mirror of
https://github.com/torvalds/linux.git
synced 2024-11-17 09:31:50 +00:00
sfc: split up nic.h
The new nic_common.h contains the inlines for NIC-type function dispatch, declarations for NIC-generic functions in nic.c, and other similar NIC- generic functionality. Retained in nic.h are NIC-specific declarations such as the siena and ef10 nic_data structs and various farch functions. The EF100 driver will thus include nic_common.h but not nic.h. Signed-off-by: Edward Cree <ecree@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
d3142c193d
commit
9043f48fd3
@ -1433,8 +1433,6 @@ static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
|
||||
{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
|
||||
#define EF10_OTHER_STAT(ext_name) \
|
||||
[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
|
||||
#define GENERIC_SW_STAT(ext_name) \
|
||||
[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
|
||||
|
||||
static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
|
||||
EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
|
||||
@ -1478,8 +1476,8 @@ static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
|
||||
EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
|
||||
EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
|
||||
EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
|
||||
GENERIC_SW_STAT(rx_nodesc_trunc),
|
||||
GENERIC_SW_STAT(rx_noskb_drops),
|
||||
EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
|
||||
EFX_GENERIC_SW_STAT(rx_noskb_drops),
|
||||
EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
|
||||
EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
|
||||
EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
|
||||
|
@ -8,133 +8,11 @@
|
||||
#ifndef EFX_NIC_H
|
||||
#define EFX_NIC_H
|
||||
|
||||
#include <linux/net_tstamp.h>
|
||||
#include "net_driver.h"
|
||||
#include "nic_common.h"
|
||||
#include "efx.h"
|
||||
#include "efx_common.h"
|
||||
#include "mcdi.h"
|
||||
|
||||
enum {
|
||||
/* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
|
||||
* They are not supported by this driver but these revision numbers
|
||||
* form part of the ethtool API for register dumping.
|
||||
*/
|
||||
EFX_REV_SIENA_A0 = 3,
|
||||
EFX_REV_HUNT_A0 = 4,
|
||||
};
|
||||
|
||||
static inline int efx_nic_rev(struct efx_nic *efx)
|
||||
{
|
||||
return efx->type->revision;
|
||||
}
|
||||
|
||||
u32 efx_farch_fpga_ver(struct efx_nic *efx);
|
||||
|
||||
/* Read the current event from the event queue */
|
||||
static inline efx_qword_t *efx_event(struct efx_channel *channel,
|
||||
unsigned int index)
|
||||
{
|
||||
return ((efx_qword_t *) (channel->eventq.buf.addr)) +
|
||||
(index & channel->eventq_mask);
|
||||
}
|
||||
|
||||
/* See if an event is present
|
||||
*
|
||||
* We check both the high and low dword of the event for all ones. We
|
||||
* wrote all ones when we cleared the event, and no valid event can
|
||||
* have all ones in either its high or low dwords. This approach is
|
||||
* robust against reordering.
|
||||
*
|
||||
* Note that using a single 64-bit comparison is incorrect; even
|
||||
* though the CPU read will be atomic, the DMA write may not be.
|
||||
*/
|
||||
static inline int efx_event_present(efx_qword_t *event)
|
||||
{
|
||||
return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
|
||||
EFX_DWORD_IS_ALL_ONES(event->dword[1]));
|
||||
}
|
||||
|
||||
/* Returns a pointer to the specified transmit descriptor in the TX
|
||||
* descriptor queue belonging to the specified channel.
|
||||
*/
|
||||
static inline efx_qword_t *
|
||||
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
|
||||
{
|
||||
return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
|
||||
}
|
||||
|
||||
/* Get partner of a TX queue, seen as part of the same net core queue */
|
||||
static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
|
||||
return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
|
||||
else
|
||||
return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
|
||||
}
|
||||
|
||||
/* Report whether this TX queue would be empty for the given write_count.
|
||||
* May return false negative.
|
||||
*/
|
||||
static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
|
||||
unsigned int write_count)
|
||||
{
|
||||
unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
|
||||
|
||||
if (empty_read_count == 0)
|
||||
return false;
|
||||
|
||||
return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
|
||||
}
|
||||
|
||||
/* Report whether the NIC considers this TX queue empty, using
|
||||
* packet_write_count (the write count recorded for the last completable
|
||||
* doorbell push). May return false negative. EF10 only, which is OK
|
||||
* because only EF10 supports PIO.
|
||||
*/
|
||||
static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors);
|
||||
return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count);
|
||||
}
|
||||
|
||||
/* Decide whether we can use TX PIO, ie. write packet data directly into
|
||||
* a buffer on the device. This can reduce latency at the expense of
|
||||
* throughput, so we only do this if both hardware and software TX rings
|
||||
* are empty. This also ensures that only one packet at a time can be
|
||||
* using the PIO buffer.
|
||||
*/
|
||||
static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
|
||||
|
||||
return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) &&
|
||||
efx_nic_tx_is_empty(partner);
|
||||
}
|
||||
|
||||
/* Decide whether to push a TX descriptor to the NIC vs merely writing
|
||||
* the doorbell. This can reduce latency when we are adding a single
|
||||
* descriptor to an empty queue, but is otherwise pointless. Further,
|
||||
* Falcon and Siena have hardware bugs (SF bug 33851) that may be
|
||||
* triggered if we don't check this.
|
||||
* We use the write_count used for the last doorbell push, to get the
|
||||
* NIC's view of the tx queue.
|
||||
*/
|
||||
static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
|
||||
unsigned int write_count)
|
||||
{
|
||||
bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
|
||||
|
||||
tx_queue->empty_read_count = 0;
|
||||
return was_empty && tx_queue->write_count - write_count == 1;
|
||||
}
|
||||
|
||||
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
|
||||
static inline efx_qword_t *
|
||||
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
|
||||
{
|
||||
return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
|
||||
}
|
||||
|
||||
enum {
|
||||
PHY_TYPE_NONE = 0,
|
||||
PHY_TYPE_TXC43128 = 1,
|
||||
@ -147,18 +25,6 @@ enum {
|
||||
PHY_TYPE_SFT9001B = 10,
|
||||
};
|
||||
|
||||
/* Alignment of PCIe DMA boundaries (4KB) */
|
||||
#define EFX_PAGE_SIZE 4096
|
||||
/* Size and alignment of buffer table entries (same) */
|
||||
#define EFX_BUF_SIZE EFX_PAGE_SIZE
|
||||
|
||||
/* NIC-generic software stats */
|
||||
enum {
|
||||
GENERIC_STAT_rx_noskb_drops,
|
||||
GENERIC_STAT_rx_nodesc_trunc,
|
||||
GENERIC_STAT_COUNT
|
||||
};
|
||||
|
||||
enum {
|
||||
SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
|
||||
SIENA_STAT_tx_good_bytes,
|
||||
@ -434,123 +300,15 @@ struct efx_ef10_nic_data {
|
||||
int efx_init_sriov(void);
|
||||
void efx_fini_sriov(void);
|
||||
|
||||
struct ethtool_ts_info;
|
||||
int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
|
||||
void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
|
||||
struct efx_channel *efx_ptp_channel(struct efx_nic *efx);
|
||||
void efx_ptp_remove(struct efx_nic *efx);
|
||||
int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
|
||||
int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
|
||||
void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
|
||||
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
|
||||
int efx_ptp_get_mode(struct efx_nic *efx);
|
||||
int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
|
||||
unsigned int new_mode);
|
||||
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
|
||||
void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
|
||||
size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
|
||||
size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
|
||||
void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
|
||||
void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
|
||||
struct sk_buff *skb);
|
||||
static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
if (channel->sync_events_state == SYNC_EVENTS_VALID)
|
||||
__efx_rx_skb_attach_timestamp(channel, skb);
|
||||
}
|
||||
void efx_ptp_start_datapath(struct efx_nic *efx);
|
||||
void efx_ptp_stop_datapath(struct efx_nic *efx);
|
||||
bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx);
|
||||
ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue);
|
||||
|
||||
extern const struct efx_nic_type falcon_a1_nic_type;
|
||||
extern const struct efx_nic_type falcon_b0_nic_type;
|
||||
extern const struct efx_nic_type siena_a0_nic_type;
|
||||
extern const struct efx_nic_type efx_hunt_a0_nic_type;
|
||||
extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
|
||||
|
||||
/**************************************************************************
|
||||
*
|
||||
* Externs
|
||||
*
|
||||
**************************************************************************
|
||||
*/
|
||||
|
||||
int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
|
||||
|
||||
/* TX data path */
|
||||
static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
return tx_queue->efx->type->tx_probe(tx_queue);
|
||||
}
|
||||
static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
tx_queue->efx->type->tx_init(tx_queue);
|
||||
}
|
||||
static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
tx_queue->efx->type->tx_remove(tx_queue);
|
||||
}
|
||||
static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
tx_queue->efx->type->tx_write(tx_queue);
|
||||
}
|
||||
|
||||
int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
|
||||
bool *data_mapped);
|
||||
|
||||
/* RX data path */
|
||||
static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
|
||||
{
|
||||
return rx_queue->efx->type->rx_probe(rx_queue);
|
||||
}
|
||||
static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
|
||||
{
|
||||
rx_queue->efx->type->rx_init(rx_queue);
|
||||
}
|
||||
static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
|
||||
{
|
||||
rx_queue->efx->type->rx_remove(rx_queue);
|
||||
}
|
||||
static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
|
||||
{
|
||||
rx_queue->efx->type->rx_write(rx_queue);
|
||||
}
|
||||
static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
|
||||
{
|
||||
rx_queue->efx->type->rx_defer_refill(rx_queue);
|
||||
}
|
||||
|
||||
/* Event data path */
|
||||
static inline int efx_nic_probe_eventq(struct efx_channel *channel)
|
||||
{
|
||||
return channel->efx->type->ev_probe(channel);
|
||||
}
|
||||
static inline int efx_nic_init_eventq(struct efx_channel *channel)
|
||||
{
|
||||
return channel->efx->type->ev_init(channel);
|
||||
}
|
||||
static inline void efx_nic_fini_eventq(struct efx_channel *channel)
|
||||
{
|
||||
channel->efx->type->ev_fini(channel);
|
||||
}
|
||||
static inline void efx_nic_remove_eventq(struct efx_channel *channel)
|
||||
{
|
||||
channel->efx->type->ev_remove(channel);
|
||||
}
|
||||
static inline int
|
||||
efx_nic_process_eventq(struct efx_channel *channel, int quota)
|
||||
{
|
||||
return channel->efx->type->ev_process(channel, quota);
|
||||
}
|
||||
static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
|
||||
{
|
||||
channel->efx->type->ev_read_ack(channel);
|
||||
}
|
||||
|
||||
void efx_nic_event_test_start(struct efx_channel *channel);
|
||||
|
||||
/* Falcon/Siena queue operations */
|
||||
int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
|
||||
void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
|
||||
@ -600,31 +358,6 @@ bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
|
||||
#endif
|
||||
void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
|
||||
|
||||
bool efx_nic_event_present(struct efx_channel *channel);
|
||||
|
||||
/* Some statistics are computed as A - B where A and B each increase
|
||||
* linearly with some hardware counter(s) and the counters are read
|
||||
* asynchronously. If the counters contributing to B are always read
|
||||
* after those contributing to A, the computed value may be lower than
|
||||
* the true value by some variable amount, and may decrease between
|
||||
* subsequent computations.
|
||||
*
|
||||
* We should never allow statistics to decrease or to exceed the true
|
||||
* value. Since the computed value will never be greater than the
|
||||
* true value, we can achieve this by only storing the computed value
|
||||
* when it increases.
|
||||
*/
|
||||
static inline void efx_update_diff_stat(u64 *stat, u64 diff)
|
||||
{
|
||||
if ((s64)(diff - *stat) > 0)
|
||||
*stat = diff;
|
||||
}
|
||||
|
||||
/* Interrupts */
|
||||
int efx_nic_init_interrupt(struct efx_nic *efx);
|
||||
int efx_nic_irq_test_start(struct efx_nic *efx);
|
||||
void efx_nic_fini_interrupt(struct efx_nic *efx);
|
||||
|
||||
/* Falcon/Siena interrupts */
|
||||
void efx_farch_irq_enable_master(struct efx_nic *efx);
|
||||
int efx_farch_irq_test_generate(struct efx_nic *efx);
|
||||
@ -633,17 +366,7 @@ irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
|
||||
irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
|
||||
irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
|
||||
|
||||
static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
|
||||
{
|
||||
return READ_ONCE(channel->event_test_cpu);
|
||||
}
|
||||
static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
|
||||
{
|
||||
return READ_ONCE(efx->last_irq_cpu);
|
||||
}
|
||||
|
||||
/* Global Resources */
|
||||
int efx_nic_flush_queues(struct efx_nic *efx);
|
||||
void siena_prepare_flush(struct efx_nic *efx);
|
||||
int efx_farch_fini_dmaq(struct efx_nic *efx);
|
||||
void efx_farch_finish_flr(struct efx_nic *efx);
|
||||
@ -657,10 +380,6 @@ void efx_ef10_handle_drain_event(struct efx_nic *efx);
|
||||
void efx_farch_rx_push_indir_table(struct efx_nic *efx);
|
||||
void efx_farch_rx_pull_indir_table(struct efx_nic *efx);
|
||||
|
||||
int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
|
||||
unsigned int len, gfp_t gfp_flags);
|
||||
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
|
||||
|
||||
/* Tests */
|
||||
struct efx_farch_register_test {
|
||||
unsigned address;
|
||||
@ -671,19 +390,6 @@ int efx_farch_test_registers(struct efx_nic *efx,
|
||||
const struct efx_farch_register_test *regs,
|
||||
size_t n_regs);
|
||||
|
||||
size_t efx_nic_get_regs_len(struct efx_nic *efx);
|
||||
void efx_nic_get_regs(struct efx_nic *efx, void *buf);
|
||||
|
||||
size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
|
||||
const unsigned long *mask, u8 *names);
|
||||
int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest);
|
||||
void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
|
||||
const unsigned long *mask, u64 *stats,
|
||||
const void *dma_buf, bool accumulate);
|
||||
void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
|
||||
|
||||
#define EFX_MAX_FLUSH_TIME 5000
|
||||
|
||||
void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
|
||||
efx_qword_t *event);
|
||||
|
||||
|
273
drivers/net/ethernet/sfc/nic_common.h
Normal file
273
drivers/net/ethernet/sfc/nic_common.h
Normal file
@ -0,0 +1,273 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/****************************************************************************
|
||||
* Driver for Solarflare network controllers and boards
|
||||
* Copyright 2005-2006 Fen Systems Ltd.
|
||||
* Copyright 2006-2013 Solarflare Communications Inc.
|
||||
* Copyright 2019-2020 Xilinx Inc.
|
||||
*/
|
||||
|
||||
#ifndef EFX_NIC_COMMON_H
|
||||
#define EFX_NIC_COMMON_H
|
||||
|
||||
#include "net_driver.h"
|
||||
#include "efx_common.h"
|
||||
#include "mcdi.h"
|
||||
#include "ptp.h"
|
||||
|
||||
enum {
|
||||
/* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
|
||||
* They are not supported by this driver but these revision numbers
|
||||
* form part of the ethtool API for register dumping.
|
||||
*/
|
||||
EFX_REV_SIENA_A0 = 3,
|
||||
EFX_REV_HUNT_A0 = 4,
|
||||
};
|
||||
|
||||
static inline int efx_nic_rev(struct efx_nic *efx)
|
||||
{
|
||||
return efx->type->revision;
|
||||
}
|
||||
|
||||
/* Read the current event from the event queue */
|
||||
static inline efx_qword_t *efx_event(struct efx_channel *channel,
|
||||
unsigned int index)
|
||||
{
|
||||
return ((efx_qword_t *) (channel->eventq.buf.addr)) +
|
||||
(index & channel->eventq_mask);
|
||||
}
|
||||
|
||||
/* See if an event is present
|
||||
*
|
||||
* We check both the high and low dword of the event for all ones. We
|
||||
* wrote all ones when we cleared the event, and no valid event can
|
||||
* have all ones in either its high or low dwords. This approach is
|
||||
* robust against reordering.
|
||||
*
|
||||
* Note that using a single 64-bit comparison is incorrect; even
|
||||
* though the CPU read will be atomic, the DMA write may not be.
|
||||
*/
|
||||
static inline int efx_event_present(efx_qword_t *event)
|
||||
{
|
||||
return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
|
||||
EFX_DWORD_IS_ALL_ONES(event->dword[1]));
|
||||
}
|
||||
|
||||
/* Returns a pointer to the specified transmit descriptor in the TX
|
||||
* descriptor queue belonging to the specified channel.
|
||||
*/
|
||||
static inline efx_qword_t *
|
||||
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
|
||||
{
|
||||
return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
|
||||
}
|
||||
|
||||
/* Report whether this TX queue would be empty for the given write_count.
|
||||
* May return false negative.
|
||||
*/
|
||||
static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
|
||||
unsigned int write_count)
|
||||
{
|
||||
unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
|
||||
|
||||
if (empty_read_count == 0)
|
||||
return false;
|
||||
|
||||
return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
|
||||
}
|
||||
|
||||
/* Report whether the NIC considers this TX queue empty, using
|
||||
* packet_write_count (the write count recorded for the last completable
|
||||
* doorbell push). May return false negative. EF10 only, which is OK
|
||||
* because only EF10 supports PIO.
|
||||
*/
|
||||
static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors);
|
||||
return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count);
|
||||
}
|
||||
|
||||
/* Get partner of a TX queue, seen as part of the same net core queue */
|
||||
/* XXX is this a thing on EF100? */
|
||||
static inline struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
|
||||
return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
|
||||
else
|
||||
return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
|
||||
}
|
||||
|
||||
/* Decide whether we can use TX PIO, ie. write packet data directly into
|
||||
* a buffer on the device. This can reduce latency at the expense of
|
||||
* throughput, so we only do this if both hardware and software TX rings
|
||||
* are empty. This also ensures that only one packet at a time can be
|
||||
* using the PIO buffer.
|
||||
*/
|
||||
static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
|
||||
|
||||
return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) &&
|
||||
efx_nic_tx_is_empty(partner);
|
||||
}
|
||||
|
||||
/* Decide whether to push a TX descriptor to the NIC vs merely writing
|
||||
* the doorbell. This can reduce latency when we are adding a single
|
||||
* descriptor to an empty queue, but is otherwise pointless. Further,
|
||||
* Falcon and Siena have hardware bugs (SF bug 33851) that may be
|
||||
* triggered if we don't check this.
|
||||
* We use the write_count used for the last doorbell push, to get the
|
||||
* NIC's view of the tx queue.
|
||||
*/
|
||||
static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
|
||||
unsigned int write_count)
|
||||
{
|
||||
bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
|
||||
|
||||
tx_queue->empty_read_count = 0;
|
||||
return was_empty && tx_queue->write_count - write_count == 1;
|
||||
}
|
||||
|
||||
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
|
||||
static inline efx_qword_t *
|
||||
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
|
||||
{
|
||||
return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
|
||||
}
|
||||
|
||||
/* Alignment of PCIe DMA boundaries (4KB) */
|
||||
#define EFX_PAGE_SIZE 4096
|
||||
/* Size and alignment of buffer table entries (same) */
|
||||
#define EFX_BUF_SIZE EFX_PAGE_SIZE
|
||||
|
||||
/* NIC-generic software stats */
|
||||
enum {
|
||||
GENERIC_STAT_rx_noskb_drops,
|
||||
GENERIC_STAT_rx_nodesc_trunc,
|
||||
GENERIC_STAT_COUNT
|
||||
};
|
||||
|
||||
#define EFX_GENERIC_SW_STAT(ext_name) \
|
||||
[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
|
||||
|
||||
/* TX data path */
|
||||
static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
return tx_queue->efx->type->tx_probe(tx_queue);
|
||||
}
|
||||
static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
tx_queue->efx->type->tx_init(tx_queue);
|
||||
}
|
||||
static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
tx_queue->efx->type->tx_remove(tx_queue);
|
||||
}
|
||||
static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
tx_queue->efx->type->tx_write(tx_queue);
|
||||
}
|
||||
|
||||
/* RX data path */
|
||||
static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
|
||||
{
|
||||
return rx_queue->efx->type->rx_probe(rx_queue);
|
||||
}
|
||||
static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
|
||||
{
|
||||
rx_queue->efx->type->rx_init(rx_queue);
|
||||
}
|
||||
static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
|
||||
{
|
||||
rx_queue->efx->type->rx_remove(rx_queue);
|
||||
}
|
||||
static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
|
||||
{
|
||||
rx_queue->efx->type->rx_write(rx_queue);
|
||||
}
|
||||
static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
|
||||
{
|
||||
rx_queue->efx->type->rx_defer_refill(rx_queue);
|
||||
}
|
||||
|
||||
/* Event data path */
|
||||
static inline int efx_nic_probe_eventq(struct efx_channel *channel)
|
||||
{
|
||||
return channel->efx->type->ev_probe(channel);
|
||||
}
|
||||
static inline int efx_nic_init_eventq(struct efx_channel *channel)
|
||||
{
|
||||
return channel->efx->type->ev_init(channel);
|
||||
}
|
||||
static inline void efx_nic_fini_eventq(struct efx_channel *channel)
|
||||
{
|
||||
channel->efx->type->ev_fini(channel);
|
||||
}
|
||||
static inline void efx_nic_remove_eventq(struct efx_channel *channel)
|
||||
{
|
||||
channel->efx->type->ev_remove(channel);
|
||||
}
|
||||
static inline int
|
||||
efx_nic_process_eventq(struct efx_channel *channel, int quota)
|
||||
{
|
||||
return channel->efx->type->ev_process(channel, quota);
|
||||
}
|
||||
static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
|
||||
{
|
||||
channel->efx->type->ev_read_ack(channel);
|
||||
}
|
||||
|
||||
void efx_nic_event_test_start(struct efx_channel *channel);
|
||||
|
||||
bool efx_nic_event_present(struct efx_channel *channel);
|
||||
|
||||
/* Some statistics are computed as A - B where A and B each increase
|
||||
* linearly with some hardware counter(s) and the counters are read
|
||||
* asynchronously. If the counters contributing to B are always read
|
||||
* after those contributing to A, the computed value may be lower than
|
||||
* the true value by some variable amount, and may decrease between
|
||||
* subsequent computations.
|
||||
*
|
||||
* We should never allow statistics to decrease or to exceed the true
|
||||
* value. Since the computed value will never be greater than the
|
||||
* true value, we can achieve this by only storing the computed value
|
||||
* when it increases.
|
||||
*/
|
||||
static inline void efx_update_diff_stat(u64 *stat, u64 diff)
|
||||
{
|
||||
if ((s64)(diff - *stat) > 0)
|
||||
*stat = diff;
|
||||
}
|
||||
|
||||
/* Interrupts */
|
||||
int efx_nic_init_interrupt(struct efx_nic *efx);
|
||||
int efx_nic_irq_test_start(struct efx_nic *efx);
|
||||
void efx_nic_fini_interrupt(struct efx_nic *efx);
|
||||
|
||||
static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
|
||||
{
|
||||
return READ_ONCE(channel->event_test_cpu);
|
||||
}
|
||||
static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
|
||||
{
|
||||
return READ_ONCE(efx->last_irq_cpu);
|
||||
}
|
||||
|
||||
/* Global Resources */
|
||||
int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
|
||||
unsigned int len, gfp_t gfp_flags);
|
||||
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
|
||||
|
||||
size_t efx_nic_get_regs_len(struct efx_nic *efx);
|
||||
void efx_nic_get_regs(struct efx_nic *efx, void *buf);
|
||||
|
||||
size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
|
||||
const unsigned long *mask, u8 *names);
|
||||
int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest);
|
||||
void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
|
||||
const unsigned long *mask, u64 *stats,
|
||||
const void *dma_buf, bool accumulate);
|
||||
void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
|
||||
|
||||
#define EFX_MAX_FLUSH_TIME 5000
|
||||
|
||||
#endif /* EFX_NIC_COMMON_H */
|
@ -35,7 +35,6 @@
|
||||
#include <linux/time.h>
|
||||
#include <linux/ktime.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/net_tstamp.h>
|
||||
#include <linux/pps_kernel.h>
|
||||
#include <linux/ptp_clock_kernel.h>
|
||||
#include "net_driver.h"
|
||||
@ -44,7 +43,7 @@
|
||||
#include "mcdi_pcol.h"
|
||||
#include "io.h"
|
||||
#include "farch_regs.h"
|
||||
#include "nic.h"
|
||||
#include "nic.h" /* indirectly includes ptp.h */
|
||||
|
||||
/* Maximum number of events expected to make up a PTP event */
|
||||
#define MAX_EVENT_FRAGS 3
|
||||
|
45
drivers/net/ethernet/sfc/ptp.h
Normal file
45
drivers/net/ethernet/sfc/ptp.h
Normal file
@ -0,0 +1,45 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/****************************************************************************
|
||||
* Driver for Solarflare network controllers and boards
|
||||
* Copyright 2005-2006 Fen Systems Ltd.
|
||||
* Copyright 2006-2013 Solarflare Communications Inc.
|
||||
* Copyright 2019-2020 Xilinx Inc.
|
||||
*/
|
||||
|
||||
#ifndef EFX_PTP_H
|
||||
#define EFX_PTP_H
|
||||
|
||||
#include <linux/net_tstamp.h>
|
||||
#include "net_driver.h"
|
||||
|
||||
struct ethtool_ts_info;
|
||||
int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
|
||||
void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
|
||||
struct efx_channel *efx_ptp_channel(struct efx_nic *efx);
|
||||
void efx_ptp_remove(struct efx_nic *efx);
|
||||
int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
|
||||
int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
|
||||
void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
|
||||
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
|
||||
int efx_ptp_get_mode(struct efx_nic *efx);
|
||||
int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
|
||||
unsigned int new_mode);
|
||||
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
|
||||
void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
|
||||
size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
|
||||
size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
|
||||
void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
|
||||
void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
|
||||
struct sk_buff *skb);
|
||||
static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
if (channel->sync_events_state == SYNC_EVENTS_VALID)
|
||||
__efx_rx_skb_attach_timestamp(channel, skb);
|
||||
}
|
||||
void efx_ptp_start_datapath(struct efx_nic *efx);
|
||||
void efx_ptp_stop_datapath(struct efx_nic *efx);
|
||||
bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx);
|
||||
ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue);
|
||||
|
||||
#endif /* EFX_PTP_H */
|
Loading…
Reference in New Issue
Block a user