printk: Wait for all reserved records with pr_flush()

Currently pr_flush() will only wait for records that were
available to readers at the time of the call (using
prb_next_seq()). But there may be more records (non-finalized)
that have following finalized records. pr_flush() should wait
for these to print as well. Particularly because any trailing
finalized records may be the messages that the calling context
wants to ensure are printed.

Add a new ringbuffer function prb_next_reserve_seq() to return
the sequence number following the most recently reserved record.
This guarantees that pr_flush() will wait until all current
printk() messages (completed or in progress) have been printed.

Fixes: 3b604ca812 ("printk: add pr_flush()")
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20240207134103.1357162-10-john.ogness@linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
This commit is contained in:
John Ogness 2024-02-07 14:46:58 +01:06 committed by Petr Mladek
parent 584528d621
commit ac7d7844c6
3 changed files with 107 additions and 1 deletions

View File

@ -3755,7 +3755,7 @@ static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progre
might_sleep();
seq = prb_next_seq(prb);
seq = prb_next_reserve_seq(prb);
/* Flush the consoles so that records up to @seq are printed. */
console_lock();

View File

@ -1986,6 +1986,111 @@ u64 prb_first_seq(struct printk_ringbuffer *rb)
return seq;
}
/**
* prb_next_reserve_seq() - Get the sequence number after the most recently
* reserved record.
*
* @rb: The ringbuffer to get the sequence number from.
*
* This is the public function available to readers to see what sequence
* number will be assigned to the next reserved record.
*
* Note that depending on the situation, this value can be equal to or
* higher than the sequence number returned by prb_next_seq().
*
* Context: Any context.
* Return: The sequence number that will be assigned to the next record
* reserved.
*/
u64 prb_next_reserve_seq(struct printk_ringbuffer *rb)
{
struct prb_desc_ring *desc_ring = &rb->desc_ring;
unsigned long last_finalized_id;
atomic_long_t *state_var;
u64 last_finalized_seq;
unsigned long head_id;
struct prb_desc desc;
unsigned long diff;
struct prb_desc *d;
int err;
/*
* It may not be possible to read a sequence number for @head_id.
* So the ID of @last_finailzed_seq is used to calculate what the
* sequence number of @head_id will be.
*/
try_again:
last_finalized_seq = desc_last_finalized_seq(rb);
/*
* @head_id is loaded after @last_finalized_seq to ensure that
* it points to the record with @last_finalized_seq or newer.
*
* Memory barrier involvement:
*
* If desc_last_finalized_seq:A reads from
* desc_update_last_finalized:A, then
* prb_next_reserve_seq:A reads from desc_reserve:D.
*
* Relies on:
*
* RELEASE from desc_reserve:D to desc_update_last_finalized:A
* matching
* ACQUIRE from desc_last_finalized_seq:A to prb_next_reserve_seq:A
*
* Note: desc_reserve:D and desc_update_last_finalized:A can be
* different CPUs. However, the desc_update_last_finalized:A CPU
* (which performs the release) must have previously seen
* desc_read:C, which implies desc_reserve:D can be seen.
*/
head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_next_reserve_seq:A) */
d = to_desc(desc_ring, last_finalized_seq);
state_var = &d->state_var;
/* Extract the ID, used to specify the descriptor to read. */
last_finalized_id = DESC_ID(atomic_long_read(state_var));
/* Ensure @last_finalized_id is correct. */
err = desc_read_finalized_seq(desc_ring, last_finalized_id, last_finalized_seq, &desc);
if (err == -EINVAL) {
if (last_finalized_seq == 0) {
/*
* No record has been finalized or even reserved yet.
*
* The @head_id is initialized such that the first
* increment will yield the first record (seq=0).
* Handle it separately to avoid a negative @diff
* below.
*/
if (head_id == DESC0_ID(desc_ring->count_bits))
return 0;
/*
* One or more descriptors are already reserved. Use
* the descriptor ID of the first one (@seq=0) for
* the @diff below.
*/
last_finalized_id = DESC0_ID(desc_ring->count_bits) + 1;
} else {
/* Record must have been overwritten. Try again. */
goto try_again;
}
}
/* Diff of known descriptor IDs to compute related sequence numbers. */
diff = head_id - last_finalized_id;
/*
* @head_id points to the most recently reserved record, but this
* function returns the sequence number that will be assigned to the
* next (not yet reserved) record. Thus +1 is needed.
*/
return (last_finalized_seq + diff + 1);
}
/*
* Non-blocking read of a record.
*

View File

@ -395,6 +395,7 @@ bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
u64 prb_first_seq(struct printk_ringbuffer *rb);
u64 prb_first_valid_seq(struct printk_ringbuffer *rb);
u64 prb_next_seq(struct printk_ringbuffer *rb);
u64 prb_next_reserve_seq(struct printk_ringbuffer *rb);
#ifdef CONFIG_64BIT