mirror of
https://github.com/torvalds/linux.git
synced 2024-11-11 14:42:24 +00:00
[TCP]: cubic optimization
Use willy's work in optimizing cube root by having table for small values. Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
22b9a0a3a4
commit
7e58886b45
@ -91,23 +91,51 @@ static void bictcp_init(struct sock *sk)
|
||||
tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
|
||||
}
|
||||
|
||||
/*
|
||||
* calculate the cubic root of x using Newton-Raphson
|
||||
/* calculate the cubic root of x using a table lookup followed by one
|
||||
* Newton-Raphson iteration.
|
||||
* Avg err ~= 0.195%
|
||||
*/
|
||||
static u32 cubic_root(u64 a)
|
||||
{
|
||||
u32 x;
|
||||
|
||||
/* Initial estimate is based on:
|
||||
* cbrt(x) = exp(log(x) / 3)
|
||||
u32 x, b, shift;
|
||||
/*
|
||||
* cbrt(x) MSB values for x MSB values in [0..63].
|
||||
* Precomputed then refined by hand - Willy Tarreau
|
||||
*
|
||||
* For x in [0..63],
|
||||
* v = cbrt(x << 18) - 1
|
||||
* cbrt(x) = (v[x] + 10) >> 6
|
||||
*/
|
||||
x = 1u << (fls64(a)/3);
|
||||
static const u8 v[] = {
|
||||
/* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
|
||||
/* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
|
||||
/* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
|
||||
/* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
|
||||
/* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
|
||||
/* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
|
||||
/* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
|
||||
/* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
|
||||
};
|
||||
|
||||
/* converges to 32 bits in 3 iterations */
|
||||
x = (2 * x + (u32)div64_64(a, (u64)x*(u64)x)) / 3;
|
||||
x = (2 * x + (u32)div64_64(a, (u64)x*(u64)x)) / 3;
|
||||
x = (2 * x + (u32)div64_64(a, (u64)x*(u64)x)) / 3;
|
||||
b = fls64(a);
|
||||
if (b < 7) {
|
||||
/* a in [0..63] */
|
||||
return ((u32)v[(u32)a] + 35) >> 6;
|
||||
}
|
||||
|
||||
b = ((b * 84) >> 8) - 1;
|
||||
shift = (a >> (b * 3));
|
||||
|
||||
x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
|
||||
|
||||
/*
|
||||
* Newton-Raphson iteration
|
||||
* 2
|
||||
* x = ( 2 * x + a / x ) / 3
|
||||
* k+1 k k
|
||||
*/
|
||||
x = (2 * x + (u32)div64_64(a, (u64)x * (u64)(x - 1)));
|
||||
x = ((x * 341) >> 10);
|
||||
return x;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user