iio: magnetometer: add ti tmag5273 driver

Add support for TI TMAG5273 Low-Power Linear 3D Hall-Effect Sensor.
Additionally to temperature and magnetic X, Y and Z-axes the angle and
magnitude are reported.
The sensor is operating in continuous measurement mode and changes to sleep
mode if not used for 5 seconds.

Datasheet: https://www.ti.com/lit/gpn/tmag5273
Signed-off-by: Gerald Loacker <gerald.loacker@wolfvision.net>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20221201072220.402585-4-gerald.loacker@wolfvision.net
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
This commit is contained in:
Gerald Loacker 2022-12-01 08:22:20 +01:00 committed by Jonathan Cameron
parent fbb6d04eab
commit 866a138917
4 changed files with 758 additions and 0 deletions

View File

@ -20912,6 +20912,7 @@ M: Gerald Loacker <gerald.loacker@wolfvision.net>
L: linux-iio@vger.kernel.org
S: Maintained
F: Documentation/devicetree/bindings/iio/magnetometer/ti,tmag5273.yaml
F: drivers/iio/magnetometer/tmag5273.c
TI TRF7970A NFC DRIVER
M: Mark Greer <mgreer@animalcreek.com>

View File

@ -208,6 +208,18 @@ config SENSORS_RM3100_SPI
To compile this driver as a module, choose M here: the module
will be called rm3100-spi.
config TI_TMAG5273
tristate "TI TMAG5273 Low-Power Linear 3D Hall-Effect Sensor"
depends on I2C
select REGMAP_I2C
help
Say Y here to add support for the TI TMAG5273 Low-Power
Linear 3D Hall-Effect Sensor.
This driver can also be compiled as a module.
To compile this driver as a module, choose M here: the module
will be called tmag5273.
config YAMAHA_YAS530
tristate "Yamaha YAS530 family of 3-Axis Magnetometers (I2C)"
depends on I2C

View File

@ -29,4 +29,6 @@ obj-$(CONFIG_SENSORS_RM3100) += rm3100-core.o
obj-$(CONFIG_SENSORS_RM3100_I2C) += rm3100-i2c.o
obj-$(CONFIG_SENSORS_RM3100_SPI) += rm3100-spi.o
obj-$(CONFIG_TI_TMAG5273) += tmag5273.o
obj-$(CONFIG_YAMAHA_YAS530) += yamaha-yas530.o

View File

@ -0,0 +1,743 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for the TI TMAG5273 Low-Power Linear 3D Hall-Effect Sensor
*
* Copyright (C) 2022 WolfVision GmbH
*
* Author: Gerald Loacker <gerald.loacker@wolfvision.net>
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#define TMAG5273_DEVICE_CONFIG_1 0x00
#define TMAG5273_DEVICE_CONFIG_2 0x01
#define TMAG5273_SENSOR_CONFIG_1 0x02
#define TMAG5273_SENSOR_CONFIG_2 0x03
#define TMAG5273_X_THR_CONFIG 0x04
#define TMAG5273_Y_THR_CONFIG 0x05
#define TMAG5273_Z_THR_CONFIG 0x06
#define TMAG5273_T_CONFIG 0x07
#define TMAG5273_INT_CONFIG_1 0x08
#define TMAG5273_MAG_GAIN_CONFIG 0x09
#define TMAG5273_MAG_OFFSET_CONFIG_1 0x0A
#define TMAG5273_MAG_OFFSET_CONFIG_2 0x0B
#define TMAG5273_I2C_ADDRESS 0x0C
#define TMAG5273_DEVICE_ID 0x0D
#define TMAG5273_MANUFACTURER_ID_LSB 0x0E
#define TMAG5273_MANUFACTURER_ID_MSB 0x0F
#define TMAG5273_T_MSB_RESULT 0x10
#define TMAG5273_T_LSB_RESULT 0x11
#define TMAG5273_X_MSB_RESULT 0x12
#define TMAG5273_X_LSB_RESULT 0x13
#define TMAG5273_Y_MSB_RESULT 0x14
#define TMAG5273_Y_LSB_RESULT 0x15
#define TMAG5273_Z_MSB_RESULT 0x16
#define TMAG5273_Z_LSB_RESULT 0x17
#define TMAG5273_CONV_STATUS 0x18
#define TMAG5273_ANGLE_RESULT_MSB 0x19
#define TMAG5273_ANGLE_RESULT_LSB 0x1A
#define TMAG5273_MAGNITUDE_RESULT 0x1B
#define TMAG5273_DEVICE_STATUS 0x1C
#define TMAG5273_MAX_REG TMAG5273_DEVICE_STATUS
#define TMAG5273_AUTOSLEEP_DELAY_MS 5000
#define TMAG5273_MAX_AVERAGE 32
/*
* bits in the TMAG5273_MANUFACTURER_ID_LSB / MSB register
* 16-bit unique manufacturer ID 0x49 / 0x54 = "TI"
*/
#define TMAG5273_MANUFACTURER_ID 0x5449
/* bits in the TMAG5273_DEVICE_CONFIG_1 register */
#define TMAG5273_AVG_MODE_MASK GENMASK(4, 2)
#define TMAG5273_AVG_1_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 0)
#define TMAG5273_AVG_2_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 1)
#define TMAG5273_AVG_4_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 2)
#define TMAG5273_AVG_8_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 3)
#define TMAG5273_AVG_16_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 4)
#define TMAG5273_AVG_32_MODE FIELD_PREP(TMAG5273_AVG_MODE_MASK, 5)
/* bits in the TMAG5273_DEVICE_CONFIG_2 register */
#define TMAG5273_OP_MODE_MASK GENMASK(1, 0)
#define TMAG5273_OP_MODE_STANDBY FIELD_PREP(TMAG5273_OP_MODE_MASK, 0)
#define TMAG5273_OP_MODE_SLEEP FIELD_PREP(TMAG5273_OP_MODE_MASK, 1)
#define TMAG5273_OP_MODE_CONT FIELD_PREP(TMAG5273_OP_MODE_MASK, 2)
#define TMAG5273_OP_MODE_WAKEUP FIELD_PREP(TMAG5273_OP_MODE_MASK, 3)
/* bits in the TMAG5273_SENSOR_CONFIG_1 register */
#define TMAG5273_MAG_CH_EN_MASK GENMASK(7, 4)
#define TMAG5273_MAG_CH_EN_X_Y_Z 7
/* bits in the TMAG5273_SENSOR_CONFIG_2 register */
#define TMAG5273_Z_RANGE_MASK BIT(0)
#define TMAG5273_X_Y_RANGE_MASK BIT(1)
#define TMAG5273_ANGLE_EN_MASK GENMASK(3, 2)
#define TMAG5273_ANGLE_EN_OFF 0
#define TMAG5273_ANGLE_EN_X_Y 1
#define TMAG5273_ANGLE_EN_Y_Z 2
#define TMAG5273_ANGLE_EN_X_Z 3
/* bits in the TMAG5273_T_CONFIG register */
#define TMAG5273_T_CH_EN BIT(0)
/* bits in the TMAG5273_DEVICE_ID register */
#define TMAG5273_VERSION_MASK GENMASK(1, 0)
/* bits in the TMAG5273_CONV_STATUS register */
#define TMAG5273_CONV_STATUS_COMPLETE BIT(0)
enum tmag5273_channels {
TEMPERATURE = 0,
AXIS_X,
AXIS_Y,
AXIS_Z,
ANGLE,
MAGNITUDE,
};
enum tmag5273_scale_index {
MAGN_RANGE_LOW = 0,
MAGN_RANGE_HIGH,
MAGN_RANGE_NUM
};
/* state container for the TMAG5273 driver */
struct tmag5273_data {
struct device *dev;
unsigned int devid;
unsigned int version;
char name[16];
unsigned int conv_avg;
unsigned int scale;
enum tmag5273_scale_index scale_index;
unsigned int angle_measurement;
struct regmap *map;
struct regulator *vcc;
/*
* Locks the sensor for exclusive use during a measurement (which
* involves several register transactions so the regmap lock is not
* enough) so that measurements get serialized in a
* first-come-first-serve manner.
*/
struct mutex lock;
};
static const char *const tmag5273_angle_names[] = { "off", "x-y", "y-z", "x-z" };
/*
* Averaging enables additional sampling of the sensor data to reduce the noise
* effect, but also increases conversion time.
*/
static const unsigned int tmag5273_avg_table[] = {
1, 2, 4, 8, 16, 32,
};
/*
* Magnetic resolution in Gauss for different TMAG5273 versions.
* Scale[Gauss] = Range[mT] * 1000 / 2^15 * 10, (1 mT = 10 Gauss)
* Only version 1 and 2 are valid, version 0 and 3 are reserved.
*/
static const struct iio_val_int_plus_micro tmag5273_scale[][MAGN_RANGE_NUM] = {
{ { 0, 0 }, { 0, 0 } },
{ { 0, 12200 }, { 0, 24400 } },
{ { 0, 40600 }, { 0, 81200 } },
{ { 0, 0 }, { 0, 0 } },
};
static int tmag5273_get_measure(struct tmag5273_data *data, s16 *t, s16 *x,
s16 *y, s16 *z, u16 *angle, u16 *magnitude)
{
unsigned int status, val;
__be16 reg_data[4];
int ret;
mutex_lock(&data->lock);
/*
* Max. conversion time is 2425 us in 32x averaging mode for all three
* channels. Since we are in continuous measurement mode, a measurement
* may already be there, so poll for completed measurement with
* timeout.
*/
ret = regmap_read_poll_timeout(data->map, TMAG5273_CONV_STATUS, status,
status & TMAG5273_CONV_STATUS_COMPLETE,
100, 10000);
if (ret) {
dev_err(data->dev, "timeout waiting for measurement\n");
goto out_unlock;
}
ret = regmap_bulk_read(data->map, TMAG5273_T_MSB_RESULT, reg_data,
sizeof(reg_data));
if (ret)
goto out_unlock;
*t = be16_to_cpu(reg_data[0]);
*x = be16_to_cpu(reg_data[1]);
*y = be16_to_cpu(reg_data[2]);
*z = be16_to_cpu(reg_data[3]);
ret = regmap_bulk_read(data->map, TMAG5273_ANGLE_RESULT_MSB,
&reg_data[0], sizeof(reg_data[0]));
if (ret)
goto out_unlock;
/*
* angle has 9 bits integer value and 4 bits fractional part
* 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
* 0 0 0 a a a a a a a a a f f f f
*/
*angle = be16_to_cpu(reg_data[0]);
ret = regmap_read(data->map, TMAG5273_MAGNITUDE_RESULT, &val);
if (ret < 0)
goto out_unlock;
*magnitude = val;
out_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int tmag5273_write_osr(struct tmag5273_data *data, int val)
{
int i;
if (val == data->conv_avg)
return 0;
for (i = 0; i < ARRAY_SIZE(tmag5273_avg_table); i++) {
if (tmag5273_avg_table[i] == val)
break;
}
if (i == ARRAY_SIZE(tmag5273_avg_table))
return -EINVAL;
data->conv_avg = val;
return regmap_update_bits(data->map, TMAG5273_DEVICE_CONFIG_1,
TMAG5273_AVG_MODE_MASK,
FIELD_PREP(TMAG5273_AVG_MODE_MASK, i));
}
static int tmag5273_write_scale(struct tmag5273_data *data, int scale_micro)
{
u32 value;
int i;
for (i = 0; i < ARRAY_SIZE(tmag5273_scale[0]); i++) {
if (tmag5273_scale[data->version][i].micro == scale_micro)
break;
}
if (i == ARRAY_SIZE(tmag5273_scale[0]))
return -EINVAL;
data->scale_index = i;
if (data->scale_index == MAGN_RANGE_LOW)
value = 0;
else
value = TMAG5273_Z_RANGE_MASK | TMAG5273_X_Y_RANGE_MASK;
return regmap_update_bits(data->map, TMAG5273_SENSOR_CONFIG_2,
TMAG5273_Z_RANGE_MASK | TMAG5273_X_Y_RANGE_MASK, value);
}
static int tmag5273_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct tmag5273_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*vals = tmag5273_avg_table;
*type = IIO_VAL_INT;
*length = ARRAY_SIZE(tmag5273_avg_table);
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_MAGN:
*type = IIO_VAL_INT_PLUS_MICRO;
*vals = (int *)tmag5273_scale[data->version];
*length = ARRAY_SIZE(tmag5273_scale[data->version]) *
MAGN_RANGE_NUM;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int tmag5273_read_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, int *val,
int *val2, long mask)
{
struct tmag5273_data *data = iio_priv(indio_dev);
s16 t, x, y, z;
u16 angle, magnitude;
int ret;
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
case IIO_CHAN_INFO_RAW:
ret = pm_runtime_resume_and_get(data->dev);
if (ret < 0)
return ret;
ret = tmag5273_get_measure(data, &t, &x, &y, &z, &angle, &magnitude);
if (ret)
return ret;
pm_runtime_mark_last_busy(data->dev);
pm_runtime_put_autosuspend(data->dev);
switch (chan->address) {
case TEMPERATURE:
*val = t;
return IIO_VAL_INT;
case AXIS_X:
*val = x;
return IIO_VAL_INT;
case AXIS_Y:
*val = y;
return IIO_VAL_INT;
case AXIS_Z:
*val = z;
return IIO_VAL_INT;
case ANGLE:
*val = angle;
return IIO_VAL_INT;
case MAGNITUDE:
*val = magnitude;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_TEMP:
/*
* Convert device specific value to millicelsius.
* Resolution from the sensor is 60.1 LSB/celsius and
* the reference value at 25 celsius is 17508 LSBs.
*/
*val = 10000;
*val2 = 601;
return IIO_VAL_FRACTIONAL;
case IIO_MAGN:
/* Magnetic resolution in uT */
*val = 0;
*val2 = tmag5273_scale[data->version]
[data->scale_index].micro;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_ANGL:
/*
* Angle is in degrees and has four fractional bits,
* therefore use 1/16 * pi/180 to convert to radians.
*/
*val = 1000;
*val2 = 916732;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
switch (chan->type) {
case IIO_TEMP:
*val = -266314;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*val = data->conv_avg;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int tmag5273_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct tmag5273_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
return tmag5273_write_osr(data, val);
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_MAGN:
if (val)
return -EINVAL;
return tmag5273_write_scale(data, val2);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
#define TMAG5273_AXIS_CHANNEL(axis, index) \
{ \
.type = IIO_MAGN, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_all_available = \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.address = index, \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_CPU, \
}, \
}
static const struct iio_chan_spec tmag5273_channels[] = {
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.address = TEMPERATURE,
.scan_index = TEMPERATURE,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
TMAG5273_AXIS_CHANNEL(X, AXIS_X),
TMAG5273_AXIS_CHANNEL(Y, AXIS_Y),
TMAG5273_AXIS_CHANNEL(Z, AXIS_Z),
{
.type = IIO_ANGL,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all =
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
.info_mask_shared_by_all_available =
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
.address = ANGLE,
.scan_index = ANGLE,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
{
.type = IIO_DISTANCE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_all =
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
.info_mask_shared_by_all_available =
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
.address = MAGNITUDE,
.scan_index = MAGNITUDE,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
IIO_CHAN_SOFT_TIMESTAMP(6),
};
static const struct iio_info tmag5273_info = {
.read_avail = tmag5273_read_avail,
.read_raw = tmag5273_read_raw,
.write_raw = tmag5273_write_raw,
};
static bool tmag5273_volatile_reg(struct device *dev, unsigned int reg)
{
return reg >= TMAG5273_T_MSB_RESULT && reg <= TMAG5273_MAGNITUDE_RESULT;
}
static const struct regmap_config tmag5273_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = TMAG5273_MAX_REG,
.volatile_reg = tmag5273_volatile_reg,
};
static int tmag5273_set_operating_mode(struct tmag5273_data *data,
unsigned int val)
{
return regmap_write(data->map, TMAG5273_DEVICE_CONFIG_2, val);
}
static void tmag5273_read_device_property(struct tmag5273_data *data)
{
struct device *dev = data->dev;
const char *str;
int ret;
data->angle_measurement = TMAG5273_ANGLE_EN_X_Y;
ret = device_property_read_string(dev, "ti,angle-measurement", &str);
if (ret)
return;
ret = match_string(tmag5273_angle_names,
ARRAY_SIZE(tmag5273_angle_names), str);
if (ret >= 0)
data->angle_measurement = ret;
}
static void tmag5273_wake_up(struct tmag5273_data *data)
{
int val;
/* Wake up the chip by sending a dummy I2C command */
regmap_read(data->map, TMAG5273_DEVICE_ID, &val);
/*
* Time to go to stand-by mode from sleep mode is 50us
* typically, during this time no I2C access is possible.
*/
usleep_range(80, 200);
}
static int tmag5273_chip_init(struct tmag5273_data *data)
{
int ret;
ret = regmap_write(data->map, TMAG5273_DEVICE_CONFIG_1,
TMAG5273_AVG_32_MODE);
if (ret)
return ret;
data->conv_avg = 32;
ret = regmap_write(data->map, TMAG5273_DEVICE_CONFIG_2,
TMAG5273_OP_MODE_CONT);
if (ret)
return ret;
ret = regmap_write(data->map, TMAG5273_SENSOR_CONFIG_1,
FIELD_PREP(TMAG5273_MAG_CH_EN_MASK,
TMAG5273_MAG_CH_EN_X_Y_Z));
if (ret)
return ret;
ret = regmap_write(data->map, TMAG5273_SENSOR_CONFIG_2,
FIELD_PREP(TMAG5273_ANGLE_EN_MASK,
data->angle_measurement));
if (ret)
return ret;
data->scale_index = MAGN_RANGE_LOW;
return regmap_write(data->map, TMAG5273_T_CONFIG, TMAG5273_T_CH_EN);
}
static int tmag5273_check_device_id(struct tmag5273_data *data)
{
__le16 devid;
int val, ret;
ret = regmap_read(data->map, TMAG5273_DEVICE_ID, &val);
if (ret)
return dev_err_probe(data->dev, ret, "failed to power on device\n");
data->version = FIELD_PREP(TMAG5273_VERSION_MASK, val);
ret = regmap_bulk_read(data->map, TMAG5273_MANUFACTURER_ID_LSB, &devid,
sizeof(devid));
if (ret)
return dev_err_probe(data->dev, ret, "failed to read device ID\n");
data->devid = le16_to_cpu(devid);
switch (data->devid) {
case TMAG5273_MANUFACTURER_ID:
/*
* The device name matches the orderable part number. 'x' stands
* for A, B, C or D devices, which have different I2C addresses.
* Versions 1 or 2 (0 and 3 is reserved) stands for different
* magnetic strengths.
*/
snprintf(data->name, sizeof(data->name), "tmag5273x%1u", data->version);
if (data->version < 1 || data->version > 2)
dev_warn(data->dev, "Unsupported device %s\n", data->name);
return 0;
default:
/*
* Only print warning in case of unknown device ID to allow
* fallback compatible in device tree.
*/
dev_warn(data->dev, "Unknown device ID 0x%x\n", data->devid);
return 0;
}
}
static void tmag5273_power_down(void *data)
{
tmag5273_set_operating_mode(data, TMAG5273_OP_MODE_SLEEP);
}
static int tmag5273_probe(struct i2c_client *i2c)
{
struct device *dev = &i2c->dev;
struct tmag5273_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
data->dev = dev;
i2c_set_clientdata(i2c, indio_dev);
data->map = devm_regmap_init_i2c(i2c, &tmag5273_regmap_config);
if (IS_ERR(data->map))
return dev_err_probe(dev, PTR_ERR(data->map),
"failed to allocate register map\n");
mutex_init(&data->lock);
ret = devm_regulator_get_enable(dev, "vcc");
if (ret)
return dev_err_probe(dev, ret, "failed to enable regulator\n");
tmag5273_wake_up(data);
ret = tmag5273_check_device_id(data);
if (ret)
return ret;
ret = tmag5273_set_operating_mode(data, TMAG5273_OP_MODE_CONT);
if (ret)
return dev_err_probe(dev, ret, "failed to power on device\n");
/*
* Register powerdown deferred callback which suspends the chip
* after module unloaded.
*
* TMAG5273 should be in SUSPEND mode in the two cases:
* 1) When driver is loaded, but we do not have any data or
* configuration requests to it (we are solving it using
* autosuspend feature).
* 2) When driver is unloaded and device is not used (devm action is
* used in this case).
*/
ret = devm_add_action_or_reset(dev, tmag5273_power_down, data);
if (ret)
return dev_err_probe(dev, ret, "failed to add powerdown action\n");
ret = pm_runtime_set_active(dev);
if (ret < 0)
return ret;
ret = devm_pm_runtime_enable(dev);
if (ret)
return ret;
pm_runtime_get_noresume(dev);
pm_runtime_set_autosuspend_delay(dev, TMAG5273_AUTOSLEEP_DELAY_MS);
pm_runtime_use_autosuspend(dev);
tmag5273_read_device_property(data);
ret = tmag5273_chip_init(data);
if (ret)
return dev_err_probe(dev, ret, "failed to init device\n");
indio_dev->info = &tmag5273_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->name = data->name;
indio_dev->channels = tmag5273_channels;
indio_dev->num_channels = ARRAY_SIZE(tmag5273_channels);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return dev_err_probe(dev, ret, "device register failed\n");
return 0;
}
static int tmag5273_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tmag5273_data *data = iio_priv(indio_dev);
int ret;
ret = tmag5273_set_operating_mode(data, TMAG5273_OP_MODE_SLEEP);
if (ret)
dev_err(dev, "failed to power off device (%pe)\n", ERR_PTR(ret));
return ret;
}
static int tmag5273_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tmag5273_data *data = iio_priv(indio_dev);
int ret;
tmag5273_wake_up(data);
ret = tmag5273_set_operating_mode(data, TMAG5273_OP_MODE_CONT);
if (ret)
dev_err(dev, "failed to power on device (%pe)\n", ERR_PTR(ret));
return ret;
}
static DEFINE_RUNTIME_DEV_PM_OPS(tmag5273_pm_ops,
tmag5273_runtime_suspend, tmag5273_runtime_resume,
NULL);
static const struct i2c_device_id tmag5273_id[] = {
{ "tmag5273" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, tmag5273_id);
static const struct of_device_id tmag5273_of_match[] = {
{ .compatible = "ti,tmag5273" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, tmag5273_of_match);
static struct i2c_driver tmag5273_driver = {
.driver = {
.name = "tmag5273",
.of_match_table = tmag5273_of_match,
.pm = pm_ptr(&tmag5273_pm_ops),
},
.probe_new = tmag5273_probe,
.id_table = tmag5273_id,
};
module_i2c_driver(tmag5273_driver);
MODULE_DESCRIPTION("TI TMAG5273 Low-Power Linear 3D Hall-Effect Sensor driver");
MODULE_AUTHOR("Gerald Loacker <gerald.loacker@wolfvision.net>");
MODULE_LICENSE("GPL");