[media] media: ti-vpe: Add support for SEQ_TB buffers

The video source can generate the data in the SEQ_TB buffer format.
In the case of TI SoC, the IVA_HD can generate the interlaced content in
the SEQ_TB buffer format. This is the format where the top and bottom field
data can be contained in a single buffer. For example, for NV12, interlaced
format, the data in Y buffer will be arranged as Y-top followed by
Y-bottom. And likewise for UV plane.

Also, queuing one buffer of SEQ_TB is equivalent to queuing two different
buffers for top and bottom fields. Driver needs to take care of this when
handling source buffer lists.

Signed-off-by: Nikhil Devshatwar <nikhil.nd@ti.com>
Signed-off-by: Benoit Parrot <bparrot@ti.com>
Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
This commit is contained in:
Nikhil Devshatwar 2016-11-18 21:20:17 -02:00 committed by Mauro Carvalho Chehab
parent 5dc07f20b6
commit 823f4208b2

View File

@ -320,9 +320,13 @@ struct vpe_q_data {
}; };
/* vpe_q_data flag bits */ /* vpe_q_data flag bits */
#define Q_DATA_FRAME_1D (1 << 0) #define Q_DATA_FRAME_1D BIT(0)
#define Q_DATA_MODE_TILED (1 << 1) #define Q_DATA_MODE_TILED BIT(1)
#define Q_DATA_INTERLACED (1 << 2) #define Q_DATA_INTERLACED_ALTERNATE BIT(2)
#define Q_DATA_INTERLACED_SEQ_TB BIT(3)
#define Q_IS_INTERLACED (Q_DATA_INTERLACED_ALTERNATE | \
Q_DATA_INTERLACED_SEQ_TB)
enum { enum {
Q_DATA_SRC = 0, Q_DATA_SRC = 0,
@ -638,7 +642,7 @@ static void set_us_coefficients(struct vpe_ctx *ctx)
cp = &us_coeffs[0].anchor_fid0_c0; cp = &us_coeffs[0].anchor_fid0_c0;
if (s_q_data->flags & Q_DATA_INTERLACED) /* interlaced */ if (s_q_data->flags & Q_IS_INTERLACED) /* interlaced */
cp += sizeof(us_coeffs[0]) / sizeof(*cp); cp += sizeof(us_coeffs[0]) / sizeof(*cp);
end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp); end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
@ -765,8 +769,7 @@ static void set_dei_regs(struct vpe_ctx *ctx)
* for both progressive and interlace content in interlace bypass mode. * for both progressive and interlace content in interlace bypass mode.
* It has been recommended not to use progressive bypass mode. * It has been recommended not to use progressive bypass mode.
*/ */
if ((!ctx->deinterlacing && (s_q_data->flags & Q_DATA_INTERLACED)) || if (!(s_q_data->flags & Q_IS_INTERLACED) || !ctx->deinterlacing) {
!(s_q_data->flags & Q_DATA_INTERLACED)) {
deinterlace = false; deinterlace = false;
val = VPE_DEI_INTERLACE_BYPASS; val = VPE_DEI_INTERLACE_BYPASS;
} }
@ -834,8 +837,8 @@ static int set_srcdst_params(struct vpe_ctx *ctx)
ctx->sequence = 0; ctx->sequence = 0;
ctx->field = V4L2_FIELD_TOP; ctx->field = V4L2_FIELD_TOP;
if ((s_q_data->flags & Q_DATA_INTERLACED) && if ((s_q_data->flags & Q_IS_INTERLACED) &&
!(d_q_data->flags & Q_DATA_INTERLACED)) { !(d_q_data->flags & Q_IS_INTERLACED)) {
int bytes_per_line; int bytes_per_line;
const struct vpdma_data_format *mv = const struct vpdma_data_format *mv =
&vpdma_misc_fmts[VPDMA_DATA_FMT_MV]; &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
@ -1066,6 +1069,28 @@ static void add_in_dtd(struct vpe_ctx *ctx, int port)
port); port);
return; return;
} }
if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB) {
/*
* Use top or bottom field from same vb alternately
* f,f-1,f-2 = TBT when seq is even
* f,f-1,f-2 = BTB when seq is odd
*/
field = (p_data->vb_index + (ctx->sequence % 2)) % 2;
if (field) {
/*
* bottom field of a SEQ_TB buffer
* Skip the top field data by
*/
int height = q_data->height / 2;
int bpp = fmt->fourcc == V4L2_PIX_FMT_NV12 ?
1 : (vpdma_fmt->depth >> 3);
if (plane)
height /= 2;
dma_addr += q_data->width * height * bpp;
}
}
} }
if (q_data->flags & Q_DATA_FRAME_1D) if (q_data->flags & Q_DATA_FRAME_1D)
@ -1114,9 +1139,22 @@ static void device_run(void *priv)
struct vpe_ctx *ctx = priv; struct vpe_ctx *ctx = priv;
struct sc_data *sc = ctx->dev->sc; struct sc_data *sc = ctx->dev->sc;
struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST]; struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
if (ctx->deinterlacing && s_q_data->flags & Q_DATA_INTERLACED_SEQ_TB &&
ctx->sequence % 2 == 0) {
/* When using SEQ_TB buffers, When using it first time,
* No need to remove the buffer as the next field is present
* in the same buffer. (so that job_ready won't fail)
* It will be removed when using bottom field
*/
ctx->src_vbs[0] = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
WARN_ON(ctx->src_vbs[0] == NULL);
} else {
ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
WARN_ON(ctx->src_vbs[0] == NULL); WARN_ON(ctx->src_vbs[0] == NULL);
}
ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
WARN_ON(ctx->dst_vb == NULL); WARN_ON(ctx->dst_vb == NULL);
@ -1320,7 +1358,7 @@ static irqreturn_t vpe_irq(int irq_vpe, void *data)
d_vb->sequence = ctx->sequence; d_vb->sequence = ctx->sequence;
d_q_data = &ctx->q_data[Q_DATA_DST]; d_q_data = &ctx->q_data[Q_DATA_DST];
if (d_q_data->flags & Q_DATA_INTERLACED) { if (d_q_data->flags & Q_IS_INTERLACED) {
d_vb->field = ctx->field; d_vb->field = ctx->field;
if (ctx->field == V4L2_FIELD_BOTTOM) { if (ctx->field == V4L2_FIELD_BOTTOM) {
ctx->sequence++; ctx->sequence++;
@ -1334,12 +1372,28 @@ static irqreturn_t vpe_irq(int irq_vpe, void *data)
ctx->sequence++; ctx->sequence++;
} }
if (ctx->deinterlacing) if (ctx->deinterlacing) {
/*
* Allow source buffer to be dequeued only if it won't be used
* in the next iteration. All vbs are initialized to first
* buffer and we are shifting buffers every iteration, for the
* first two iterations, no buffer will be dequeued.
* This ensures that driver will keep (n-2)th (n-1)th and (n)th
* field when deinterlacing is enabled
*/
if (ctx->src_vbs[2] != ctx->src_vbs[1])
s_vb = ctx->src_vbs[2]; s_vb = ctx->src_vbs[2];
else
s_vb = NULL;
}
spin_lock_irqsave(&dev->lock, flags); spin_lock_irqsave(&dev->lock, flags);
if (s_vb)
v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE); v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE); v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
spin_unlock_irqrestore(&dev->lock, flags); spin_unlock_irqrestore(&dev->lock, flags);
if (ctx->deinterlacing) { if (ctx->deinterlacing) {
@ -1455,7 +1509,7 @@ static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp; struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
struct v4l2_plane_pix_format *plane_fmt; struct v4l2_plane_pix_format *plane_fmt;
unsigned int w_align; unsigned int w_align;
int i, depth, depth_bytes; int i, depth, depth_bytes, height;
if (!fmt || !(fmt->types & type)) { if (!fmt || !(fmt->types & type)) {
vpe_err(ctx->dev, "Fourcc format (0x%08x) invalid.\n", vpe_err(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
@ -1463,7 +1517,8 @@ static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
return -EINVAL; return -EINVAL;
} }
if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE) if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE
&& pix->field != V4L2_FIELD_SEQ_TB)
pix->field = V4L2_FIELD_NONE; pix->field = V4L2_FIELD_NONE;
depth = fmt->vpdma_fmt[VPE_LUMA]->depth; depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
@ -1497,6 +1552,15 @@ static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
pix->num_planes = fmt->coplanar ? 2 : 1; pix->num_planes = fmt->coplanar ? 2 : 1;
pix->pixelformat = fmt->fourcc; pix->pixelformat = fmt->fourcc;
/*
* For the actual image parameters, we need to consider the field
* height of the image for SEQ_TB buffers.
*/
if (pix->field == V4L2_FIELD_SEQ_TB)
height = pix->height / 2;
else
height = pix->height;
if (!pix->colorspace) { if (!pix->colorspace) {
if (fmt->fourcc == V4L2_PIX_FMT_RGB24 || if (fmt->fourcc == V4L2_PIX_FMT_RGB24 ||
fmt->fourcc == V4L2_PIX_FMT_BGR24 || fmt->fourcc == V4L2_PIX_FMT_BGR24 ||
@ -1504,7 +1568,7 @@ static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
fmt->fourcc == V4L2_PIX_FMT_BGR32) { fmt->fourcc == V4L2_PIX_FMT_BGR32) {
pix->colorspace = V4L2_COLORSPACE_SRGB; pix->colorspace = V4L2_COLORSPACE_SRGB;
} else { } else {
if (pix->height > 1280) /* HD */ if (height > 1280) /* HD */
pix->colorspace = V4L2_COLORSPACE_REC709; pix->colorspace = V4L2_COLORSPACE_REC709;
else /* SD */ else /* SD */
pix->colorspace = V4L2_COLORSPACE_SMPTE170M; pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
@ -1581,9 +1645,15 @@ static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
q_data->c_rect.height = q_data->height; q_data->c_rect.height = q_data->height;
if (q_data->field == V4L2_FIELD_ALTERNATE) if (q_data->field == V4L2_FIELD_ALTERNATE)
q_data->flags |= Q_DATA_INTERLACED; q_data->flags |= Q_DATA_INTERLACED_ALTERNATE;
else if (q_data->field == V4L2_FIELD_SEQ_TB)
q_data->flags |= Q_DATA_INTERLACED_SEQ_TB;
else else
q_data->flags &= ~Q_DATA_INTERLACED; q_data->flags &= ~Q_IS_INTERLACED;
/* the crop height is halved for the case of SEQ_TB buffers */
if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
q_data->c_rect.height /= 2;
vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d", vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
f->type, q_data->width, q_data->height, q_data->fmt->fourcc, f->type, q_data->width, q_data->height, q_data->fmt->fourcc,
@ -1619,6 +1689,7 @@ static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s) static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
{ {
struct vpe_q_data *q_data; struct vpe_q_data *q_data;
int height;
if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) && if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
(s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)) (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
@ -1653,13 +1724,22 @@ static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
return -EINVAL; return -EINVAL;
} }
/*
* For SEQ_TB buffers, crop height should be less than the height of
* the field height, not the buffer height
*/
if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB)
height = q_data->height / 2;
else
height = q_data->height;
if (s->r.top < 0 || s->r.left < 0) { if (s->r.top < 0 || s->r.left < 0) {
vpe_err(ctx->dev, "negative values for top and left\n"); vpe_err(ctx->dev, "negative values for top and left\n");
s->r.top = s->r.left = 0; s->r.top = s->r.left = 0;
} }
v4l_bound_align_image(&s->r.width, MIN_W, q_data->width, 1, v4l_bound_align_image(&s->r.width, MIN_W, q_data->width, 1,
&s->r.height, MIN_H, q_data->height, H_ALIGN, S_ALIGN); &s->r.height, MIN_H, height, H_ALIGN, S_ALIGN);
/* adjust left/top if cropping rectangle is out of bounds */ /* adjust left/top if cropping rectangle is out of bounds */
if (s->r.left + s->r.width > q_data->width) if (s->r.left + s->r.width > q_data->width)
@ -1855,11 +1935,12 @@ static int vpe_buf_prepare(struct vb2_buffer *vb)
num_planes = q_data->fmt->coplanar ? 2 : 1; num_planes = q_data->fmt->coplanar ? 2 : 1;
if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) { if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
if (!(q_data->flags & Q_DATA_INTERLACED)) { if (!(q_data->flags & Q_IS_INTERLACED)) {
vbuf->field = V4L2_FIELD_NONE; vbuf->field = V4L2_FIELD_NONE;
} else { } else {
if (vbuf->field != V4L2_FIELD_TOP && if (vbuf->field != V4L2_FIELD_TOP &&
vbuf->field != V4L2_FIELD_BOTTOM) vbuf->field != V4L2_FIELD_BOTTOM &&
vbuf->field != V4L2_FIELD_SEQ_TB)
return -EINVAL; return -EINVAL;
} }
} }