remove SWRITE* I/O types

These flags aren't real I/O types, but tell ll_rw_block to always
lock the buffer instead of giving up on a failed trylock.

Instead add a new write_dirty_buffer helper that implements this semantic
and use it from the existing SWRITE* callers.  Note that the ll_rw_block
code had a bug where it didn't promote WRITE_SYNC_PLUG properly, which
this patch fixes.

In the ufs code clean up the helper that used to call ll_rw_block
to mirror sync_dirty_buffer, which is the function it implements for
compound buffers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This commit is contained in:
Christoph Hellwig 2010-08-11 17:06:24 +02:00 committed by Al Viro
parent 87e99511ea
commit 9cb569d601
16 changed files with 73 additions and 94 deletions

View File

@ -770,11 +770,12 @@ static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
spin_unlock(lock);
/*
* Ensure any pending I/O completes so that
* ll_rw_block() actually writes the current
* contents - it is a noop if I/O is still in
* flight on potentially older contents.
* write_dirty_buffer() actually writes the
* current contents - it is a noop if I/O is
* still in flight on potentially older
* contents.
*/
ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
write_dirty_buffer(bh, WRITE_SYNC_PLUG);
/*
* Kick off IO for the previous mapping. Note
@ -2949,22 +2950,21 @@ EXPORT_SYMBOL(submit_bh);
/**
* ll_rw_block: low-level access to block devices (DEPRECATED)
* @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
* @rw: whether to %READ or %WRITE or maybe %READA (readahead)
* @nr: number of &struct buffer_heads in the array
* @bhs: array of pointers to &struct buffer_head
*
* ll_rw_block() takes an array of pointers to &struct buffer_heads, and
* requests an I/O operation on them, either a %READ or a %WRITE. The third
* %SWRITE is like %WRITE only we make sure that the *current* data in buffers
* are sent to disk. The fourth %READA option is described in the documentation
* for generic_make_request() which ll_rw_block() calls.
* %READA option is described in the documentation for generic_make_request()
* which ll_rw_block() calls.
*
* This function drops any buffer that it cannot get a lock on (with the
* BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
* clean when doing a write request, and any buffer that appears to be
* up-to-date when doing read request. Further it marks as clean buffers that
* are processed for writing (the buffer cache won't assume that they are
* actually clean until the buffer gets unlocked).
* BH_Lock state bit), any buffer that appears to be clean when doing a write
* request, and any buffer that appears to be up-to-date when doing read
* request. Further it marks as clean buffers that are processed for
* writing (the buffer cache won't assume that they are actually clean
* until the buffer gets unlocked).
*
* ll_rw_block sets b_end_io to simple completion handler that marks
* the buffer up-to-date (if approriate), unlocks the buffer and wakes
@ -2980,20 +2980,13 @@ void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
for (i = 0; i < nr; i++) {
struct buffer_head *bh = bhs[i];
if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
lock_buffer(bh);
else if (!trylock_buffer(bh))
if (!trylock_buffer(bh))
continue;
if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
rw == SWRITE_SYNC_PLUG) {
if (rw == WRITE) {
if (test_clear_buffer_dirty(bh)) {
bh->b_end_io = end_buffer_write_sync;
get_bh(bh);
if (rw == SWRITE_SYNC)
submit_bh(WRITE_SYNC, bh);
else
submit_bh(WRITE, bh);
submit_bh(WRITE, bh);
continue;
}
} else {
@ -3009,6 +3002,19 @@ void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
}
EXPORT_SYMBOL(ll_rw_block);
void write_dirty_buffer(struct buffer_head *bh, int rw)
{
lock_buffer(bh);
if (!test_clear_buffer_dirty(bh)) {
unlock_buffer(bh);
return;
}
bh->b_end_io = end_buffer_write_sync;
get_bh(bh);
submit_bh(rw, bh);
}
EXPORT_SYMBOL(write_dirty_buffer);
/*
* For a data-integrity writeout, we need to wait upon any in-progress I/O
* and then start new I/O and then wait upon it. The caller must have a ref on

View File

@ -250,7 +250,9 @@ int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs)
{
int i, err = 0;
ll_rw_block(SWRITE, nr_bhs, bhs);
for (i = 0; i < nr_bhs; i++)
write_dirty_buffer(bhs[i], WRITE);
for (i = 0; i < nr_bhs; i++) {
wait_on_buffer(bhs[i]);
if (buffer_eopnotsupp(bhs[i])) {

View File

@ -254,7 +254,9 @@ __flush_batch(journal_t *journal, struct buffer_head **bhs, int *batch_count)
{
int i;
ll_rw_block(SWRITE, *batch_count, bhs);
for (i = 0; i < *batch_count; i++)
write_dirty_buffer(bhs[i], WRITE);
for (i = 0; i < *batch_count; i++) {
struct buffer_head *bh = bhs[i];
clear_buffer_jwrite(bh);

View File

@ -1024,7 +1024,7 @@ void journal_update_superblock(journal_t *journal, int wait)
if (wait)
sync_dirty_buffer(bh);
else
ll_rw_block(SWRITE, 1, &bh);
write_dirty_buffer(bh, WRITE);
out:
/* If we have just flushed the log (by marking s_start==0), then

View File

@ -617,7 +617,7 @@ static void flush_descriptor(journal_t *journal,
set_buffer_jwrite(bh);
BUFFER_TRACE(bh, "write");
set_buffer_dirty(bh);
ll_rw_block((write_op == WRITE) ? SWRITE : SWRITE_SYNC_PLUG, 1, &bh);
write_dirty_buffer(bh, write_op);
}
#endif

View File

@ -255,7 +255,9 @@ __flush_batch(journal_t *journal, int *batch_count)
{
int i;
ll_rw_block(SWRITE, *batch_count, journal->j_chkpt_bhs);
for (i = 0; i < *batch_count; i++)
write_dirty_buffer(journal->j_chkpt_bhs[i], WRITE);
for (i = 0; i < *batch_count; i++) {
struct buffer_head *bh = journal->j_chkpt_bhs[i];
clear_buffer_jwrite(bh);

View File

@ -1124,7 +1124,7 @@ void jbd2_journal_update_superblock(journal_t *journal, int wait)
set_buffer_uptodate(bh);
}
} else
ll_rw_block(SWRITE, 1, &bh);
write_dirty_buffer(bh, WRITE);
out:
/* If we have just flushed the log (by marking s_start==0), then

View File

@ -625,7 +625,7 @@ static void flush_descriptor(journal_t *journal,
set_buffer_jwrite(bh);
BUFFER_TRACE(bh, "write");
set_buffer_dirty(bh);
ll_rw_block((write_op == WRITE) ? SWRITE : SWRITE_SYNC_PLUG, 1, &bh);
write_dirty_buffer(bh, write_op);
}
#endif

View File

@ -2311,7 +2311,7 @@ static int journal_read_transaction(struct super_block *sb,
/* flush out the real blocks */
for (i = 0; i < get_desc_trans_len(desc); i++) {
set_buffer_dirty(real_blocks[i]);
ll_rw_block(SWRITE, 1, real_blocks + i);
write_dirty_buffer(real_blocks[i], WRITE);
}
for (i = 0; i < get_desc_trans_len(desc); i++) {
wait_on_buffer(real_blocks[i]);

View File

@ -114,10 +114,8 @@ void ufs_free_fragments(struct inode *inode, u64 fragment, unsigned count)
ubh_mark_buffer_dirty (USPI_UBH(uspi));
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
if (sb->s_flags & MS_SYNCHRONOUS) {
ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi));
ubh_wait_on_buffer (UCPI_UBH(ucpi));
}
if (sb->s_flags & MS_SYNCHRONOUS)
ubh_sync_block(UCPI_UBH(ucpi));
sb->s_dirt = 1;
unlock_super (sb);
@ -207,10 +205,8 @@ do_more:
ubh_mark_buffer_dirty (USPI_UBH(uspi));
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
if (sb->s_flags & MS_SYNCHRONOUS) {
ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi));
ubh_wait_on_buffer (UCPI_UBH(ucpi));
}
if (sb->s_flags & MS_SYNCHRONOUS)
ubh_sync_block(UCPI_UBH(ucpi));
if (overflow) {
fragment += count;
@ -558,10 +554,8 @@ static u64 ufs_add_fragments(struct inode *inode, u64 fragment,
ubh_mark_buffer_dirty (USPI_UBH(uspi));
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
if (sb->s_flags & MS_SYNCHRONOUS) {
ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi));
ubh_wait_on_buffer (UCPI_UBH(ucpi));
}
if (sb->s_flags & MS_SYNCHRONOUS)
ubh_sync_block(UCPI_UBH(ucpi));
sb->s_dirt = 1;
UFSD("EXIT, fragment %llu\n", (unsigned long long)fragment);
@ -680,10 +674,8 @@ cg_found:
succed:
ubh_mark_buffer_dirty (USPI_UBH(uspi));
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
if (sb->s_flags & MS_SYNCHRONOUS) {
ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi));
ubh_wait_on_buffer (UCPI_UBH(ucpi));
}
if (sb->s_flags & MS_SYNCHRONOUS)
ubh_sync_block(UCPI_UBH(ucpi));
sb->s_dirt = 1;
result += cgno * uspi->s_fpg;

View File

@ -113,10 +113,8 @@ void ufs_free_inode (struct inode * inode)
ubh_mark_buffer_dirty (USPI_UBH(uspi));
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
if (sb->s_flags & MS_SYNCHRONOUS) {
ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi));
ubh_wait_on_buffer (UCPI_UBH(ucpi));
}
if (sb->s_flags & MS_SYNCHRONOUS)
ubh_sync_block(UCPI_UBH(ucpi));
sb->s_dirt = 1;
unlock_super (sb);
@ -156,10 +154,8 @@ static void ufs2_init_inodes_chunk(struct super_block *sb,
fs32_add(sb, &ucg->cg_u.cg_u2.cg_initediblk, uspi->s_inopb);
ubh_mark_buffer_dirty(UCPI_UBH(ucpi));
if (sb->s_flags & MS_SYNCHRONOUS) {
ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi));
ubh_wait_on_buffer(UCPI_UBH(ucpi));
}
if (sb->s_flags & MS_SYNCHRONOUS)
ubh_sync_block(UCPI_UBH(ucpi));
UFSD("EXIT\n");
}
@ -290,10 +286,8 @@ cg_found:
}
ubh_mark_buffer_dirty (USPI_UBH(uspi));
ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
if (sb->s_flags & MS_SYNCHRONOUS) {
ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi));
ubh_wait_on_buffer (UCPI_UBH(ucpi));
}
if (sb->s_flags & MS_SYNCHRONOUS)
ubh_sync_block(UCPI_UBH(ucpi));
sb->s_dirt = 1;
inode->i_ino = cg * uspi->s_ipg + bit;

View File

@ -243,10 +243,8 @@ static int ufs_trunc_indirect(struct inode *inode, u64 offset, void *p)
ubh_bforget(ind_ubh);
ind_ubh = NULL;
}
if (IS_SYNC(inode) && ind_ubh && ubh_buffer_dirty(ind_ubh)) {
ubh_ll_rw_block(SWRITE, ind_ubh);
ubh_wait_on_buffer (ind_ubh);
}
if (IS_SYNC(inode) && ind_ubh && ubh_buffer_dirty(ind_ubh))
ubh_sync_block(ind_ubh);
ubh_brelse (ind_ubh);
UFSD("EXIT: ino %lu\n", inode->i_ino);
@ -307,10 +305,8 @@ static int ufs_trunc_dindirect(struct inode *inode, u64 offset, void *p)
ubh_bforget(dind_bh);
dind_bh = NULL;
}
if (IS_SYNC(inode) && dind_bh && ubh_buffer_dirty(dind_bh)) {
ubh_ll_rw_block(SWRITE, dind_bh);
ubh_wait_on_buffer (dind_bh);
}
if (IS_SYNC(inode) && dind_bh && ubh_buffer_dirty(dind_bh))
ubh_sync_block(dind_bh);
ubh_brelse (dind_bh);
UFSD("EXIT: ino %lu\n", inode->i_ino);
@ -367,10 +363,8 @@ static int ufs_trunc_tindirect(struct inode *inode)
ubh_bforget(tind_bh);
tind_bh = NULL;
}
if (IS_SYNC(inode) && tind_bh && ubh_buffer_dirty(tind_bh)) {
ubh_ll_rw_block(SWRITE, tind_bh);
ubh_wait_on_buffer (tind_bh);
}
if (IS_SYNC(inode) && tind_bh && ubh_buffer_dirty(tind_bh))
ubh_sync_block(tind_bh);
ubh_brelse (tind_bh);
UFSD("EXIT: ino %lu\n", inode->i_ino);

View File

@ -113,21 +113,17 @@ void ubh_mark_buffer_uptodate (struct ufs_buffer_head * ubh, int flag)
}
}
void ubh_ll_rw_block(int rw, struct ufs_buffer_head *ubh)
void ubh_sync_block(struct ufs_buffer_head *ubh)
{
if (!ubh)
return;
if (ubh) {
unsigned i;
ll_rw_block(rw, ubh->count, ubh->bh);
}
for (i = 0; i < ubh->count; i++)
write_dirty_buffer(ubh->bh[i], WRITE);
void ubh_wait_on_buffer (struct ufs_buffer_head * ubh)
{
unsigned i;
if (!ubh)
return;
for ( i = 0; i < ubh->count; i++ )
wait_on_buffer (ubh->bh[i]);
for (i = 0; i < ubh->count; i++)
wait_on_buffer(ubh->bh[i]);
}
}
void ubh_bforget (struct ufs_buffer_head * ubh)

View File

@ -269,8 +269,7 @@ extern void ubh_brelse (struct ufs_buffer_head *);
extern void ubh_brelse_uspi (struct ufs_sb_private_info *);
extern void ubh_mark_buffer_dirty (struct ufs_buffer_head *);
extern void ubh_mark_buffer_uptodate (struct ufs_buffer_head *, int);
extern void ubh_ll_rw_block(int, struct ufs_buffer_head *);
extern void ubh_wait_on_buffer (struct ufs_buffer_head *);
extern void ubh_sync_block(struct ufs_buffer_head *);
extern void ubh_bforget (struct ufs_buffer_head *);
extern int ubh_buffer_dirty (struct ufs_buffer_head *);
#define ubh_ubhcpymem(mem,ubh,size) _ubh_ubhcpymem_(uspi,mem,ubh,size)

View File

@ -182,6 +182,7 @@ void __lock_buffer(struct buffer_head *bh);
void ll_rw_block(int, int, struct buffer_head * bh[]);
int sync_dirty_buffer(struct buffer_head *bh);
int __sync_dirty_buffer(struct buffer_head *bh, int rw);
void write_dirty_buffer(struct buffer_head *bh, int rw);
int submit_bh(int, struct buffer_head *);
void write_boundary_block(struct block_device *bdev,
sector_t bblock, unsigned blocksize);

View File

@ -125,9 +125,6 @@ struct inodes_stat_t {
* block layer could (in theory) choose to ignore this
* request if it runs into resource problems.
* WRITE A normal async write. Device will be plugged.
* SWRITE Like WRITE, but a special case for ll_rw_block() that
* tells it to lock the buffer first. Normally a buffer
* must be locked before doing IO.
* WRITE_SYNC_PLUG Synchronous write. Identical to WRITE, but passes down
* the hint that someone will be waiting on this IO
* shortly. The device must still be unplugged explicitly,
@ -138,9 +135,6 @@ struct inodes_stat_t {
* immediately after submission. The write equivalent
* of READ_SYNC.
* WRITE_ODIRECT_PLUG Special case write for O_DIRECT only.
* SWRITE_SYNC
* SWRITE_SYNC_PLUG Like WRITE_SYNC/WRITE_SYNC_PLUG, but locks the buffer.
* See SWRITE.
* WRITE_BARRIER Like WRITE_SYNC, but tells the block layer that all
* previously submitted writes must be safely on storage
* before this one is started. Also guarantees that when
@ -155,7 +149,6 @@ struct inodes_stat_t {
#define READ 0
#define WRITE RW_MASK
#define READA RWA_MASK
#define SWRITE (WRITE | READA)
#define READ_SYNC (READ | REQ_SYNC | REQ_UNPLUG)
#define READ_META (READ | REQ_META)
@ -165,8 +158,6 @@ struct inodes_stat_t {
#define WRITE_META (WRITE | REQ_META)
#define WRITE_BARRIER (WRITE | REQ_SYNC | REQ_NOIDLE | REQ_UNPLUG | \
REQ_HARDBARRIER)
#define SWRITE_SYNC_PLUG (SWRITE | REQ_SYNC | REQ_NOIDLE)
#define SWRITE_SYNC (SWRITE | REQ_SYNC | REQ_NOIDLE | REQ_UNPLUG)
/*
* These aren't really reads or writes, they pass down information about