Merge branch 'timers-for-linus-cleanups' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'timers-for-linus-cleanups' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  avr32: Fix typo in read_persistent_clock()
  sparc: Convert sparc to use read/update_persistent_clock
  cris: Convert cris to use read/update_persistent_clock
  m68k: Convert m68k to use read/update_persistent_clock
  m32r: Convert m32r to use read/update_peristent_clock
  blackfin: Convert blackfin to use read/update_persistent_clock
  ia64: Convert ia64 to use read/update_persistent_clock
  avr32: Convert avr32 to use read/update_persistent_clock
  h8300: Convert h8300 to use read/update_persistent_clock
  frv: Convert frv to use read/update_persistent_clock
  mn10300: Convert mn10300 to use read/update_persistent_clock
  alpha: Convert alpha to use read/update_persistent_clock
  xtensa: Fix unnecessary setting of xtime
  time: Clean up direct xtime usage in xen
This commit is contained in:
Linus Torvalds 2010-05-19 17:10:06 -07:00
commit 7d02093e29
21 changed files with 137 additions and 310 deletions

View File

@ -55,6 +55,9 @@ config ARCH_USES_GETTIMEOFFSET
bool
default y
config GENERIC_CMOS_UPDATE
def_bool y
config ZONE_DMA
bool
default y

View File

@ -75,8 +75,6 @@ static struct {
__u32 last_time;
/* ticks/cycle * 2^48 */
unsigned long scaled_ticks_per_cycle;
/* last time the CMOS clock got updated */
time_t last_rtc_update;
/* partial unused tick */
unsigned long partial_tick;
} state;
@ -91,6 +89,52 @@ static inline __u32 rpcc(void)
return result;
}
int update_persistent_clock(struct timespec now)
{
return set_rtc_mmss(now.tv_sec);
}
void read_persistent_clock(struct timespec *ts)
{
unsigned int year, mon, day, hour, min, sec, epoch;
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
sec = bcd2bin(sec);
min = bcd2bin(min);
hour = bcd2bin(hour);
day = bcd2bin(day);
mon = bcd2bin(mon);
year = bcd2bin(year);
}
/* PC-like is standard; used for year >= 70 */
epoch = 1900;
if (year < 20)
epoch = 2000;
else if (year >= 20 && year < 48)
/* NT epoch */
epoch = 1980;
else if (year >= 48 && year < 70)
/* Digital UNIX epoch */
epoch = 1952;
printk(KERN_INFO "Using epoch = %d\n", epoch);
if ((year += epoch) < 1970)
year += 100;
ts->tv_sec = mktime(year, mon, day, hour, min, sec);
}
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick
@ -123,19 +167,6 @@ irqreturn_t timer_interrupt(int irq, void *dev)
if (nticks)
do_timer(nticks);
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*/
if (ntp_synced()
&& xtime.tv_sec > state.last_rtc_update + 660
&& xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
&& xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
int tmp = set_rtc_mmss(xtime.tv_sec);
state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
}
write_sequnlock(&xtime_lock);
#ifndef CONFIG_SMP
@ -304,7 +335,7 @@ rpcc_after_update_in_progress(void)
void __init
time_init(void)
{
unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
unsigned int cc1, cc2;
unsigned long cycle_freq, tolerance;
long diff;
@ -348,43 +379,6 @@ time_init(void)
bogomips yet, but this is close on a 500Mhz box. */
__delay(1000000);
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
sec = bcd2bin(sec);
min = bcd2bin(min);
hour = bcd2bin(hour);
day = bcd2bin(day);
mon = bcd2bin(mon);
year = bcd2bin(year);
}
/* PC-like is standard; used for year >= 70 */
epoch = 1900;
if (year < 20)
epoch = 2000;
else if (year >= 20 && year < 48)
/* NT epoch */
epoch = 1980;
else if (year >= 48 && year < 70)
/* Digital UNIX epoch */
epoch = 1952;
printk(KERN_INFO "Using epoch = %d\n", epoch);
if ((year += epoch) < 1970)
year += 100;
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
xtime.tv_nsec = 0;
wall_to_monotonic.tv_sec -= xtime.tv_sec;
wall_to_monotonic.tv_nsec = 0;
if (HZ > (1<<16)) {
extern void __you_loose (void);
@ -394,7 +388,6 @@ time_init(void)
state.last_time = cc1;
state.scaled_ticks_per_cycle
= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
state.last_rtc_update = 0;
state.partial_tick = 0L;
/* Startup the timer source. */

View File

@ -110,17 +110,17 @@ static struct clock_event_device comparator = {
.set_mode = comparator_mode,
};
void read_persistent_clock(struct timespec *ts)
{
ts->tv_sec = mktime(2007, 1, 1, 0, 0, 0);
ts->tv_nsec = 0;
}
void __init time_init(void)
{
unsigned long counter_hz;
int ret;
xtime.tv_sec = mktime(2007, 1, 1, 0, 0, 0);
xtime.tv_nsec = 0;
set_normalized_timespec(&wall_to_monotonic,
-xtime.tv_sec, -xtime.tv_nsec);
/* figure rate for counter */
counter_hz = clk_get_rate(boot_cpu_data.clk);
counter.mult = clocksource_hz2mult(counter_hz, counter.shift);

View File

@ -353,9 +353,15 @@ void bfin_coretmr_clockevent_init(void)
#endif /* CONFIG_TICKSOURCE_CORETMR */
void __init time_init(void)
void read_persistent_clock(struct timespec *ts)
{
time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
ts->tv_sec = secs_since_1970;
ts->tv_nsec = 0;
}
void __init time_init(void)
{
#ifdef CONFIG_RTC_DRV_BFIN
/* [#2663] hack to filter junk RTC values that would cause
@ -368,11 +374,6 @@ void __init time_init(void)
}
#endif
/* Initialize xtime. From now on, xtime is updated with timer interrupts */
xtime.tv_sec = secs_since_1970;
xtime.tv_nsec = 0;
set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
bfin_cs_cycles_init();
bfin_cs_gptimer0_init();

View File

@ -112,11 +112,6 @@ u32 arch_gettimeoffset(void)
}
#endif
static inline int set_rtc_mmss(unsigned long nowtime)
{
return 0;
}
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick
@ -126,29 +121,8 @@ __attribute__((l1_text))
#endif
irqreturn_t timer_interrupt(int irq, void *dummy)
{
/* last time the cmos clock got updated */
static long last_rtc_update;
write_seqlock(&xtime_lock);
do_timer(1);
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*/
if (ntp_synced() &&
xtime.tv_sec > last_rtc_update + 660 &&
(xtime.tv_nsec / NSEC_PER_USEC) >=
500000 - ((unsigned)TICK_SIZE) / 2
&& (xtime.tv_nsec / NSEC_PER_USEC) <=
500000 + ((unsigned)TICK_SIZE) / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
/* Do it again in 60s. */
last_rtc_update = xtime.tv_sec - 600;
}
write_sequnlock(&xtime_lock);
#ifdef CONFIG_IPIPE
@ -161,10 +135,15 @@ irqreturn_t timer_interrupt(int irq, void *dummy)
return IRQ_HANDLED;
}
void __init time_init(void)
void read_persistent_clock(struct timespec *ts)
{
time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
ts->tv_sec = secs_since_1970;
ts->tv_nsec = 0;
}
void __init time_init(void)
{
#ifdef CONFIG_RTC_DRV_BFIN
/* [#2663] hack to filter junk RTC values that would cause
* userspace to have to deal with time values greater than
@ -176,11 +155,5 @@ void __init time_init(void)
}
#endif
/* Initialize xtime. From now on, xtime is updated with timer interrupts */
xtime.tv_sec = secs_since_1970;
xtime.tv_nsec = 0;
wall_to_monotonic.tv_sec = -xtime.tv_sec;
time_sched_init(timer_interrupt);
}

View File

@ -23,6 +23,9 @@ config RWSEM_XCHGADD_ALGORITHM
config GENERIC_TIME
def_bool y
config GENERIC_CMOS_UPDATE
def_bool y
config ARCH_USES_GETTIMEOFFSET
def_bool y

View File

@ -26,7 +26,6 @@
/* it will make jiffies at 96 hz instead of 100 hz though */
#undef USE_CASCADE_TIMERS
extern void update_xtime_from_cmos(void);
extern int set_rtc_mmss(unsigned long nowtime);
extern int have_rtc;
@ -188,8 +187,6 @@ stop_watchdog(void)
#endif
}
/* last time the cmos clock got updated */
static long last_rtc_update = 0;
/*
* timer_interrupt() needs to keep up the real-time clock,
@ -232,24 +229,6 @@ timer_interrupt(int irq, void *dev_id)
do_timer(1);
cris_do_profile(regs); /* Save profiling information */
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*
* The division here is not time critical since it will run once in
* 11 minutes
*/
if (ntp_synced() &&
xtime.tv_sec > last_rtc_update + 660 &&
(xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
(xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
}
return IRQ_HANDLED;
}
@ -274,22 +253,10 @@ time_init(void)
*/
loops_per_usec = 50;
if(RTC_INIT() < 0) {
/* no RTC, start at 1980 */
xtime.tv_sec = 0;
xtime.tv_nsec = 0;
if(RTC_INIT() < 0)
have_rtc = 0;
} else {
/* get the current time */
else
have_rtc = 1;
update_xtime_from_cmos();
}
/*
* Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
* tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
*/
set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
/* Setup the etrax timers
* Base frequency is 25000 hz, divider 250 -> 100 HZ

View File

@ -44,7 +44,6 @@ unsigned long timer_regs[NR_CPUS] =
#endif
};
extern void update_xtime_from_cmos(void);
extern int set_rtc_mmss(unsigned long nowtime);
extern int have_rtc;
@ -198,9 +197,6 @@ handle_watchdog_bite(struct pt_regs* regs)
#endif
}
/* Last time the cmos clock got updated. */
static long last_rtc_update = 0;
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick.
@ -238,25 +234,6 @@ timer_interrupt(int irq, void *dev_id)
/* Call the real timer interrupt handler */
do_timer(1);
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*
* The division here is not time critical since it will run once in
* 11 minutes
*/
if ((time_status & STA_UNSYNC) == 0 &&
xtime.tv_sec > last_rtc_update + 660 &&
(xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
(xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
/* Do it again in 60 s */
last_rtc_update = xtime.tv_sec - 600;
}
return IRQ_HANDLED;
}
@ -309,23 +286,10 @@ time_init(void)
*/
loops_per_usec = 50;
if(RTC_INIT() < 0) {
/* No RTC, start at 1980 */
xtime.tv_sec = 0;
xtime.tv_nsec = 0;
if(RTC_INIT() < 0)
have_rtc = 0;
} else {
/* Get the current time */
else
have_rtc = 1;
update_xtime_from_cmos();
}
/*
* Initialize wall_to_monotonic such that adding it to
* xtime will yield zero, the tv_nsec field must be normalized
* (i.e., 0 <= nsec < NSEC_PER_SEC).
*/
set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
/* Start CPU local timer. */
cris_timer_init();

View File

@ -98,6 +98,8 @@ unsigned long
get_cmos_time(void)
{
unsigned int year, mon, day, hour, min, sec;
if(!have_rtc)
return 0;
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
@ -119,19 +121,19 @@ get_cmos_time(void)
return mktime(year, mon, day, hour, min, sec);
}
/* update xtime from the CMOS settings. used when /dev/rtc gets a SET_TIME.
* TODO: this doesn't reset the fancy NTP phase stuff as do_settimeofday does.
*/
void
update_xtime_from_cmos(void)
int update_persistent_clock(struct timespec now)
{
if(have_rtc) {
xtime.tv_sec = get_cmos_time();
xtime.tv_nsec = 0;
}
return set_rtc_mmss(now.tv_sec);
}
void read_persistent_clock(struct timespec *ts)
{
ts->tv_sec = get_cmos_time();
ts->tv_nsec = 0;
}
extern void cris_profile_sample(struct pt_regs* regs);
void

View File

@ -48,20 +48,12 @@ static struct irqaction timer_irq = {
.name = "timer",
};
static inline int set_rtc_mmss(unsigned long nowtime)
{
return -1;
}
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick
*/
static irqreturn_t timer_interrupt(int irq, void *dummy)
{
/* last time the cmos clock got updated */
static long last_rtc_update = 0;
profile_tick(CPU_PROFILING);
/*
* Here we are in the timer irq handler. We just have irqs locally
@ -74,22 +66,6 @@ static irqreturn_t timer_interrupt(int irq, void *dummy)
do_timer(1);
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*/
if (ntp_synced() &&
xtime.tv_sec > last_rtc_update + 660 &&
(xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
(xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2
) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
}
#ifdef CONFIG_HEARTBEAT
static unsigned short n;
n++;
@ -119,7 +95,8 @@ void time_divisor_init(void)
__set_TCSR_DATA(0, base >> 8);
}
void time_init(void)
void read_persistent_clock(struct timespec *ts)
{
unsigned int year, mon, day, hour, min, sec;
@ -135,9 +112,12 @@ void time_init(void)
if ((year += 1900) < 1970)
year += 100;
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
xtime.tv_nsec = 0;
ts->tv_sec = mktime(year, mon, day, hour, min, sec);
ts->tv_nsec = 0;
}
void time_init(void)
{
/* install scheduling interrupt handler */
setup_irq(IRQ_CPU_TIMER0, &timer_irq);

View File

@ -41,7 +41,7 @@ void h8300_timer_tick(void)
update_process_times(user_mode(get_irq_regs()));
}
void __init time_init(void)
void read_persistent_clock(struct timespec *ts)
{
unsigned int year, mon, day, hour, min, sec;
@ -56,8 +56,12 @@ void __init time_init(void)
#endif
if ((year += 1900) < 1970)
year += 100;
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
xtime.tv_nsec = 0;
ts->tv_sec = mktime(year, mon, day, hour, min, sec);
ts->tv_nsec = 0;
}
void __init time_init(void)
{
h8300_timer_setup();
}

View File

@ -430,18 +430,16 @@ static int __init rtc_init(void)
}
module_init(rtc_init);
void read_persistent_clock(struct timespec *ts)
{
efi_gettimeofday(ts);
}
void __init
time_init (void)
{
register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
efi_gettimeofday(&xtime);
ia64_init_itm();
/*
* Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
* tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
*/
set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
}
/*

View File

@ -105,24 +105,6 @@ u32 arch_gettimeoffset(void)
return elapsed_time * 1000;
}
/*
* In order to set the CMOS clock precisely, set_rtc_mmss has to be
* called 500 ms after the second nowtime has started, because when
* nowtime is written into the registers of the CMOS clock, it will
* jump to the next second precisely 500 ms later. Check the Motorola
* MC146818A or Dallas DS12887 data sheet for details.
*
* BUG: This routine does not handle hour overflow properly; it just
* sets the minutes. Usually you won't notice until after reboot!
*/
static inline int set_rtc_mmss(unsigned long nowtime)
{
return 0;
}
/* last time the cmos clock got updated */
static long last_rtc_update = 0;
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick
@ -138,23 +120,6 @@ static irqreturn_t timer_interrupt(int irq, void *dev_id)
#ifndef CONFIG_SMP
update_process_times(user_mode(get_irq_regs()));
#endif
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*/
write_seqlock(&xtime_lock);
if (ntp_synced()
&& xtime.tv_sec > last_rtc_update + 660
&& (xtime.tv_nsec / 1000) >= 500000 - ((unsigned)TICK_SIZE) / 2
&& (xtime.tv_nsec / 1000) <= 500000 + ((unsigned)TICK_SIZE) / 2)
{
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else /* do it again in 60 s */
last_rtc_update = xtime.tv_sec - 600;
}
write_sequnlock(&xtime_lock);
/* As we return to user mode fire off the other CPU schedulers..
this is basically because we don't yet share IRQ's around.
This message is rigged to be safe on the 386 - basically it's
@ -174,7 +139,7 @@ static struct irqaction irq0 = {
.name = "MFT2",
};
void __init time_init(void)
void read_persistent_clock(struct timespec *ts)
{
unsigned int epoch, year, mon, day, hour, min, sec;
@ -194,11 +159,13 @@ void __init time_init(void)
epoch = 1952;
year += epoch;
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
set_normalized_timespec(&wall_to_monotonic,
-xtime.tv_sec, -xtime.tv_nsec);
ts->tv_sec = mktime(year, mon, day, hour, min, sec);
ts->tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
}
void __init time_init(void)
{
#if defined(CONFIG_CHIP_M32102) || defined(CONFIG_CHIP_XNUX2) \
|| defined(CONFIG_CHIP_VDEC2) || defined(CONFIG_CHIP_M32700) \
|| defined(CONFIG_CHIP_OPSP) || defined(CONFIG_CHIP_M32104)

View File

@ -73,21 +73,24 @@ static irqreturn_t timer_interrupt(int irq, void *dummy)
return IRQ_HANDLED;
}
void __init time_init(void)
void read_persistent_clock(struct timespec *ts)
{
struct rtc_time time;
ts->tv_sec = 0;
ts->tv_nsec = 0;
if (mach_hwclk) {
mach_hwclk(0, &time);
if ((time.tm_year += 1900) < 1970)
time.tm_year += 100;
xtime.tv_sec = mktime(time.tm_year, time.tm_mon, time.tm_mday,
ts->tv_sec = mktime(time.tm_year, time.tm_mon, time.tm_mday,
time.tm_hour, time.tm_min, time.tm_sec);
xtime.tv_nsec = 0;
}
wall_to_monotonic.tv_sec = -xtime.tv_sec;
}
void __init time_init(void)
{
mach_sched_init(timer_interrupt);
}

View File

@ -37,6 +37,9 @@ config GENERIC_HARDIRQS_NO__DO_IRQ
config GENERIC_CALIBRATE_DELAY
def_bool y
config GENERIC_CMOS_UPDATE
def_bool y
config GENERIC_FIND_NEXT_BIT
def_bool y

View File

@ -26,17 +26,15 @@ static long last_rtc_update;
/* time for RTC to update itself in ioclks */
static unsigned long mn10300_rtc_update_period;
/*
* read the current RTC time
*/
unsigned long __init get_initial_rtc_time(void)
void read_persistent_clock(struct timespec *ts)
{
struct rtc_time tm;
get_rtc_time(&tm);
return mktime(tm.tm_year, tm.tm_mon, tm.tm_mday,
ts->tv_sec = mktime(tm.tm_year, tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
ts->tv_nsec = 0;
}
/*
@ -110,24 +108,9 @@ static int set_rtc_mmss(unsigned long nowtime)
return retval;
}
void check_rtc_time(void)
int update_persistent_clock(struct timespec now)
{
/* the RTC clock just finished ticking over again this second
* - if we have an externally synchronized Linux clock, then update
* RTC clock accordingly every ~11 minutes. set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*/
if ((time_status & STA_UNSYNC) == 0 &&
xtime.tv_sec > last_rtc_update + 660 &&
xtime.tv_nsec / 1000 >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
xtime.tv_nsec / 1000 <= 500000 + ((unsigned) TICK_SIZE) / 2
) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
/* do it again in 60s */
last_rtc_update = xtime.tv_sec - 600;
}
return set_rtc_mms(now.tv_sec);
}
/*

View File

@ -111,7 +111,6 @@ static irqreturn_t timer_interrupt(int irq, void *dev_id)
/* advance the kernel's time tracking system */
profile_tick(CPU_PROFILING);
do_timer(1);
check_rtc_time();
}
write_sequnlock(&xtime_lock);
@ -139,9 +138,6 @@ void __init time_init(void)
" (calibrated against RTC)\n",
MN10300_TSCCLK / 1000000, (MN10300_TSCCLK / 10000) % 100);
xtime.tv_sec = get_initial_rtc_time();
xtime.tv_nsec = 0;
mn10300_last_tsc = TMTSCBC;
/* use timer 0 & 1 cascaded to tick at as close to HZ as possible */

View File

@ -75,7 +75,7 @@ config ARCH_USES_GETTIMEOFFSET
config GENERIC_CMOS_UPDATE
bool
default y if SPARC64
default y
config GENERIC_CLOCKEVENTS
bool

View File

@ -78,6 +78,11 @@ __volatile__ unsigned int *master_l10_counter;
u32 (*do_arch_gettimeoffset)(void);
int update_persistent_clock(struct timespec now)
{
return set_rtc_mmss(now.tv_sec);
}
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick
@ -87,9 +92,6 @@ u32 (*do_arch_gettimeoffset)(void);
static irqreturn_t timer_interrupt(int dummy, void *dev_id)
{
/* last time the cmos clock got updated */
static long last_rtc_update;
#ifndef CONFIG_SMP
profile_tick(CPU_PROFILING);
#endif
@ -101,16 +103,6 @@ static irqreturn_t timer_interrupt(int dummy, void *dev_id)
do_timer(1);
/* Determine when to update the Mostek clock. */
if (ntp_synced() &&
xtime.tv_sec > last_rtc_update + 660 &&
(xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
(xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
}
write_sequnlock(&xtime_lock);
#ifndef CONFIG_SMP

View File

@ -476,6 +476,7 @@ void xen_timer_resume(void)
__init void xen_time_init(void)
{
int cpu = smp_processor_id();
struct timespec tp;
clocksource_register(&xen_clocksource);
@ -487,9 +488,8 @@ __init void xen_time_init(void)
}
/* Set initial system time with full resolution */
xen_read_wallclock(&xtime);
set_normalized_timespec(&wall_to_monotonic,
-xtime.tv_sec, -xtime.tv_nsec);
xen_read_wallclock(&tp);
do_settimeofday(&tp);
setup_force_cpu_cap(X86_FEATURE_TSC);

View File

@ -60,11 +60,6 @@ static struct irqaction timer_irqaction = {
void __init time_init(void)
{
/* FIXME: xtime&wall_to_monotonic are set in timekeeping_init. */
read_persistent_clock(&xtime);
set_normalized_timespec(&wall_to_monotonic,
-xtime.tv_sec, -xtime.tv_nsec);
#ifdef CONFIG_XTENSA_CALIBRATE_CCOUNT
printk("Calibrating CPU frequency ");
platform_calibrate_ccount();