as a wake IRQ
|
||||
* @dev: Device entry
|
||||
* @irq: Device wake-up capable interrupt
|
||||
* @wirq: Wake irq specific data
|
||||
*
|
||||
* Internal function to attach either a device IO interrupt or a
|
||||
* dedicated wake-up interrupt as a wake IRQ.
|
||||
* Internal function to attach a dedicated wake-up interrupt as a wake IRQ.
|
||||
*/
|
||||
static int dev_pm_attach_wake_irq(struct device *dev, int irq,
|
||||
struct wake_irq *wirq)
|
||||
static int dev_pm_attach_wake_irq(struct device *dev, struct wake_irq *wirq)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
@ -65,7 +62,7 @@ int dev_pm_set_wake_irq(struct device *dev, int irq)
|
||||
wirq->dev = dev;
|
||||
wirq->irq = irq;
|
||||
|
||||
err = dev_pm_attach_wake_irq(dev, irq, wirq);
|
||||
err = dev_pm_attach_wake_irq(dev, wirq);
|
||||
if (err)
|
||||
kfree(wirq);
|
||||
|
||||
@ -196,7 +193,7 @@ int dev_pm_set_dedicated_wake_irq(struct device *dev, int irq)
|
||||
if (err)
|
||||
goto err_free_name;
|
||||
|
||||
err = dev_pm_attach_wake_irq(dev, irq, wirq);
|
||||
err = dev_pm_attach_wake_irq(dev, wirq);
|
||||
if (err)
|
||||
goto err_free_irq;
|
||||
|
||||
|
@ -268,6 +268,7 @@ static struct cpudata **all_cpu_data;
|
||||
* @get_min: Callback to get minimum P state
|
||||
* @get_turbo: Callback to get turbo P state
|
||||
* @get_scaling: Callback to get frequency scaling factor
|
||||
* @get_cpu_scaling: Get frequency scaling factor for a given cpu
|
||||
* @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
|
||||
* @get_val: Callback to convert P state to actual MSR write value
|
||||
* @get_vid: Callback to get VID data for Atom platforms
|
||||
@ -281,6 +282,7 @@ struct pstate_funcs {
|
||||
int (*get_min)(void);
|
||||
int (*get_turbo)(void);
|
||||
int (*get_scaling)(void);
|
||||
int (*get_cpu_scaling)(int cpu);
|
||||
int (*get_aperf_mperf_shift)(void);
|
||||
u64 (*get_val)(struct cpudata*, int pstate);
|
||||
void (*get_vid)(struct cpudata *);
|
||||
@ -384,6 +386,15 @@ static int intel_pstate_get_cppc_guaranteed(int cpu)
|
||||
return cppc_perf.nominal_perf;
|
||||
}
|
||||
|
||||
static u32 intel_pstate_cppc_nominal(int cpu)
|
||||
{
|
||||
u64 nominal_perf;
|
||||
|
||||
if (cppc_get_nominal_perf(cpu, &nominal_perf))
|
||||
return 0;
|
||||
|
||||
return nominal_perf;
|
||||
}
|
||||
#else /* CONFIG_ACPI_CPPC_LIB */
|
||||
static inline void intel_pstate_set_itmt_prio(int cpu)
|
||||
{
|
||||
@ -470,20 +481,6 @@ static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
|
||||
|
||||
acpi_processor_unregister_performance(policy->cpu);
|
||||
}
|
||||
|
||||
static bool intel_pstate_cppc_perf_valid(u32 perf, struct cppc_perf_caps *caps)
|
||||
{
|
||||
return perf && perf <= caps->highest_perf && perf >= caps->lowest_perf;
|
||||
}
|
||||
|
||||
static bool intel_pstate_cppc_perf_caps(struct cpudata *cpu,
|
||||
struct cppc_perf_caps *caps)
|
||||
{
|
||||
if (cppc_get_perf_caps(cpu->cpu, caps))
|
||||
return false;
|
||||
|
||||
return caps->highest_perf && caps->lowest_perf <= caps->highest_perf;
|
||||
}
|
||||
#else /* CONFIG_ACPI */
|
||||
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
|
||||
{
|
||||
@ -506,15 +503,8 @@ static inline int intel_pstate_get_cppc_guaranteed(int cpu)
|
||||
}
|
||||
#endif /* CONFIG_ACPI_CPPC_LIB */
|
||||
|
||||
static void intel_pstate_hybrid_hwp_perf_ctl_parity(struct cpudata *cpu)
|
||||
{
|
||||
pr_debug("CPU%d: Using PERF_CTL scaling for HWP\n", cpu->cpu);
|
||||
|
||||
cpu->pstate.scaling = cpu->pstate.perf_ctl_scaling;
|
||||
}
|
||||
|
||||
/**
|
||||
* intel_pstate_hybrid_hwp_calibrate - Calibrate HWP performance levels.
|
||||
* intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
|
||||
* @cpu: Target CPU.
|
||||
*
|
||||
* On hybrid processors, HWP may expose more performance levels than there are
|
||||
@ -522,115 +512,46 @@ static void intel_pstate_hybrid_hwp_perf_ctl_parity(struct cpudata *cpu)
|
||||
* scaling factor between HWP performance levels and CPU frequency will be less
|
||||
* than the scaling factor between P-state values and CPU frequency.
|
||||
*
|
||||
* In that case, the scaling factor between HWP performance levels and CPU
|
||||
* frequency needs to be determined which can be done with the help of the
|
||||
* observation that certain HWP performance levels should correspond to certain
|
||||
* P-states, like for example the HWP highest performance should correspond
|
||||
* to the maximum turbo P-state of the CPU.
|
||||
* In that case, adjust the CPU parameters used in computations accordingly.
|
||||
*/
|
||||
static void intel_pstate_hybrid_hwp_calibrate(struct cpudata *cpu)
|
||||
static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
|
||||
{
|
||||
int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
|
||||
int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
|
||||
int perf_ctl_turbo = pstate_funcs.get_turbo();
|
||||
int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
|
||||
int perf_ctl_max = pstate_funcs.get_max();
|
||||
int max_freq = perf_ctl_max * perf_ctl_scaling;
|
||||
int scaling = INT_MAX;
|
||||
int freq;
|
||||
int scaling = cpu->pstate.scaling;
|
||||
|
||||
pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
|
||||
pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, perf_ctl_max);
|
||||
pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max());
|
||||
pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
|
||||
pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
|
||||
|
||||
pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
|
||||
pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
|
||||
|
||||
#ifdef CONFIG_ACPI
|
||||
if (IS_ENABLED(CONFIG_ACPI_CPPC_LIB)) {
|
||||
struct cppc_perf_caps caps;
|
||||
|
||||
if (intel_pstate_cppc_perf_caps(cpu, &caps)) {
|
||||
if (intel_pstate_cppc_perf_valid(caps.nominal_perf, &caps)) {
|
||||
pr_debug("CPU%d: Using CPPC nominal\n", cpu->cpu);
|
||||
|
||||
/*
|
||||
* If the CPPC nominal performance is valid, it
|
||||
* can be assumed to correspond to cpu_khz.
|
||||
*/
|
||||
if (caps.nominal_perf == perf_ctl_max_phys) {
|
||||
intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
|
||||
return;
|
||||
}
|
||||
scaling = DIV_ROUND_UP(cpu_khz, caps.nominal_perf);
|
||||
} else if (intel_pstate_cppc_perf_valid(caps.guaranteed_perf, &caps)) {
|
||||
pr_debug("CPU%d: Using CPPC guaranteed\n", cpu->cpu);
|
||||
|
||||
/*
|
||||
* If the CPPC guaranteed performance is valid,
|
||||
* it can be assumed to correspond to max_freq.
|
||||
*/
|
||||
if (caps.guaranteed_perf == perf_ctl_max) {
|
||||
intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
|
||||
return;
|
||||
}
|
||||
scaling = DIV_ROUND_UP(max_freq, caps.guaranteed_perf);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
/*
|
||||
* If using the CPPC data to compute the HWP-to-frequency scaling factor
|
||||
* doesn't work, use the HWP_CAP gauranteed perf for this purpose with
|
||||
* the assumption that it corresponds to max_freq.
|
||||
*/
|
||||
if (scaling > perf_ctl_scaling) {
|
||||
pr_debug("CPU%d: Using HWP_CAP guaranteed\n", cpu->cpu);
|
||||
|
||||
if (cpu->pstate.max_pstate == perf_ctl_max) {
|
||||
intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
|
||||
return;
|
||||
}
|
||||
scaling = DIV_ROUND_UP(max_freq, cpu->pstate.max_pstate);
|
||||
if (scaling > perf_ctl_scaling) {
|
||||
/*
|
||||
* This should not happen, because it would mean that
|
||||
* the number of HWP perf levels was less than the
|
||||
* number of P-states, so use the PERF_CTL scaling in
|
||||
* that case.
|
||||
*/
|
||||
pr_debug("CPU%d: scaling (%d) out of range\n", cpu->cpu,
|
||||
scaling);
|
||||
|
||||
intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
|
||||
return;
|
||||
}
|
||||
}
|
||||
pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
|
||||
|
||||
/*
|
||||
* If the product of the HWP performance scaling factor obtained above
|
||||
* and the HWP_CAP highest performance is greater than the maximum turbo
|
||||
* frequency corresponding to the pstate_funcs.get_turbo() return value,
|
||||
* the scaling factor is too high, so recompute it so that the HWP_CAP
|
||||
* highest performance corresponds to the maximum turbo frequency.
|
||||
* If the product of the HWP performance scaling factor and the HWP_CAP
|
||||
* highest performance is greater than the maximum turbo frequency
|
||||
* corresponding to the pstate_funcs.get_turbo() return value, the
|
||||
* scaling factor is too high, so recompute it to make the HWP_CAP
|
||||
* highest performance correspond to the maximum turbo frequency.
|
||||
*/
|
||||
if (turbo_freq < cpu->pstate.turbo_pstate * scaling) {
|
||||
pr_debug("CPU%d: scaling too high (%d)\n", cpu->cpu, scaling);
|
||||
|
||||
cpu->pstate.turbo_freq = turbo_freq;
|
||||
scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
|
||||
cpu->pstate.scaling = scaling;
|
||||
|
||||
pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
|
||||
cpu->cpu, scaling);
|
||||
}
|
||||
|
||||
cpu->pstate.scaling = scaling;
|
||||
|
||||
pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
|
||||
|
||||
cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
|
||||
perf_ctl_scaling);
|
||||
|
||||
freq = perf_ctl_max_phys * perf_ctl_scaling;
|
||||
cpu->pstate.max_pstate_physical = DIV_ROUND_UP(freq, scaling);
|
||||
cpu->pstate.max_pstate_physical =
|
||||
DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
|
||||
scaling);
|
||||
|
||||
cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
|
||||
/*
|
||||
@ -1861,6 +1782,38 @@ static int knl_get_turbo_pstate(void)
|
||||
return ret;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_ACPI_CPPC_LIB
|
||||
static u32 hybrid_ref_perf;
|
||||
|
||||
static int hybrid_get_cpu_scaling(int cpu)
|
||||
{
|
||||
return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
|
||||
intel_pstate_cppc_nominal(cpu));
|
||||
}
|
||||
|
||||
static void intel_pstate_cppc_set_cpu_scaling(void)
|
||||
{
|
||||
u32 min_nominal_perf = U32_MAX;
|
||||
int cpu;
|
||||
|
||||
for_each_present_cpu(cpu) {
|
||||
u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
|
||||
|
||||
if (nominal_perf && nominal_perf < min_nominal_perf)
|
||||
min_nominal_perf = nominal_perf;
|
||||
}
|
||||
|
||||
if (min_nominal_perf < U32_MAX) {
|
||||
hybrid_ref_perf = min_nominal_perf;
|
||||
pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
|
||||
}
|
||||
}
|
||||
#else
|
||||
static inline void intel_pstate_cppc_set_cpu_scaling(void)
|
||||
{
|
||||
}
|
||||
#endif /* CONFIG_ACPI_CPPC_LIB */
|
||||
|
||||
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
|
||||
{
|
||||
trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
|
||||
@ -1889,10 +1842,8 @@ static void intel_pstate_max_within_limits(struct cpudata *cpu)
|
||||
|
||||
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
|
||||
{
|
||||
bool hybrid_cpu = boot_cpu_has(X86_FEATURE_HYBRID_CPU);
|
||||
int perf_ctl_max_phys = pstate_funcs.get_max_physical();
|
||||
int perf_ctl_scaling = hybrid_cpu ? cpu_khz / perf_ctl_max_phys :
|
||||
pstate_funcs.get_scaling();
|
||||
int perf_ctl_scaling = pstate_funcs.get_scaling();
|
||||
|
||||
cpu->pstate.min_pstate = pstate_funcs.get_min();
|
||||
cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
|
||||
@ -1901,10 +1852,13 @@ static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
|
||||
if (hwp_active && !hwp_mode_bdw) {
|
||||
__intel_pstate_get_hwp_cap(cpu);
|
||||
|
||||
if (hybrid_cpu)
|
||||
intel_pstate_hybrid_hwp_calibrate(cpu);
|
||||
else
|
||||
if (pstate_funcs.get_cpu_scaling) {
|
||||
cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
|
||||
if (cpu->pstate.scaling != perf_ctl_scaling)
|
||||
intel_pstate_hybrid_hwp_adjust(cpu);
|
||||
} else {
|
||||
cpu->pstate.scaling = perf_ctl_scaling;
|
||||
}
|
||||
} else {
|
||||
cpu->pstate.scaling = perf_ctl_scaling;
|
||||
cpu->pstate.max_pstate = pstate_funcs.get_max();
|
||||
@ -3276,6 +3230,9 @@ static int __init intel_pstate_init(void)
|
||||
if (!default_driver)
|
||||
default_driver = &intel_pstate;
|
||||
|
||||
if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
|
||||
intel_pstate_cppc_set_cpu_scaling();
|
||||
|
||||
goto hwp_cpu_matched;
|
||||
}
|
||||
} else {
|
||||
|
@ -135,6 +135,7 @@ struct cppc_cpudata {
|
||||
|
||||
#ifdef CONFIG_ACPI_CPPC_LIB
|
||||
extern int cppc_get_desired_perf(int cpunum, u64 *desired_perf);
|
||||
extern int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf);
|
||||
extern int cppc_get_perf_ctrs(int cpu, struct cppc_perf_fb_ctrs *perf_fb_ctrs);
|
||||
extern int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls);
|
||||
extern int cppc_get_perf_caps(int cpu, struct cppc_perf_caps *caps);
|
||||
@ -149,6 +150,10 @@ static inline int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
|
||||
{
|
||||
return -ENOTSUPP;
|
||||
}
|
||||
static inline int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
|
||||
{
|
||||
return -ENOTSUPP;
|
||||
}
|
||||
static inline int cppc_get_perf_ctrs(int cpu, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
|
||||
{
|
||||
return -ENOTSUPP;
|
||||
|
@ -11,7 +11,7 @@
|
||||
#include <linux/types.h>
|
||||
|
||||
/**
|
||||
* em_perf_state - Performance state of a performance domain
|
||||
* struct em_perf_state - Performance state of a performance domain
|
||||
* @frequency: The frequency in KHz, for consistency with CPUFreq
|
||||
* @power: The power consumed at this level (by 1 CPU or by a registered
|
||||
* device). It can be a total power: static and dynamic.
|
||||
@ -25,7 +25,7 @@ struct em_perf_state {
|
||||
};
|
||||
|
||||
/**
|
||||
* em_perf_domain - Performance domain
|
||||
* struct em_perf_domain - Performance domain
|
||||
* @table: List of performance states, in ascending order
|
||||
* @nr_perf_states: Number of performance states
|
||||
* @milliwatts: Flag indicating the power values are in milli-Watts
|
||||
@ -103,12 +103,12 @@ void em_dev_unregister_perf_domain(struct device *dev);
|
||||
|
||||
/**
|
||||
* em_cpu_energy() - Estimates the energy consumed by the CPUs of a
|
||||
performance domain
|
||||
* performance domain
|
||||
* @pd : performance domain for which energy has to be estimated
|
||||
* @max_util : highest utilization among CPUs of the domain
|
||||
* @sum_util : sum of the utilization of all CPUs in the domain
|
||||
* @allowed_cpu_cap : maximum allowed CPU capacity for the @pd, which
|
||||
might reflect reduced frequency (due to thermal)
|
||||
* might reflect reduced frequency (due to thermal)
|
||||
*
|
||||
* This function must be used only for CPU devices. There is no validation,
|
||||
* i.e. if the EM is a CPU type and has cpumask allocated. It is called from
|
||||
|
Loading…
Reference in New Issue
Block a user