Merge branch 'spi-next' from git://git.kernel.org/pub/scm/linux/kernel/git/broonie/misc.git

Pull in the changes Mark has queued up for SPI
This commit is contained in:
Grant Likely 2012-12-06 13:58:31 +00:00
commit a34fc82e23
15 changed files with 2256 additions and 77 deletions

View File

@ -0,0 +1,26 @@
NVIDIA Tegra20 SFLASH controller.
Required properties:
- compatible : should be "nvidia,tegra20-sflash".
- reg: Should contain SFLASH registers location and length.
- interrupts: Should contain SFLASH interrupts.
- nvidia,dma-request-selector : The Tegra DMA controller's phandle and
request selector for this SFLASH controller.
Recommended properties:
- spi-max-frequency: Definition as per
Documentation/devicetree/bindings/spi/spi-bus.txt
Example:
spi@7000d600 {
compatible = "nvidia,tegra20-sflash";
reg = <0x7000c380 0x80>;
interrupts = <0 39 0x04>;
nvidia,dma-request-selector = <&apbdma 16>;
spi-max-frequency = <25000000>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};

View File

@ -0,0 +1,26 @@
NVIDIA Tegra20/Tegra30 SLINK controller.
Required properties:
- compatible : should be "nvidia,tegra20-slink", "nvidia,tegra30-slink".
- reg: Should contain SLINK registers location and length.
- interrupts: Should contain SLINK interrupts.
- nvidia,dma-request-selector : The Tegra DMA controller's phandle and
request selector for this SLINK controller.
Recommended properties:
- spi-max-frequency: Definition as per
Documentation/devicetree/bindings/spi/spi-bus.txt
Example:
slink@7000d600 {
compatible = "nvidia,tegra20-slink";
reg = <0x7000d600 0x200>;
interrupts = <0 82 0x04>;
nvidia,dma-request-selector = <&apbdma 16>;
spi-max-frequency = <25000000>;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};

View File

@ -6,7 +6,9 @@ Required properties:
- "ti,omap4-spi" for OMAP4+.
- ti,spi-num-cs : Number of chipselect supported by the instance.
- ti,hwmods: Name of the hwmod associated to the McSPI
- ti,pindir-d0-out-d1-in: Select the D0 pin as output and D1 as
input. The default is D0 as input and
D1 as output.
Example:

View File

@ -392,6 +392,20 @@ config SPI_MXS
help
SPI driver for Freescale MXS devices.
config SPI_TEGRA20_SFLASH
tristate "Nvidia Tegra20 Serial flash Controller"
depends on ARCH_TEGRA
help
SPI driver for Nvidia Tegra20 Serial flash Controller interface.
The main usecase of this controller is to use spi flash as boot
device.
config SPI_TEGRA20_SLINK
tristate "Nvidia Tegra20/Tegra30 SLINK Controller"
depends on ARCH_TEGRA && TEGRA20_APB_DMA
help
SPI driver for Nvidia Tegra20/Tegra30 SLINK Controller interface.
config SPI_TI_SSP
tristate "TI Sequencer Serial Port - SPI Support"
depends on MFD_TI_SSP

View File

@ -61,10 +61,11 @@ obj-$(CONFIG_SPI_SH_MSIOF) += spi-sh-msiof.o
obj-$(CONFIG_SPI_SH_SCI) += spi-sh-sci.o
obj-$(CONFIG_SPI_SIRF) += spi-sirf.o
obj-$(CONFIG_SPI_STMP3XXX) += spi-stmp.o
obj-$(CONFIG_SPI_TEGRA20_SFLASH) += spi-tegra20-sflash.o
obj-$(CONFIG_SPI_TEGRA20_SLINK) += spi-tegra20-slink.o
obj-$(CONFIG_SPI_TI_SSP) += spi-ti-ssp.o
obj-$(CONFIG_SPI_TLE62X0) += spi-tle62x0.o
obj-$(CONFIG_SPI_TOPCLIFF_PCH) += spi-topcliff-pch.o
obj-$(CONFIG_SPI_TXX9) += spi-txx9.o
obj-$(CONFIG_SPI_XCOMM) += spi-xcomm.o
obj-$(CONFIG_SPI_XILINX) += spi-xilinx.o

View File

@ -36,7 +36,6 @@
#include <bcm63xx_dev_spi.h>
#define PFX KBUILD_MODNAME
#define DRV_VER "0.1.2"
struct bcm63xx_spi {
struct completion done;
@ -170,13 +169,6 @@ static int bcm63xx_spi_setup(struct spi_device *spi)
return -EINVAL;
}
ret = bcm63xx_spi_check_transfer(spi, NULL);
if (ret < 0) {
dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
spi->mode & ~MODEBITS);
return ret;
}
dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u nsec/bit\n",
__func__, spi->mode & MODEBITS, spi->bits_per_word, 0);
@ -441,8 +433,8 @@ static int __devinit bcm63xx_spi_probe(struct platform_device *pdev)
goto out_clk_disable;
}
dev_info(dev, "at 0x%08x (irq %d, FIFOs size %d) v%s\n",
r->start, irq, bs->fifo_size, DRV_VER);
dev_info(dev, "at 0x%08x (irq %d, FIFOs size %d)\n",
r->start, irq, bs->fifo_size);
return 0;
@ -485,6 +477,8 @@ static int bcm63xx_spi_suspend(struct device *dev)
platform_get_drvdata(to_platform_device(dev));
struct bcm63xx_spi *bs = spi_master_get_devdata(master);
spi_master_suspend(master);
clk_disable(bs->clk);
return 0;
@ -498,6 +492,8 @@ static int bcm63xx_spi_resume(struct device *dev)
clk_enable(bs->clk);
spi_master_resume(master);
return 0;
}

View File

@ -129,6 +129,7 @@ struct omap2_mcspi {
struct omap2_mcspi_dma *dma_channels;
struct device *dev;
struct omap2_mcspi_regs ctx;
unsigned int pin_dir:1;
};
struct omap2_mcspi_cs {
@ -322,19 +323,11 @@ static void omap2_mcspi_tx_dma(struct spi_device *spi,
struct omap2_mcspi *mcspi;
struct omap2_mcspi_dma *mcspi_dma;
unsigned int count;
u8 * rx;
const u8 * tx;
void __iomem *chstat_reg;
struct omap2_mcspi_cs *cs = spi->controller_state;
mcspi = spi_master_get_devdata(spi->master);
mcspi_dma = &mcspi->dma_channels[spi->chip_select];
count = xfer->len;
rx = xfer->rx_buf;
tx = xfer->tx_buf;
chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
if (mcspi_dma->dma_tx) {
struct dma_async_tx_descriptor *tx;
struct scatterlist sg;
@ -358,19 +351,6 @@ static void omap2_mcspi_tx_dma(struct spi_device *spi,
dma_async_issue_pending(mcspi_dma->dma_tx);
omap2_mcspi_set_dma_req(spi, 0, 1);
wait_for_completion(&mcspi_dma->dma_tx_completion);
dma_unmap_single(mcspi->dev, xfer->tx_dma, count,
DMA_TO_DEVICE);
/* for TX_ONLY mode, be sure all words have shifted out */
if (rx == NULL) {
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_TXS) < 0)
dev_err(&spi->dev, "TXS timed out\n");
else if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_EOT) < 0)
dev_err(&spi->dev, "EOT timed out\n");
}
}
static unsigned
@ -491,6 +471,7 @@ omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
struct dma_slave_config cfg;
enum dma_slave_buswidth width;
unsigned es;
void __iomem *chstat_reg;
mcspi = spi_master_get_devdata(spi->master);
mcspi_dma = &mcspi->dma_channels[spi->chip_select];
@ -525,8 +506,24 @@ omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
omap2_mcspi_tx_dma(spi, xfer, cfg);
if (rx != NULL)
return omap2_mcspi_rx_dma(spi, xfer, cfg, es);
count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
if (tx != NULL) {
chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
wait_for_completion(&mcspi_dma->dma_tx_completion);
dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
DMA_TO_DEVICE);
/* for TX_ONLY mode, be sure all words have shifted out */
if (rx == NULL) {
if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_TXS) < 0)
dev_err(&spi->dev, "TXS timed out\n");
else if (mcspi_wait_for_reg_bit(chstat_reg,
OMAP2_MCSPI_CHSTAT_EOT) < 0)
dev_err(&spi->dev, "EOT timed out\n");
}
}
return count;
}
@ -764,8 +761,15 @@ static int omap2_mcspi_setup_transfer(struct spi_device *spi,
/* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
* REVISIT: this controller could support SPI_3WIRE mode.
*/
l &= ~(OMAP2_MCSPI_CHCONF_IS|OMAP2_MCSPI_CHCONF_DPE1);
l |= OMAP2_MCSPI_CHCONF_DPE0;
if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
l &= ~OMAP2_MCSPI_CHCONF_IS;
l &= ~OMAP2_MCSPI_CHCONF_DPE1;
l |= OMAP2_MCSPI_CHCONF_DPE0;
} else {
l |= OMAP2_MCSPI_CHCONF_IS;
l |= OMAP2_MCSPI_CHCONF_DPE1;
l &= ~OMAP2_MCSPI_CHCONF_DPE0;
}
/* wordlength */
l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
@ -1166,6 +1170,11 @@ static int __devinit omap2_mcspi_probe(struct platform_device *pdev)
master->cleanup = omap2_mcspi_cleanup;
master->dev.of_node = node;
dev_set_drvdata(&pdev->dev, master);
mcspi = spi_master_get_devdata(master);
mcspi->master = master;
match = of_match_device(omap_mcspi_of_match, &pdev->dev);
if (match) {
u32 num_cs = 1; /* default number of chipselect */
@ -1174,19 +1183,17 @@ static int __devinit omap2_mcspi_probe(struct platform_device *pdev)
of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
master->num_chipselect = num_cs;
master->bus_num = bus_num++;
if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
} else {
pdata = pdev->dev.platform_data;
master->num_chipselect = pdata->num_cs;
if (pdev->id != -1)
master->bus_num = pdev->id;
mcspi->pin_dir = pdata->pin_dir;
}
regs_offset = pdata->regs_offset;
dev_set_drvdata(&pdev->dev, master);
mcspi = spi_master_get_devdata(master);
mcspi->master = master;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL) {
status = -ENODEV;

View File

@ -371,6 +371,7 @@ struct pl022 {
/* Two optional pin states - default & sleep */
struct pinctrl *pinctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_idle;
struct pinctrl_state *pins_sleep;
struct spi_master *master;
struct pl022_ssp_controller *master_info;
@ -2116,6 +2117,11 @@ pl022_probe(struct amba_device *adev, const struct amba_id *id)
} else
dev_err(dev, "could not get default pinstate\n");
pl022->pins_idle = pinctrl_lookup_state(pl022->pinctrl,
PINCTRL_STATE_IDLE);
if (IS_ERR(pl022->pins_idle))
dev_dbg(dev, "could not get idle pinstate\n");
pl022->pins_sleep = pinctrl_lookup_state(pl022->pinctrl,
PINCTRL_STATE_SLEEP);
if (IS_ERR(pl022->pins_sleep))
@ -2246,10 +2252,9 @@ pl022_probe(struct amba_device *adev, const struct amba_id *id)
pm_runtime_set_autosuspend_delay(dev,
platform_info->autosuspend_delay);
pm_runtime_use_autosuspend(dev);
pm_runtime_put_autosuspend(dev);
} else {
pm_runtime_put(dev);
}
pm_runtime_put(dev);
return 0;
err_spi_register:
@ -2303,35 +2308,47 @@ pl022_remove(struct amba_device *adev)
* the runtime counterparts to handle external resources like
* clocks, pins and regulators when going to sleep.
*/
static void pl022_suspend_resources(struct pl022 *pl022)
static void pl022_suspend_resources(struct pl022 *pl022, bool runtime)
{
int ret;
struct pinctrl_state *pins_state;
clk_disable(pl022->clk);
pins_state = runtime ? pl022->pins_idle : pl022->pins_sleep;
/* Optionally let pins go into sleep states */
if (!IS_ERR(pl022->pins_sleep)) {
ret = pinctrl_select_state(pl022->pinctrl,
pl022->pins_sleep);
if (!IS_ERR(pins_state)) {
ret = pinctrl_select_state(pl022->pinctrl, pins_state);
if (ret)
dev_err(&pl022->adev->dev,
"could not set pins to sleep state\n");
dev_err(&pl022->adev->dev, "could not set %s pins\n",
runtime ? "idle" : "sleep");
}
}
static void pl022_resume_resources(struct pl022 *pl022)
static void pl022_resume_resources(struct pl022 *pl022, bool runtime)
{
int ret;
/* Optionaly enable pins to be muxed in and configured */
/* First go to the default state */
if (!IS_ERR(pl022->pins_default)) {
ret = pinctrl_select_state(pl022->pinctrl,
pl022->pins_default);
ret = pinctrl_select_state(pl022->pinctrl, pl022->pins_default);
if (ret)
dev_err(&pl022->adev->dev,
"could not set default pins\n");
}
if (!runtime) {
/* Then let's idle the pins until the next transfer happens */
if (!IS_ERR(pl022->pins_idle)) {
ret = pinctrl_select_state(pl022->pinctrl,
pl022->pins_idle);
if (ret)
dev_err(&pl022->adev->dev,
"could not set idle pins\n");
}
}
clk_enable(pl022->clk);
}
#endif
@ -2347,7 +2364,9 @@ static int pl022_suspend(struct device *dev)
dev_warn(dev, "cannot suspend master\n");
return ret;
}
pl022_suspend_resources(pl022);
pm_runtime_get_sync(dev);
pl022_suspend_resources(pl022, false);
dev_dbg(dev, "suspended\n");
return 0;
@ -2358,7 +2377,8 @@ static int pl022_resume(struct device *dev)
struct pl022 *pl022 = dev_get_drvdata(dev);
int ret;
pl022_resume_resources(pl022);
pl022_resume_resources(pl022, false);
pm_runtime_put(dev);
/* Start the queue running */
ret = spi_master_resume(pl022->master);
@ -2376,7 +2396,7 @@ static int pl022_runtime_suspend(struct device *dev)
{
struct pl022 *pl022 = dev_get_drvdata(dev);
pl022_suspend_resources(pl022);
pl022_suspend_resources(pl022, true);
return 0;
}
@ -2384,7 +2404,7 @@ static int pl022_runtime_resume(struct device *dev)
{
struct pl022 *pl022 = dev_get_drvdata(dev);
pl022_resume_resources(pl022);
pl022_resume_resources(pl022, true);
return 0;
}
#endif

View File

@ -516,7 +516,7 @@ static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
/* Disable Clock */
if (sdd->port_conf->clk_from_cmu) {
clk_disable(sdd->src_clk);
clk_disable_unprepare(sdd->src_clk);
} else {
val = readl(regs + S3C64XX_SPI_CLK_CFG);
val &= ~S3C64XX_SPI_ENCLK_ENABLE;
@ -564,7 +564,7 @@ static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
/* There is half-multiplier before the SPI */
clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
/* Enable Clock */
clk_enable(sdd->src_clk);
clk_prepare_enable(sdd->src_clk);
} else {
/* Configure Clock */
val = readl(regs + S3C64XX_SPI_CLK_CFG);
@ -1112,7 +1112,7 @@ static int s3c64xx_spi_parse_dt_gpio(struct s3c64xx_spi_driver_data *sdd)
dev_err(dev, "invalid gpio[%d]: %d\n", idx, gpio);
goto free_gpio;
}
sdd->gpios[idx] = gpio;
ret = gpio_request(gpio, "spi-bus");
if (ret) {
dev_err(dev, "gpio [%d] request failed: %d\n",
@ -1302,7 +1302,7 @@ static int __init s3c64xx_spi_probe(struct platform_device *pdev)
goto err3;
}
if (clk_enable(sdd->clk)) {
if (clk_prepare_enable(sdd->clk)) {
dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
ret = -EBUSY;
goto err4;
@ -1317,7 +1317,7 @@ static int __init s3c64xx_spi_probe(struct platform_device *pdev)
goto err5;
}
if (clk_enable(sdd->src_clk)) {
if (clk_prepare_enable(sdd->src_clk)) {
dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
ret = -EBUSY;
goto err6;
@ -1361,11 +1361,11 @@ static int __init s3c64xx_spi_probe(struct platform_device *pdev)
err8:
free_irq(irq, sdd);
err7:
clk_disable(sdd->src_clk);
clk_disable_unprepare(sdd->src_clk);
err6:
clk_put(sdd->src_clk);
err5:
clk_disable(sdd->clk);
clk_disable_unprepare(sdd->clk);
err4:
clk_put(sdd->clk);
err3:
@ -1393,10 +1393,10 @@ static int s3c64xx_spi_remove(struct platform_device *pdev)
free_irq(platform_get_irq(pdev, 0), sdd);
clk_disable(sdd->src_clk);
clk_disable_unprepare(sdd->src_clk);
clk_put(sdd->src_clk);
clk_disable(sdd->clk);
clk_disable_unprepare(sdd->clk);
clk_put(sdd->clk);
if (!sdd->cntrlr_info->cfg_gpio && pdev->dev.of_node)
@ -1417,8 +1417,8 @@ static int s3c64xx_spi_suspend(struct device *dev)
spi_master_suspend(master);
/* Disable the clock */
clk_disable(sdd->src_clk);
clk_disable(sdd->clk);
clk_disable_unprepare(sdd->src_clk);
clk_disable_unprepare(sdd->clk);
if (!sdd->cntrlr_info->cfg_gpio && dev->of_node)
s3c64xx_spi_dt_gpio_free(sdd);
@ -1440,8 +1440,8 @@ static int s3c64xx_spi_resume(struct device *dev)
sci->cfg_gpio();
/* Enable the clock */
clk_enable(sdd->src_clk);
clk_enable(sdd->clk);
clk_prepare_enable(sdd->src_clk);
clk_prepare_enable(sdd->clk);
s3c64xx_spi_hwinit(sdd, sdd->port_id);
@ -1457,8 +1457,8 @@ static int s3c64xx_spi_runtime_suspend(struct device *dev)
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
clk_disable(sdd->clk);
clk_disable(sdd->src_clk);
clk_disable_unprepare(sdd->clk);
clk_disable_unprepare(sdd->src_clk);
return 0;
}
@ -1468,8 +1468,8 @@ static int s3c64xx_spi_runtime_resume(struct device *dev)
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
clk_enable(sdd->src_clk);
clk_enable(sdd->clk);
clk_prepare_enable(sdd->src_clk);
clk_prepare_enable(sdd->clk);
return 0;
}

View File

@ -0,0 +1,665 @@
/*
* SPI driver for Nvidia's Tegra20 Serial Flash Controller.
*
* Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved.
*
* Author: Laxman Dewangan <ldewangan@nvidia.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-tegra.h>
#include <mach/clk.h>
#define SPI_COMMAND 0x000
#define SPI_GO BIT(30)
#define SPI_M_S BIT(28)
#define SPI_ACTIVE_SCLK_MASK (0x3 << 26)
#define SPI_ACTIVE_SCLK_DRIVE_LOW (0 << 26)
#define SPI_ACTIVE_SCLK_DRIVE_HIGH (1 << 26)
#define SPI_ACTIVE_SCLK_PULL_LOW (2 << 26)
#define SPI_ACTIVE_SCLK_PULL_HIGH (3 << 26)
#define SPI_CK_SDA_FALLING (1 << 21)
#define SPI_CK_SDA_RISING (0 << 21)
#define SPI_CK_SDA_MASK (1 << 21)
#define SPI_ACTIVE_SDA (0x3 << 18)
#define SPI_ACTIVE_SDA_DRIVE_LOW (0 << 18)
#define SPI_ACTIVE_SDA_DRIVE_HIGH (1 << 18)
#define SPI_ACTIVE_SDA_PULL_LOW (2 << 18)
#define SPI_ACTIVE_SDA_PULL_HIGH (3 << 18)
#define SPI_CS_POL_INVERT BIT(16)
#define SPI_TX_EN BIT(15)
#define SPI_RX_EN BIT(14)
#define SPI_CS_VAL_HIGH BIT(13)
#define SPI_CS_VAL_LOW 0x0
#define SPI_CS_SW BIT(12)
#define SPI_CS_HW 0x0
#define SPI_CS_DELAY_MASK (7 << 9)
#define SPI_CS3_EN BIT(8)
#define SPI_CS2_EN BIT(7)
#define SPI_CS1_EN BIT(6)
#define SPI_CS0_EN BIT(5)
#define SPI_CS_MASK (SPI_CS3_EN | SPI_CS2_EN | \
SPI_CS1_EN | SPI_CS0_EN)
#define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
#define SPI_MODES (SPI_ACTIVE_SCLK_MASK | SPI_CK_SDA_MASK)
#define SPI_STATUS 0x004
#define SPI_BSY BIT(31)
#define SPI_RDY BIT(30)
#define SPI_TXF_FLUSH BIT(29)
#define SPI_RXF_FLUSH BIT(28)
#define SPI_RX_UNF BIT(27)
#define SPI_TX_OVF BIT(26)
#define SPI_RXF_EMPTY BIT(25)
#define SPI_RXF_FULL BIT(24)
#define SPI_TXF_EMPTY BIT(23)
#define SPI_TXF_FULL BIT(22)
#define SPI_BLK_CNT(count) (((count) & 0xffff) + 1)
#define SPI_FIFO_ERROR (SPI_RX_UNF | SPI_TX_OVF)
#define SPI_FIFO_EMPTY (SPI_TX_EMPTY | SPI_RX_EMPTY)
#define SPI_RX_CMP 0x8
#define SPI_DMA_CTL 0x0C
#define SPI_DMA_EN BIT(31)
#define SPI_IE_RXC BIT(27)
#define SPI_IE_TXC BIT(26)
#define SPI_PACKED BIT(20)
#define SPI_RX_TRIG_MASK (0x3 << 18)
#define SPI_RX_TRIG_1W (0x0 << 18)
#define SPI_RX_TRIG_4W (0x1 << 18)
#define SPI_TX_TRIG_MASK (0x3 << 16)
#define SPI_TX_TRIG_1W (0x0 << 16)
#define SPI_TX_TRIG_4W (0x1 << 16)
#define SPI_DMA_BLK_COUNT(count) (((count) - 1) & 0xFFFF);
#define SPI_TX_FIFO 0x10
#define SPI_RX_FIFO 0x20
#define DATA_DIR_TX (1 << 0)
#define DATA_DIR_RX (1 << 1)
#define MAX_CHIP_SELECT 4
#define SPI_FIFO_DEPTH 4
#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
struct tegra_sflash_data {
struct device *dev;
struct spi_master *master;
spinlock_t lock;
struct clk *clk;
void __iomem *base;
unsigned irq;
u32 spi_max_frequency;
u32 cur_speed;
struct spi_device *cur_spi;
unsigned cur_pos;
unsigned cur_len;
unsigned bytes_per_word;
unsigned cur_direction;
unsigned curr_xfer_words;
unsigned cur_rx_pos;
unsigned cur_tx_pos;
u32 tx_status;
u32 rx_status;
u32 status_reg;
u32 def_command_reg;
u32 command_reg;
u32 dma_control_reg;
struct completion xfer_completion;
struct spi_transfer *curr_xfer;
};
static int tegra_sflash_runtime_suspend(struct device *dev);
static int tegra_sflash_runtime_resume(struct device *dev);
static inline unsigned long tegra_sflash_readl(struct tegra_sflash_data *tsd,
unsigned long reg)
{
return readl(tsd->base + reg);
}
static inline void tegra_sflash_writel(struct tegra_sflash_data *tsd,
unsigned long val, unsigned long reg)
{
writel(val, tsd->base + reg);
}
static void tegra_sflash_clear_status(struct tegra_sflash_data *tsd)
{
/* Write 1 to clear status register */
tegra_sflash_writel(tsd, SPI_RDY | SPI_FIFO_ERROR, SPI_STATUS);
}
static unsigned tegra_sflash_calculate_curr_xfer_param(
struct spi_device *spi, struct tegra_sflash_data *tsd,
struct spi_transfer *t)
{
unsigned remain_len = t->len - tsd->cur_pos;
unsigned max_word;
tsd->bytes_per_word = (t->bits_per_word - 1) / 8 + 1;
max_word = remain_len / tsd->bytes_per_word;
if (max_word > SPI_FIFO_DEPTH)
max_word = SPI_FIFO_DEPTH;
tsd->curr_xfer_words = max_word;
return max_word;
}
static unsigned tegra_sflash_fill_tx_fifo_from_client_txbuf(
struct tegra_sflash_data *tsd, struct spi_transfer *t)
{
unsigned nbytes;
unsigned long status;
unsigned max_n_32bit = tsd->curr_xfer_words;
u8 *tx_buf = (u8 *)t->tx_buf + tsd->cur_tx_pos;
if (max_n_32bit > SPI_FIFO_DEPTH)
max_n_32bit = SPI_FIFO_DEPTH;
nbytes = max_n_32bit * tsd->bytes_per_word;
status = tegra_sflash_readl(tsd, SPI_STATUS);
while (!(status & SPI_TXF_FULL)) {
int i;
unsigned int x = 0;
for (i = 0; nbytes && (i < tsd->bytes_per_word);
i++, nbytes--)
x |= ((*tx_buf++) << i*8);
tegra_sflash_writel(tsd, x, SPI_TX_FIFO);
if (!nbytes)
break;
status = tegra_sflash_readl(tsd, SPI_STATUS);
}
tsd->cur_tx_pos += max_n_32bit * tsd->bytes_per_word;
return max_n_32bit;
}
static int tegra_sflash_read_rx_fifo_to_client_rxbuf(
struct tegra_sflash_data *tsd, struct spi_transfer *t)
{
unsigned long status;
unsigned int read_words = 0;
u8 *rx_buf = (u8 *)t->rx_buf + tsd->cur_rx_pos;
status = tegra_sflash_readl(tsd, SPI_STATUS);
while (!(status & SPI_RXF_EMPTY)) {
int i;
unsigned long x;
x = tegra_sflash_readl(tsd, SPI_RX_FIFO);
for (i = 0; (i < tsd->bytes_per_word); i++)
*rx_buf++ = (x >> (i*8)) & 0xFF;
read_words++;
status = tegra_sflash_readl(tsd, SPI_STATUS);
}
tsd->cur_rx_pos += read_words * tsd->bytes_per_word;
return 0;
}
static int tegra_sflash_start_cpu_based_transfer(
struct tegra_sflash_data *tsd, struct spi_transfer *t)
{
unsigned long val = 0;
unsigned cur_words;
if (tsd->cur_direction & DATA_DIR_TX)
val |= SPI_IE_TXC;
if (tsd->cur_direction & DATA_DIR_RX)
val |= SPI_IE_RXC;
tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
tsd->dma_control_reg = val;
if (tsd->cur_direction & DATA_DIR_TX)
cur_words = tegra_sflash_fill_tx_fifo_from_client_txbuf(tsd, t);
else
cur_words = tsd->curr_xfer_words;
val |= SPI_DMA_BLK_COUNT(cur_words);
tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
tsd->dma_control_reg = val;
val |= SPI_DMA_EN;
tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
return 0;
}
static int tegra_sflash_start_transfer_one(struct spi_device *spi,
struct spi_transfer *t, bool is_first_of_msg,
bool is_single_xfer)
{
struct tegra_sflash_data *tsd = spi_master_get_devdata(spi->master);
u32 speed;
unsigned long command;
speed = t->speed_hz ? t->speed_hz : spi->max_speed_hz;
if (!speed)
speed = tsd->spi_max_frequency;
if (speed != tsd->cur_speed) {
clk_set_rate(tsd->clk, speed);
tsd->cur_speed = speed;
}
tsd->cur_spi = spi;
tsd->cur_pos = 0;
tsd->cur_rx_pos = 0;
tsd->cur_tx_pos = 0;
tsd->curr_xfer = t;
tegra_sflash_calculate_curr_xfer_param(spi, tsd, t);
if (is_first_of_msg) {
command = tsd->def_command_reg;
command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
command |= SPI_CS_VAL_HIGH;
command &= ~SPI_MODES;
if (spi->mode & SPI_CPHA)
command |= SPI_CK_SDA_FALLING;
if (spi->mode & SPI_CPOL)
command |= SPI_ACTIVE_SCLK_DRIVE_HIGH;
else
command |= SPI_ACTIVE_SCLK_DRIVE_LOW;
command |= SPI_CS0_EN << spi->chip_select;
} else {
command = tsd->command_reg;
command &= ~SPI_BIT_LENGTH(~0);
command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
command &= ~(SPI_RX_EN | SPI_TX_EN);
}
tsd->cur_direction = 0;
if (t->rx_buf) {
command |= SPI_RX_EN;
tsd->cur_direction |= DATA_DIR_RX;
}
if (t->tx_buf) {
command |= SPI_TX_EN;
tsd->cur_direction |= DATA_DIR_TX;
}
tegra_sflash_writel(tsd, command, SPI_COMMAND);
tsd->command_reg = command;
return tegra_sflash_start_cpu_based_transfer(tsd, t);
}
static int tegra_sflash_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
bool is_first_msg = true;
int single_xfer;
struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
struct spi_transfer *xfer;
struct spi_device *spi = msg->spi;
int ret;
ret = pm_runtime_get_sync(tsd->dev);
if (ret < 0) {
dev_err(tsd->dev, "pm_runtime_get() failed, err = %d\n", ret);
return ret;
}
msg->status = 0;
msg->actual_length = 0;
single_xfer = list_is_singular(&msg->transfers);
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
INIT_COMPLETION(tsd->xfer_completion);
ret = tegra_sflash_start_transfer_one(spi, xfer,
is_first_msg, single_xfer);
if (ret < 0) {
dev_err(tsd->dev,
"spi can not start transfer, err %d\n", ret);
goto exit;
}
is_first_msg = false;
ret = wait_for_completion_timeout(&tsd->xfer_completion,
SPI_DMA_TIMEOUT);
if (WARN_ON(ret == 0)) {
dev_err(tsd->dev,
"spi trasfer timeout, err %d\n", ret);
ret = -EIO;
goto exit;
}
if (tsd->tx_status || tsd->rx_status) {
dev_err(tsd->dev, "Error in Transfer\n");
ret = -EIO;
goto exit;
}
msg->actual_length += xfer->len;
if (xfer->cs_change && xfer->delay_usecs) {
tegra_sflash_writel(tsd, tsd->def_command_reg,
SPI_COMMAND);
udelay(xfer->delay_usecs);
}
}
ret = 0;
exit:
tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
msg->status = ret;
spi_finalize_current_message(master);
pm_runtime_put(tsd->dev);
return ret;
}
static irqreturn_t handle_cpu_based_xfer(struct tegra_sflash_data *tsd)
{
struct spi_transfer *t = tsd->curr_xfer;
unsigned long flags;
spin_lock_irqsave(&tsd->lock, flags);
if (tsd->tx_status || tsd->rx_status || (tsd->status_reg & SPI_BSY)) {
dev_err(tsd->dev,
"CpuXfer ERROR bit set 0x%x\n", tsd->status_reg);
dev_err(tsd->dev,
"CpuXfer 0x%08x:0x%08x\n", tsd->command_reg,
tsd->dma_control_reg);
tegra_periph_reset_assert(tsd->clk);
udelay(2);
tegra_periph_reset_deassert(tsd->clk);
complete(&tsd->xfer_completion);
goto exit;
}
if (tsd->cur_direction & DATA_DIR_RX)
tegra_sflash_read_rx_fifo_to_client_rxbuf(tsd, t);
if (tsd->cur_direction & DATA_DIR_TX)
tsd->cur_pos = tsd->cur_tx_pos;
else
tsd->cur_pos = tsd->cur_rx_pos;
if (tsd->cur_pos == t->len) {
complete(&tsd->xfer_completion);
goto exit;
}
tegra_sflash_calculate_curr_xfer_param(tsd->cur_spi, tsd, t);
tegra_sflash_start_cpu_based_transfer(tsd, t);
exit:
spin_unlock_irqrestore(&tsd->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t tegra_sflash_isr(int irq, void *context_data)
{
struct tegra_sflash_data *tsd = context_data;
tsd->status_reg = tegra_sflash_readl(tsd, SPI_STATUS);
if (tsd->cur_direction & DATA_DIR_TX)
tsd->tx_status = tsd->status_reg & SPI_TX_OVF;
if (tsd->cur_direction & DATA_DIR_RX)
tsd->rx_status = tsd->status_reg & SPI_RX_UNF;
tegra_sflash_clear_status(tsd);
return handle_cpu_based_xfer(tsd);
}
static struct tegra_spi_platform_data *tegra_sflash_parse_dt(
struct platform_device *pdev)
{
struct tegra_spi_platform_data *pdata;
struct device_node *np = pdev->dev.of_node;
u32 max_freq;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(&pdev->dev, "Memory alloc for pdata failed\n");
return NULL;
}
if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
pdata->spi_max_frequency = max_freq;
return pdata;
}
static struct of_device_id tegra_sflash_of_match[] __devinitconst = {
{ .compatible = "nvidia,tegra20-sflash", },
{}
};
MODULE_DEVICE_TABLE(of, tegra_sflash_of_match);
static int __devinit tegra_sflash_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct tegra_sflash_data *tsd;
struct resource *r;
struct tegra_spi_platform_data *pdata = pdev->dev.platform_data;
int ret;
const struct of_device_id *match;
match = of_match_device(of_match_ptr(tegra_sflash_of_match),
&pdev->dev);
if (!match) {
dev_err(&pdev->dev, "Error: No device match found\n");
return -ENODEV;
}
if (!pdata && pdev->dev.of_node)
pdata = tegra_sflash_parse_dt(pdev);
if (!pdata) {
dev_err(&pdev->dev, "No platform data, exiting\n");
return -ENODEV;
}
if (!pdata->spi_max_frequency)
pdata->spi_max_frequency = 25000000; /* 25MHz */
master = spi_alloc_master(&pdev->dev, sizeof(*tsd));
if (!master) {
dev_err(&pdev->dev, "master allocation failed\n");
return -ENOMEM;
}
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA;
master->transfer_one_message = tegra_sflash_transfer_one_message;
master->num_chipselect = MAX_CHIP_SELECT;
master->bus_num = -1;
dev_set_drvdata(&pdev->dev, master);
tsd = spi_master_get_devdata(master);
tsd->master = master;
tsd->dev = &pdev->dev;
spin_lock_init(&tsd->lock);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(&pdev->dev, "No IO memory resource\n");
ret = -ENODEV;
goto exit_free_master;
}
tsd->base = devm_request_and_ioremap(&pdev->dev, r);
if (!tsd->base) {
dev_err(&pdev->dev,
"Cannot request memregion/iomap dma address\n");
ret = -EADDRNOTAVAIL;
goto exit_free_master;
}
tsd->irq = platform_get_irq(pdev, 0);
ret = request_irq(tsd->irq, tegra_sflash_isr, 0,
dev_name(&pdev->dev), tsd);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
tsd->irq);
goto exit_free_master;
}
tsd->clk = devm_clk_get(&pdev->dev, "spi");
if (IS_ERR(tsd->clk)) {
dev_err(&pdev->dev, "can not get clock\n");
ret = PTR_ERR(tsd->clk);
goto exit_free_irq;
}
tsd->spi_max_frequency = pdata->spi_max_frequency;
init_completion(&tsd->xfer_completion);
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
ret = tegra_sflash_runtime_resume(&pdev->dev);
if (ret)
goto exit_pm_disable;
}
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
goto exit_pm_disable;
}
/* Reset controller */
tegra_periph_reset_assert(tsd->clk);
udelay(2);
tegra_periph_reset_deassert(tsd->clk);
tsd->def_command_reg = SPI_M_S | SPI_CS_SW;
tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
pm_runtime_put(&pdev->dev);
master->dev.of_node = pdev->dev.of_node;
ret = spi_register_master(master);
if (ret < 0) {
dev_err(&pdev->dev, "can not register to master err %d\n", ret);
goto exit_pm_disable;
}
return ret;
exit_pm_disable:
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
tegra_sflash_runtime_suspend(&pdev->dev);
exit_free_irq:
free_irq(tsd->irq, tsd);
exit_free_master:
spi_master_put(master);
return ret;
}
static int __devexit tegra_sflash_remove(struct platform_device *pdev)
{
struct spi_master *master = dev_get_drvdata(&pdev->dev);
struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
free_irq(tsd->irq, tsd);
spi_unregister_master(master);
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
tegra_sflash_runtime_suspend(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int tegra_sflash_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
return spi_master_suspend(master);
}
static int tegra_sflash_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
int ret;
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
dev_err(dev, "pm runtime failed, e = %d\n", ret);
return ret;
}
tegra_sflash_writel(tsd, tsd->command_reg, SPI_COMMAND);
pm_runtime_put(dev);
return spi_master_resume(master);
}
#endif
static int tegra_sflash_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
/* Flush all write which are in PPSB queue by reading back */
tegra_sflash_readl(tsd, SPI_COMMAND);
clk_disable_unprepare(tsd->clk);
return 0;
}
static int tegra_sflash_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(tsd->clk);
if (ret < 0) {
dev_err(tsd->dev, "clk_prepare failed: %d\n", ret);
return ret;
}
return 0;
}
static const struct dev_pm_ops slink_pm_ops = {
SET_RUNTIME_PM_OPS(tegra_sflash_runtime_suspend,
tegra_sflash_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(tegra_sflash_suspend, tegra_sflash_resume)
};
static struct platform_driver tegra_sflash_driver = {
.driver = {
.name = "spi-tegra-sflash",
.owner = THIS_MODULE,
.pm = &slink_pm_ops,
.of_match_table = of_match_ptr(tegra_sflash_of_match),
},
.probe = tegra_sflash_probe,
.remove = __devexit_p(tegra_sflash_remove),
};
module_platform_driver(tegra_sflash_driver);
MODULE_ALIAS("platform:spi-tegra-sflash");
MODULE_DESCRIPTION("NVIDIA Tegra20 Serial Flash Controller Driver");
MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
MODULE_LICENSE("GPL v2");

File diff suppressed because it is too large Load Diff

View File

@ -1204,7 +1204,7 @@ EXPORT_SYMBOL_GPL(spi_busnum_to_master);
int spi_setup(struct spi_device *spi)
{
unsigned bad_bits;
int status;
int status = 0;
/* help drivers fail *cleanly* when they need options
* that aren't supported with their current master
@ -1219,7 +1219,8 @@ int spi_setup(struct spi_device *spi)
if (!spi->bits_per_word)
spi->bits_per_word = 8;
status = spi->master->setup(spi);
if (spi->master->setup)
status = spi->master->setup(spi);
dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
"%u bits/w, %u Hz max --> %d\n",
@ -1238,6 +1239,7 @@ EXPORT_SYMBOL_GPL(spi_setup);
static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
struct spi_master *master = spi->master;
struct spi_transfer *xfer;
/* Half-duplex links include original MicroWire, and ones with
* only one data pin like SPI_3WIRE (switches direction) or where
@ -1246,7 +1248,6 @@ static int __spi_async(struct spi_device *spi, struct spi_message *message)
*/
if ((master->flags & SPI_MASTER_HALF_DUPLEX)
|| (spi->mode & SPI_3WIRE)) {
struct spi_transfer *xfer;
unsigned flags = master->flags;
list_for_each_entry(xfer, &message->transfers, transfer_list) {
@ -1259,6 +1260,15 @@ static int __spi_async(struct spi_device *spi, struct spi_message *message)
}
}
/**
* Set transfer bits_per_word as spi device default if it is not
* set for this transfer.
*/
list_for_each_entry(xfer, &message->transfers, transfer_list) {
if (!xfer->bits_per_word)
xfer->bits_per_word = spi->bits_per_word;
}
message->spi = spi;
message->status = -EINPROGRESS;
return master->transfer(spi, message);

View File

@ -31,6 +31,8 @@
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/compat.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spidev.h>
@ -642,10 +644,18 @@ static int __devexit spidev_remove(struct spi_device *spi)
return 0;
}
static const struct of_device_id spidev_dt_ids[] = {
{ .compatible = "rohm,dh2228fv" },
{},
};
MODULE_DEVICE_TABLE(of, spidev_dt_ids);
static struct spi_driver spidev_spi_driver = {
.driver = {
.name = "spidev",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(spidev_dt_ids),
},
.probe = spidev_probe,
.remove = __devexit_p(spidev_remove),

View File

@ -7,9 +7,13 @@
#define OMAP4_MCSPI_REG_OFFSET 0x100
#define MCSPI_PINDIR_D0_IN_D1_OUT 0
#define MCSPI_PINDIR_D0_OUT_D1_IN 1
struct omap2_mcspi_platform_config {
unsigned short num_cs;
unsigned int regs_offset;
unsigned int pin_dir:1;
};
struct omap2_mcspi_dev_attr {

View File

@ -0,0 +1,40 @@
/*
* spi-tegra.h: SPI interface for Nvidia Tegra20 SLINK controller.
*
* Copyright (C) 2011 NVIDIA Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef _LINUX_SPI_TEGRA_H
#define _LINUX_SPI_TEGRA_H
struct tegra_spi_platform_data {
int dma_req_sel;
unsigned int spi_max_frequency;
};
/*
* Controller data from device to pass some info like
* hw based chip select can be used or not and if yes
* then CS hold and setup time.
*/
struct tegra_spi_device_controller_data {
bool is_hw_based_cs;
int cs_setup_clk_count;
int cs_hold_clk_count;
};
#endif /* _LINUX_SPI_TEGRA_H */