arm64: Introduce execute-only page access permissions

The ARMv8 architecture allows execute-only user permissions by clearing
the PTE_UXN and PTE_USER bits. The kernel, however, can still access
such page, so execute-only page permission does not protect against
read(2)/write(2) etc. accesses. Systems requiring such protection must
implement/enable features like SECCOMP.

This patch changes the arm64 __P100 and __S100 protection_map[] macros
to the new __PAGE_EXECONLY attributes. A side effect is that
pte_valid_user() no longer triggers for __PAGE_EXECONLY since PTE_USER
isn't set. To work around this, the check is done on the PTE_NG bit via
the pte_valid_ng() macro. VM_READ is also checked now for page faults.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This commit is contained in:
Catalin Marinas 2014-04-03 16:17:32 +01:00
parent 15af1942dd
commit bc07c2c6e9
2 changed files with 8 additions and 8 deletions

View File

@ -90,6 +90,7 @@ extern pgprot_t pgprot_default;
#define __PAGE_COPY_EXEC __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN)
#define __PAGE_READONLY __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_UXN)
#define __PAGE_READONLY_EXEC __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN)
#define __PAGE_EXECONLY __pgprot(_PAGE_DEFAULT | PTE_NG | PTE_PXN)
#endif /* __ASSEMBLY__ */
@ -97,7 +98,7 @@ extern pgprot_t pgprot_default;
#define __P001 __PAGE_READONLY
#define __P010 __PAGE_COPY
#define __P011 __PAGE_COPY
#define __P100 __PAGE_READONLY_EXEC
#define __P100 __PAGE_EXECONLY
#define __P101 __PAGE_READONLY_EXEC
#define __P110 __PAGE_COPY_EXEC
#define __P111 __PAGE_COPY_EXEC
@ -106,7 +107,7 @@ extern pgprot_t pgprot_default;
#define __S001 __PAGE_READONLY
#define __S010 __PAGE_SHARED
#define __S011 __PAGE_SHARED
#define __S100 __PAGE_READONLY_EXEC
#define __S100 __PAGE_EXECONLY
#define __S101 __PAGE_READONLY_EXEC
#define __S110 __PAGE_SHARED_EXEC
#define __S111 __PAGE_SHARED_EXEC
@ -143,8 +144,8 @@ extern struct page *empty_zero_page;
#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
#define pte_exec(pte) (!(pte_val(pte) & PTE_UXN))
#define pte_valid_user(pte) \
((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
#define pte_valid_ng(pte) \
((pte_val(pte) & (PTE_VALID | PTE_NG)) == (PTE_VALID | PTE_NG))
static inline pte_t pte_wrprotect(pte_t pte)
{
@ -198,7 +199,7 @@ extern void __sync_icache_dcache(pte_t pteval, unsigned long addr);
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
if (pte_valid_user(pte)) {
if (pte_valid_ng(pte)) {
if (!pte_special(pte) && pte_exec(pte))
__sync_icache_dcache(pte, addr);
if (pte_dirty(pte) && pte_write(pte))

View File

@ -173,8 +173,7 @@ static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
good_area:
/*
* Check that the permissions on the VMA allow for the fault which
* occurred. If we encountered a write or exec fault, we must have
* appropriate permissions, otherwise we allow any permission.
* occurred.
*/
if (!(vma->vm_flags & vm_flags)) {
fault = VM_FAULT_BADACCESS;
@ -196,7 +195,7 @@ static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
struct task_struct *tsk;
struct mm_struct *mm;
int fault, sig, code;
unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
unsigned long vm_flags = VM_READ | VM_WRITE;
unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
tsk = current;