mirror of
https://github.com/torvalds/linux.git
synced 2024-12-30 14:52:05 +00:00
hwmon: (via686a) Fix checkpatch issues
Fixed: ERROR: do not use assignment in if condition ERROR: open brace '{' following function declarations go on the next line ERROR: space prohibited before that close parenthesis ')' ERROR: space required after that ',' (ctx:VxV) ERROR: spaces required around that '==' (ctx:VxV) ERROR: spaces required around that ':' (ctx:VxV) ERROR: spaces required around that '?' (ctx:VxV) ERROR: that open brace { should be on the previous line WARNING: line over 80 characters WARNING: simple_strtol is obsolete, use kstrtol instead WARNING: simple_strtoul is obsolete, use kstrtoul instead Modify multi-line comments to follow Documentation/CodingStyle. Not fixed (false positive): ERROR: Macros with multiple statements should be enclosed in a do - while loop Signed-off-by: Guenter Roeck <linux@roeck-us.net>
This commit is contained in:
parent
bce2778df9
commit
9004ac8134
@ -1,34 +1,35 @@
|
||||
/*
|
||||
via686a.c - Part of lm_sensors, Linux kernel modules
|
||||
for hardware monitoring
|
||||
|
||||
Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
|
||||
Kyösti Mälkki <kmalkki@cc.hut.fi>,
|
||||
Mark Studebaker <mdsxyz123@yahoo.com>,
|
||||
and Bob Dougherty <bobd@stanford.edu>
|
||||
(Some conversion-factor data were contributed by Jonathan Teh Soon Yew
|
||||
<j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
* via686a.c - Part of lm_sensors, Linux kernel modules
|
||||
* for hardware monitoring
|
||||
*
|
||||
* Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
|
||||
* Kyösti Mälkki <kmalkki@cc.hut.fi>,
|
||||
* Mark Studebaker <mdsxyz123@yahoo.com>,
|
||||
* and Bob Dougherty <bobd@stanford.edu>
|
||||
*
|
||||
* (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
|
||||
* <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
/*
|
||||
Supports the Via VT82C686A, VT82C686B south bridges.
|
||||
Reports all as a 686A.
|
||||
Warning - only supports a single device.
|
||||
*/
|
||||
* Supports the Via VT82C686A, VT82C686B south bridges.
|
||||
* Reports all as a 686A.
|
||||
* Warning - only supports a single device.
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||||
|
||||
@ -47,8 +48,10 @@
|
||||
#include <linux/io.h>
|
||||
|
||||
|
||||
/* If force_addr is set to anything different from 0, we forcibly enable
|
||||
the device at the given address. */
|
||||
/*
|
||||
* If force_addr is set to anything different from 0, we forcibly enable
|
||||
* the device at the given address.
|
||||
*/
|
||||
static unsigned short force_addr;
|
||||
module_param(force_addr, ushort, 0);
|
||||
MODULE_PARM_DESC(force_addr,
|
||||
@ -57,9 +60,9 @@ MODULE_PARM_DESC(force_addr,
|
||||
static struct platform_device *pdev;
|
||||
|
||||
/*
|
||||
The Via 686a southbridge has a LM78-like chip integrated on the same IC.
|
||||
This driver is a customized copy of lm78.c
|
||||
*/
|
||||
* The Via 686a southbridge has a LM78-like chip integrated on the same IC.
|
||||
* This driver is a customized copy of lm78.c
|
||||
*/
|
||||
|
||||
/* Many VIA686A constants specified below */
|
||||
|
||||
@ -91,40 +94,46 @@ static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
|
||||
#define VIA686A_REG_ALARM2 0x42
|
||||
#define VIA686A_REG_FANDIV 0x47
|
||||
#define VIA686A_REG_CONFIG 0x40
|
||||
/* The following register sets temp interrupt mode (bits 1-0 for temp1,
|
||||
3-2 for temp2, 5-4 for temp3). Modes are:
|
||||
00 interrupt stays as long as value is out-of-range
|
||||
01 interrupt is cleared once register is read (default)
|
||||
10 comparator mode- like 00, but ignores hysteresis
|
||||
11 same as 00 */
|
||||
/*
|
||||
* The following register sets temp interrupt mode (bits 1-0 for temp1,
|
||||
* 3-2 for temp2, 5-4 for temp3). Modes are:
|
||||
* 00 interrupt stays as long as value is out-of-range
|
||||
* 01 interrupt is cleared once register is read (default)
|
||||
* 10 comparator mode- like 00, but ignores hysteresis
|
||||
* 11 same as 00
|
||||
*/
|
||||
#define VIA686A_REG_TEMP_MODE 0x4b
|
||||
/* We'll just assume that you want to set all 3 simultaneously: */
|
||||
#define VIA686A_TEMP_MODE_MASK 0x3F
|
||||
#define VIA686A_TEMP_MODE_CONTINUOUS 0x00
|
||||
|
||||
/* Conversions. Limit checking is only done on the TO_REG
|
||||
variants.
|
||||
|
||||
********* VOLTAGE CONVERSIONS (Bob Dougherty) ********
|
||||
From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
|
||||
voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
|
||||
voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
|
||||
voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
|
||||
voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
|
||||
voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
|
||||
in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
|
||||
That is:
|
||||
volts = (25*regVal+133)*factor
|
||||
regVal = (volts/factor-133)/25
|
||||
(These conversions were contributed by Jonathan Teh Soon Yew
|
||||
<j.teh@iname.com>) */
|
||||
/*
|
||||
* Conversions. Limit checking is only done on the TO_REG
|
||||
* variants.
|
||||
*
|
||||
******** VOLTAGE CONVERSIONS (Bob Dougherty) ********
|
||||
* From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
|
||||
* voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
|
||||
* voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
|
||||
* voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
|
||||
* voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
|
||||
* voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
|
||||
* in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
|
||||
* That is:
|
||||
* volts = (25*regVal+133)*factor
|
||||
* regVal = (volts/factor-133)/25
|
||||
* (These conversions were contributed by Jonathan Teh Soon Yew
|
||||
* <j.teh@iname.com>)
|
||||
*/
|
||||
static inline u8 IN_TO_REG(long val, int inNum)
|
||||
{
|
||||
/* To avoid floating point, we multiply constants by 10 (100 for +12V).
|
||||
Rounding is done (120500 is actually 133000 - 12500).
|
||||
Remember that val is expressed in 0.001V/bit, which is why we divide
|
||||
by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
|
||||
for the constants. */
|
||||
/*
|
||||
* To avoid floating point, we multiply constants by 10 (100 for +12V).
|
||||
* Rounding is done (120500 is actually 133000 - 12500).
|
||||
* Remember that val is expressed in 0.001V/bit, which is why we divide
|
||||
* by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
|
||||
* for the constants.
|
||||
*/
|
||||
if (inNum <= 1)
|
||||
return (u8)
|
||||
SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255);
|
||||
@ -141,9 +150,11 @@ static inline u8 IN_TO_REG(long val, int inNum)
|
||||
|
||||
static inline long IN_FROM_REG(u8 val, int inNum)
|
||||
{
|
||||
/* To avoid floating point, we multiply constants by 10 (100 for +12V).
|
||||
We also multiply them by 1000 because we want 0.001V/bit for the
|
||||
output value. Rounding is done. */
|
||||
/*
|
||||
* To avoid floating point, we multiply constants by 10 (100 for +12V).
|
||||
* We also multiply them by 1000 because we want 0.001V/bit for the
|
||||
* output value. Rounding is done.
|
||||
*/
|
||||
if (inNum <= 1)
|
||||
return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
|
||||
else if (inNum == 2)
|
||||
@ -155,9 +166,11 @@ static inline long IN_FROM_REG(u8 val, int inNum)
|
||||
}
|
||||
|
||||
/********* FAN RPM CONVERSIONS ********/
|
||||
/* Higher register values = slower fans (the fan's strobe gates a counter).
|
||||
But this chip saturates back at 0, not at 255 like all the other chips.
|
||||
So, 0 means 0 RPM */
|
||||
/*
|
||||
* Higher register values = slower fans (the fan's strobe gates a counter).
|
||||
* But this chip saturates back at 0, not at 255 like all the other chips.
|
||||
* So, 0 means 0 RPM
|
||||
*/
|
||||
static inline u8 FAN_TO_REG(long rpm, int div)
|
||||
{
|
||||
if (rpm == 0)
|
||||
@ -166,42 +179,45 @@ static inline u8 FAN_TO_REG(long rpm, int div)
|
||||
return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
|
||||
}
|
||||
|
||||
#define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div)))
|
||||
#define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \
|
||||
((val) * (div)))
|
||||
|
||||
/******** TEMP CONVERSIONS (Bob Dougherty) *********/
|
||||
/* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
|
||||
if(temp<169)
|
||||
return double(temp)*0.427-32.08;
|
||||
else if(temp>=169 && temp<=202)
|
||||
return double(temp)*0.582-58.16;
|
||||
else
|
||||
return double(temp)*0.924-127.33;
|
||||
|
||||
A fifth-order polynomial fits the unofficial data (provided by Alex van
|
||||
Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
|
||||
numbers on my machine (ie. they agree with what my BIOS tells me).
|
||||
Here's the fifth-order fit to the 8-bit data:
|
||||
temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
|
||||
2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
|
||||
|
||||
(2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
|
||||
finding my typos in this formula!)
|
||||
|
||||
Alas, none of the elegant function-fit solutions will work because we
|
||||
aren't allowed to use floating point in the kernel and doing it with
|
||||
integers doesn't provide enough precision. So we'll do boring old
|
||||
look-up table stuff. The unofficial data (see below) have effectively
|
||||
7-bit resolution (they are rounded to the nearest degree). I'm assuming
|
||||
that the transfer function of the device is monotonic and smooth, so a
|
||||
smooth function fit to the data will allow us to get better precision.
|
||||
I used the 5th-order poly fit described above and solved for
|
||||
VIA register values 0-255. I *10 before rounding, so we get tenth-degree
|
||||
precision. (I could have done all 1024 values for our 10-bit readings,
|
||||
but the function is very linear in the useful range (0-80 deg C), so
|
||||
we'll just use linear interpolation for 10-bit readings.) So, tempLUT
|
||||
is the temp at via register values 0-255: */
|
||||
static const s16 tempLUT[] =
|
||||
{ -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
|
||||
/*
|
||||
* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
|
||||
* if(temp<169)
|
||||
* return double(temp)*0.427-32.08;
|
||||
* else if(temp>=169 && temp<=202)
|
||||
* return double(temp)*0.582-58.16;
|
||||
* else
|
||||
* return double(temp)*0.924-127.33;
|
||||
*
|
||||
* A fifth-order polynomial fits the unofficial data (provided by Alex van
|
||||
* Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
|
||||
* numbers on my machine (ie. they agree with what my BIOS tells me).
|
||||
* Here's the fifth-order fit to the 8-bit data:
|
||||
* temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
|
||||
* 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
|
||||
*
|
||||
* (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
|
||||
* finding my typos in this formula!)
|
||||
*
|
||||
* Alas, none of the elegant function-fit solutions will work because we
|
||||
* aren't allowed to use floating point in the kernel and doing it with
|
||||
* integers doesn't provide enough precision. So we'll do boring old
|
||||
* look-up table stuff. The unofficial data (see below) have effectively
|
||||
* 7-bit resolution (they are rounded to the nearest degree). I'm assuming
|
||||
* that the transfer function of the device is monotonic and smooth, so a
|
||||
* smooth function fit to the data will allow us to get better precision.
|
||||
* I used the 5th-order poly fit described above and solved for
|
||||
* VIA register values 0-255. I *10 before rounding, so we get tenth-degree
|
||||
* precision. (I could have done all 1024 values for our 10-bit readings,
|
||||
* but the function is very linear in the useful range (0-80 deg C), so
|
||||
* we'll just use linear interpolation for 10-bit readings.) So, tempLUT
|
||||
* is the temp at via register values 0-255:
|
||||
*/
|
||||
static const s16 tempLUT[] = {
|
||||
-709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
|
||||
-503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
|
||||
-362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
|
||||
-255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
|
||||
@ -225,29 +241,31 @@ static const s16 tempLUT[] =
|
||||
1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
|
||||
};
|
||||
|
||||
/* the original LUT values from Alex van Kaam <darkside@chello.nl>
|
||||
(for via register values 12-240):
|
||||
{-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
|
||||
-30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
|
||||
-15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
|
||||
-3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
|
||||
12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
|
||||
22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
|
||||
33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
|
||||
45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
|
||||
61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
|
||||
85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
|
||||
|
||||
|
||||
Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
|
||||
an extra term for a good fit to these inverse data!) and then
|
||||
solving for each temp value from -50 to 110 (the useable range for
|
||||
this chip). Here's the fit:
|
||||
viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
|
||||
- 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
|
||||
Note that n=161: */
|
||||
static const u8 viaLUT[] =
|
||||
{ 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
|
||||
/*
|
||||
* the original LUT values from Alex van Kaam <darkside@chello.nl>
|
||||
* (for via register values 12-240):
|
||||
* {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
|
||||
* -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
|
||||
* -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
|
||||
* -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
|
||||
* 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
|
||||
* 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
|
||||
* 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
|
||||
* 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
|
||||
* 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
|
||||
* 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
|
||||
*
|
||||
*
|
||||
* Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
|
||||
* an extra term for a good fit to these inverse data!) and then
|
||||
* solving for each temp value from -50 to 110 (the useable range for
|
||||
* this chip). Here's the fit:
|
||||
* viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
|
||||
* - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
|
||||
* Note that n=161:
|
||||
*/
|
||||
static const u8 viaLUT[] = {
|
||||
12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
|
||||
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
|
||||
41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
|
||||
69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
|
||||
@ -262,9 +280,11 @@ static const u8 viaLUT[] =
|
||||
239, 240
|
||||
};
|
||||
|
||||
/* Converting temps to (8-bit) hyst and over registers
|
||||
No interpolation here.
|
||||
The +50 is because the temps start at -50 */
|
||||
/*
|
||||
* Converting temps to (8-bit) hyst and over registers
|
||||
* No interpolation here.
|
||||
* The +50 is because the temps start at -50
|
||||
*/
|
||||
static inline u8 TEMP_TO_REG(long val)
|
||||
{
|
||||
return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 :
|
||||
@ -290,10 +310,12 @@ static inline long TEMP_FROM_REG10(u16 val)
|
||||
}
|
||||
|
||||
#define DIV_FROM_REG(val) (1 << (val))
|
||||
#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
|
||||
#define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1)
|
||||
|
||||
/* For each registered chip, we need to keep some data in memory.
|
||||
The structure is dynamically allocated. */
|
||||
/*
|
||||
* For each registered chip, we need to keep some data in memory.
|
||||
* The structure is dynamically allocated.
|
||||
*/
|
||||
struct via686a_data {
|
||||
unsigned short addr;
|
||||
const char *name;
|
||||
@ -365,7 +387,12 @@ static ssize_t set_in_min(struct device *dev, struct device_attribute *da,
|
||||
struct via686a_data *data = dev_get_drvdata(dev);
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
int nr = attr->index;
|
||||
unsigned long val = simple_strtoul(buf, NULL, 10);
|
||||
unsigned long val;
|
||||
int err;
|
||||
|
||||
err = kstrtoul(buf, 10, &val);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
mutex_lock(&data->update_lock);
|
||||
data->in_min[nr] = IN_TO_REG(val, nr);
|
||||
@ -379,7 +406,12 @@ static ssize_t set_in_max(struct device *dev, struct device_attribute *da,
|
||||
struct via686a_data *data = dev_get_drvdata(dev);
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
int nr = attr->index;
|
||||
unsigned long val = simple_strtoul(buf, NULL, 10);
|
||||
unsigned long val;
|
||||
int err;
|
||||
|
||||
err = kstrtoul(buf, 10, &val);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
mutex_lock(&data->update_lock);
|
||||
data->in_max[nr] = IN_TO_REG(val, nr);
|
||||
@ -429,7 +461,12 @@ static ssize_t set_temp_over(struct device *dev, struct device_attribute *da,
|
||||
struct via686a_data *data = dev_get_drvdata(dev);
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
int nr = attr->index;
|
||||
int val = simple_strtol(buf, NULL, 10);
|
||||
long val;
|
||||
int err;
|
||||
|
||||
err = kstrtol(buf, 10, &val);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
mutex_lock(&data->update_lock);
|
||||
data->temp_over[nr] = TEMP_TO_REG(val);
|
||||
@ -443,7 +480,12 @@ static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da,
|
||||
struct via686a_data *data = dev_get_drvdata(dev);
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
int nr = attr->index;
|
||||
int val = simple_strtol(buf, NULL, 10);
|
||||
long val;
|
||||
int err;
|
||||
|
||||
err = kstrtol(buf, 10, &val);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
mutex_lock(&data->update_lock);
|
||||
data->temp_hyst[nr] = TEMP_TO_REG(val);
|
||||
@ -471,7 +513,7 @@ static ssize_t show_fan(struct device *dev, struct device_attribute *da,
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
int nr = attr->index;
|
||||
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
|
||||
DIV_FROM_REG(data->fan_div[nr])) );
|
||||
DIV_FROM_REG(data->fan_div[nr])));
|
||||
}
|
||||
static ssize_t show_fan_min(struct device *dev, struct device_attribute *da,
|
||||
char *buf) {
|
||||
@ -479,21 +521,27 @@ static ssize_t show_fan_min(struct device *dev, struct device_attribute *da,
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
int nr = attr->index;
|
||||
return sprintf(buf, "%d\n",
|
||||
FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) );
|
||||
FAN_FROM_REG(data->fan_min[nr],
|
||||
DIV_FROM_REG(data->fan_div[nr])));
|
||||
}
|
||||
static ssize_t show_fan_div(struct device *dev, struct device_attribute *da,
|
||||
char *buf) {
|
||||
struct via686a_data *data = via686a_update_device(dev);
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
int nr = attr->index;
|
||||
return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) );
|
||||
return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
|
||||
}
|
||||
static ssize_t set_fan_min(struct device *dev, struct device_attribute *da,
|
||||
const char *buf, size_t count) {
|
||||
struct via686a_data *data = dev_get_drvdata(dev);
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
int nr = attr->index;
|
||||
int val = simple_strtol(buf, NULL, 10);
|
||||
unsigned long val;
|
||||
int err;
|
||||
|
||||
err = kstrtoul(buf, 10, &val);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
mutex_lock(&data->update_lock);
|
||||
data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
|
||||
@ -506,8 +554,13 @@ static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
|
||||
struct via686a_data *data = dev_get_drvdata(dev);
|
||||
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
|
||||
int nr = attr->index;
|
||||
int val = simple_strtol(buf, NULL, 10);
|
||||
int old;
|
||||
unsigned long val;
|
||||
int err;
|
||||
|
||||
err = kstrtoul(buf, 10, &val);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
mutex_lock(&data->update_lock);
|
||||
old = via686a_read_value(data, VIA686A_REG_FANDIV);
|
||||
@ -530,10 +583,13 @@ show_fan_offset(1);
|
||||
show_fan_offset(2);
|
||||
|
||||
/* Alarms */
|
||||
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) {
|
||||
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct via686a_data *data = via686a_update_device(dev);
|
||||
return sprintf(buf, "%u\n", data->alarms);
|
||||
}
|
||||
|
||||
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
|
||||
|
||||
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
|
||||
@ -641,7 +697,8 @@ static int __devinit via686a_probe(struct platform_device *pdev)
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
if (!(data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL))) {
|
||||
data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL);
|
||||
if (!data) {
|
||||
err = -ENOMEM;
|
||||
goto exit_release;
|
||||
}
|
||||
@ -655,7 +712,8 @@ static int __devinit via686a_probe(struct platform_device *pdev)
|
||||
via686a_init_device(data);
|
||||
|
||||
/* Register sysfs hooks */
|
||||
if ((err = sysfs_create_group(&pdev->dev.kobj, &via686a_group)))
|
||||
err = sysfs_create_group(&pdev->dev.kobj, &via686a_group);
|
||||
if (err)
|
||||
goto exit_free;
|
||||
|
||||
data->hwmon_dev = hwmon_device_register(&pdev->dev);
|
||||
@ -748,10 +806,11 @@ static struct via686a_data *via686a_update_device(struct device *dev)
|
||||
via686a_read_value(data,
|
||||
VIA686A_REG_TEMP_HYST[i]);
|
||||
}
|
||||
/* add in lower 2 bits
|
||||
temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
|
||||
temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
|
||||
temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
|
||||
/*
|
||||
* add in lower 2 bits
|
||||
* temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
|
||||
* temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
|
||||
* temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
|
||||
*/
|
||||
data->temp[0] |= (via686a_read_value(data,
|
||||
VIA686A_REG_TEMP_LOW1)
|
||||
@ -779,9 +838,8 @@ static struct via686a_data *via686a_update_device(struct device *dev)
|
||||
|
||||
static DEFINE_PCI_DEVICE_TABLE(via686a_pci_ids) = {
|
||||
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
|
||||
{ 0, }
|
||||
{ }
|
||||
};
|
||||
|
||||
MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
|
||||
|
||||
static int __devinit via686a_device_add(unsigned short address)
|
||||
@ -872,7 +930,8 @@ static int __devinit via686a_pci_probe(struct pci_dev *dev,
|
||||
if (via686a_device_add(address))
|
||||
goto exit_unregister;
|
||||
|
||||
/* Always return failure here. This is to allow other drivers to bind
|
||||
/*
|
||||
* Always return failure here. This is to allow other drivers to bind
|
||||
* to this pci device. We don't really want to have control over the
|
||||
* pci device, we only wanted to read as few register values from it.
|
||||
*/
|
||||
|
Loading…
Reference in New Issue
Block a user