Union-Find: add a new module in kernel library

This patch implements a union-find data structure in the kernel library,
which includes operations for allocating nodes, freeing nodes,
finding the root of a node, and merging two nodes.

Signed-off-by: Xavier <xavier_qy@163.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This commit is contained in:
Xavier 2024-07-04 14:24:43 +08:00 committed by Tejun Heo
parent 4a711dd910
commit 93c8332c83
6 changed files with 289 additions and 1 deletions

View File

@ -0,0 +1,102 @@
.. SPDX-License-Identifier: GPL-2.0
====================
Union-Find in Linux
====================
:Date: June 21, 2024
:Author: Xavier <xavier_qy@163.com>
What is union-find, and what is it used for?
------------------------------------------------
Union-find is a data structure used to handle the merging and querying
of disjoint sets. The primary operations supported by union-find are:
Initialization: Resetting each element as an individual set, with
each set's initial parent node pointing to itself.
Find: Determine which set a particular element belongs to, usually by
returning a “representative element” of that set. This operation
is used to check if two elements are in the same set.
Union: Merge two sets into one.
As a data structure used to maintain sets (groups), union-find is commonly
utilized to solve problems related to offline queries, dynamic connectivity,
and graph theory. It is also a key component in Kruskal's algorithm for
computing the minimum spanning tree, which is crucial in scenarios like
network routing. Consequently, union-find is widely referenced. Additionally,
union-find has applications in symbolic computation, register allocation,
and more.
Space Complexity: O(n), where n is the number of nodes.
Time Complexity: Using path compression can reduce the time complexity of
the find operation, and using union by rank can reduce the time complexity
of the union operation. These optimizations reduce the average time
complexity of each find and union operation to O(α(n)), where α(n) is the
inverse Ackermann function. This can be roughly considered a constant time
complexity for practical purposes.
This document covers use of the Linux union-find implementation. For more
information on the nature and implementation of union-find, see:
Wikipedia entry on union-find
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
Linux implementation of union-find
-----------------------------------
Linux's union-find implementation resides in the file "lib/union_find.c".
To use it, "#include <linux/union_find.h>".
The union-find data structure is defined as follows::
struct uf_node {
struct uf_node *parent;
unsigned int rank;
};
In this structure, parent points to the parent node of the current node.
The rank field represents the height of the current tree. During a union
operation, the tree with the smaller rank is attached under the tree with the
larger rank to maintain balance.
Initializing union-find
--------------------
You can complete the initialization using either static or initialization
interface. Initialize the parent pointer to point to itself and set the rank
to 0.
Example::
struct uf_node my_node = UF_INIT_NODE(my_node);
or
uf_node_init(&my_node);
Find the Root Node of union-find
--------------------------------
This operation is mainly used to determine whether two nodes belong to the same
set in the union-find. If they have the same root, they are in the same set.
During the find operation, path compression is performed to improve the
efficiency of subsequent find operations.
Example::
int connected;
struct uf_node *root1 = uf_find(&node_1);
struct uf_node *root2 = uf_find(&node_2);
if (root1 == root2)
connected = 1;
else
connected = 0;
Union Two Sets in union-find
----------------------------
To union two sets in the union-find, you first find their respective root nodes
and then link the smaller node to the larger node based on the rank of the root
nodes.
Example::
uf_union(&node_1, &node_2);

View File

@ -0,0 +1,87 @@
.. SPDX-License-Identifier: GPL-2.0
.. include:: ../disclaimer-zh_CN.rst
:Original: Documentation/core-api/union_find.rst
===========================
Linux中的并查集Union-Find
===========================
:日期: 2024年6月21日
:作者: Xavier <xavier_qy@163.com>
何为并查集,它有什么用?
---------------------
并查集是一种数据结构,用于处理一些不交集的合并及查询问题。并查集支持的主要操作:
初始化:将每个元素初始化为单独的集合,每个集合的初始父节点指向自身
查询:查询某个元素属于哪个集合,通常是返回集合中的一个“代表元素”。这个操作是为
了判断两个元素是否在同一个集合之中。
合并:将两个集合合并为一个。
并查集作为一种用于维护集合(组)的数据结构,它通常用于解决一些离线查询、动态连通性和
图论等相关问题,同时也是用于计算最小生成树的克鲁斯克尔算法中的关键,由于最小生成树在
网络路由等场景下十分重要,并查集也得到了广泛的引用。此外,并查集在符号计算,寄存器分
配等方面也有应用。
空间复杂度: O(n)n为节点数。
时间复杂度:使用路径压缩可以减少查找操作的时间复杂度,使用按秩合并可以减少合并操作的
时间复杂度使得并查集每个查询和合并操作的平均时间复杂度仅为O(α(n)),其中α(n)是反阿
克曼函数,可以粗略地认为并查集的操作有常数的时间复杂度。
本文档涵盖了对Linux并查集实现的使用方法。更多关于并查集的性质和实现的信息参见
维基百科并查集词条
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
并查集的Linux实现
----------------
Linux的并查集实现在文件“lib/union_find.c”中。要使用它需要
“#include <linux/union_find.h>”。
并查集的数据结构定义如下::
struct uf_node {
struct uf_node *parent;
unsigned int rank;
};
其中parent为当前节点的父节点rank为当前树的高度在合并时将rank小的节点接到rank大
的节点下面以增加平衡性。
初始化并查集
---------
可以采用静态或初始化接口完成初始化操作。初始化时parent 指针指向自身rank 设置
为 0。
示例::
struct uf_node my_node = UF_INIT_NODE(my_node);
uf_node_init(&my_node);
查找并查集的根节点
----------------
主要用于判断两个并查集是否属于一个集合,如果根相同,那么他们就是一个集合。在查找过程中
会对路径进行压缩,提高后续查找效率。
示例::
int connected;
struct uf_node *root1 = uf_find(&node_1);
struct uf_node *root2 = uf_find(&node_2);
if (root1 == root2)
connected = 1;
else
connected = 0;
合并两个并查集
-------------
对于两个相交的并查集进行合并,会首先查找它们各自的根节点,然后根据根节点秩大小,将小的
节点连接到大的节点下面。
示例::
uf_union(&node_1, &node_2);

View File

@ -23458,6 +23458,15 @@ F: drivers/cdrom/cdrom.c
F: include/linux/cdrom.h
F: include/uapi/linux/cdrom.h
UNION-FIND
M: Xavier <xavier_qy@163.com>
L: linux-kernel@vger.kernel.org
S: Maintained
F: Documentation/core-api/union_find.rst
F: Documentation/translations/zh_CN/core-api/union_find.rst
F: include/linux/union_find.h
F: lib/union_find.c
UNIVERSAL FLASH STORAGE HOST CONTROLLER DRIVER
R: Alim Akhtar <alim.akhtar@samsung.com>
R: Avri Altman <avri.altman@wdc.com>

View File

@ -0,0 +1,41 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_UNION_FIND_H
#define __LINUX_UNION_FIND_H
/**
* union_find.h - union-find data structure implementation
*
* This header provides functions and structures to implement the union-find
* data structure. The union-find data structure is used to manage disjoint
* sets and supports efficient union and find operations.
*
* See Documentation/core-api/union_find.rst for documentation and samples.
*/
struct uf_node {
struct uf_node *parent;
unsigned int rank;
};
/* This macro is used for static initialization of a union-find node. */
#define UF_INIT_NODE(node) {.parent = &node, .rank = 0}
/**
* uf_node_init - Initialize a union-find node
* @node: pointer to the union-find node to be initialized
*
* This function sets the parent of the node to itself and
* initializes its rank to 0.
*/
static inline void uf_node_init(struct uf_node *node)
{
node->parent = node;
node->rank = 0;
}
/* find the root of a node */
struct uf_node *uf_find(struct uf_node *node);
/* Merge two intersecting nodes */
void uf_union(struct uf_node *node1, struct uf_node *node2);
#endif /* __LINUX_UNION_FIND_H */

View File

@ -34,7 +34,7 @@ lib-y := ctype.o string.o vsprintf.o cmdline.o \
is_single_threaded.o plist.o decompress.o kobject_uevent.o \
earlycpio.o seq_buf.o siphash.o dec_and_lock.o \
nmi_backtrace.o win_minmax.o memcat_p.o \
buildid.o objpool.o
buildid.o objpool.o union_find.o
lib-$(CONFIG_PRINTK) += dump_stack.o
lib-$(CONFIG_SMP) += cpumask.o

49
lib/union_find.c Normal file
View File

@ -0,0 +1,49 @@
// SPDX-License-Identifier: GPL-2.0
#include <linux/union_find.h>
/**
* uf_find - Find the root of a node and perform path compression
* @node: the node to find the root of
*
* This function returns the root of the node by following the parent
* pointers. It also performs path compression, making the tree shallower.
*
* Returns the root node of the set containing node.
*/
struct uf_node *uf_find(struct uf_node *node)
{
struct uf_node *parent;
while (node->parent != node) {
parent = node->parent;
node->parent = parent->parent;
node = parent;
}
return node;
}
/**
* uf_union - Merge two sets, using union by rank
* @node1: the first node
* @node2: the second node
*
* This function merges the sets containing node1 and node2, by comparing
* the ranks to keep the tree balanced.
*/
void uf_union(struct uf_node *node1, struct uf_node *node2)
{
struct uf_node *root1 = uf_find(node1);
struct uf_node *root2 = uf_find(node2);
if (root1 == root2)
return;
if (root1->rank < root2->rank) {
root1->parent = root2;
} else if (root1->rank > root2->rank) {
root2->parent = root1;
} else {
root2->parent = root1;
root1->rank++;
}
}