net: fec: Add software TSO support

Add software TSO support for FEC.
This feature allows to improve outbound throughput performance.

Tested on imx6dl sabresd board, running iperf tcp tests shows:
- 16.2% improvement comparing with FEC SG patch
- 82% improvement comparing with NO SG & TSO patch

$ ethtool -K eth0 tso on
$ iperf -c 10.192.242.167 -t 3 &
[  3] local 10.192.242.108 port 35388 connected with 10.192.242.167 port 5001
[ ID] Interval       Transfer     Bandwidth
[  3]  0.0- 3.0 sec   181 MBytes   506 Mbits/sec

During the testing, CPU loading is 30%.
Since imx6dl FEC Bandwidth is limited to SOC system bus bandwidth, the
performance with SW TSO is a milestone.

CC: Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: David Laight <David.Laight@ACULAB.COM>
CC: Li Frank <B20596@freescale.com>
Signed-off-by: Fugang Duan <B38611@freescale.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Nimrod Andy 2014-06-12 08:16:23 +08:00 committed by David S. Miller
parent 6e909283cb
commit 79f339125e
2 changed files with 240 additions and 25 deletions

View File

@ -299,6 +299,12 @@ struct fec_enet_private {
unsigned short bufdesc_size; unsigned short bufdesc_size;
unsigned short tx_ring_size; unsigned short tx_ring_size;
unsigned short rx_ring_size; unsigned short rx_ring_size;
unsigned short tx_stop_threshold;
unsigned short tx_wake_threshold;
/* Software TSO */
char *tso_hdrs;
dma_addr_t tso_hdrs_dma;
struct platform_device *pdev; struct platform_device *pdev;

View File

@ -36,6 +36,7 @@
#include <linux/in.h> #include <linux/in.h>
#include <linux/ip.h> #include <linux/ip.h>
#include <net/ip.h> #include <net/ip.h>
#include <net/tso.h>
#include <linux/tcp.h> #include <linux/tcp.h>
#include <linux/udp.h> #include <linux/udp.h>
#include <linux/icmp.h> #include <linux/icmp.h>
@ -228,6 +229,15 @@ MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
#define FEC_PAUSE_FLAG_AUTONEG 0x1 #define FEC_PAUSE_FLAG_AUTONEG 0x1
#define FEC_PAUSE_FLAG_ENABLE 0x2 #define FEC_PAUSE_FLAG_ENABLE 0x2
#define TSO_HEADER_SIZE 128
/* Max number of allowed TCP segments for software TSO */
#define FEC_MAX_TSO_SEGS 100
#define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
#define IS_TSO_HEADER(txq, addr) \
((addr >= txq->tso_hdrs_dma) && \
(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
static int mii_cnt; static int mii_cnt;
static inline static inline
@ -438,8 +448,17 @@ static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
unsigned short buflen; unsigned short buflen;
unsigned int estatus = 0; unsigned int estatus = 0;
unsigned int index; unsigned int index;
int entries_free;
int ret; int ret;
entries_free = fec_enet_get_free_txdesc_num(fep);
if (entries_free < MAX_SKB_FRAGS + 1) {
dev_kfree_skb_any(skb);
if (net_ratelimit())
netdev_err(ndev, "NOT enough BD for SG!\n");
return NETDEV_TX_OK;
}
/* Protocol checksum off-load for TCP and UDP. */ /* Protocol checksum off-load for TCP and UDP. */
if (fec_enet_clear_csum(skb, ndev)) { if (fec_enet_clear_csum(skb, ndev)) {
dev_kfree_skb_any(skb); dev_kfree_skb_any(skb);
@ -534,35 +553,210 @@ static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
return 0; return 0;
} }
static int
fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
struct bufdesc *bdp, int index, char *data,
int size, bool last_tcp, bool is_last)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
unsigned short status;
unsigned int estatus = 0;
status = bdp->cbd_sc;
status &= ~BD_ENET_TX_STATS;
status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
bdp->cbd_datlen = size;
if (((unsigned long) data) & FEC_ALIGNMENT ||
id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
memcpy(fep->tx_bounce[index], data, size);
data = fep->tx_bounce[index];
if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
swap_buffer(data, size);
}
bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
size, DMA_TO_DEVICE);
if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
dev_kfree_skb_any(skb);
if (net_ratelimit())
netdev_err(ndev, "Tx DMA memory map failed\n");
return NETDEV_TX_BUSY;
}
if (fep->bufdesc_ex) {
if (skb->ip_summed == CHECKSUM_PARTIAL)
estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
ebdp->cbd_bdu = 0;
ebdp->cbd_esc = estatus;
}
/* Handle the last BD specially */
if (last_tcp)
status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
if (is_last) {
status |= BD_ENET_TX_INTR;
if (fep->bufdesc_ex)
ebdp->cbd_esc |= BD_ENET_TX_INT;
}
bdp->cbd_sc = status;
return 0;
}
static int
fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
struct bufdesc *bdp, int index)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
void *bufaddr;
unsigned long dmabuf;
unsigned short status;
unsigned int estatus = 0;
status = bdp->cbd_sc;
status &= ~BD_ENET_TX_STATS;
status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
bufaddr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
dmabuf = fep->tso_hdrs_dma + index * TSO_HEADER_SIZE;
if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
memcpy(fep->tx_bounce[index], skb->data, hdr_len);
bufaddr = fep->tx_bounce[index];
if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
swap_buffer(bufaddr, hdr_len);
dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
hdr_len, DMA_TO_DEVICE);
if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
dev_kfree_skb_any(skb);
if (net_ratelimit())
netdev_err(ndev, "Tx DMA memory map failed\n");
return NETDEV_TX_BUSY;
}
}
bdp->cbd_bufaddr = dmabuf;
bdp->cbd_datlen = hdr_len;
if (fep->bufdesc_ex) {
if (skb->ip_summed == CHECKSUM_PARTIAL)
estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
ebdp->cbd_bdu = 0;
ebdp->cbd_esc = estatus;
}
bdp->cbd_sc = status;
return 0;
}
static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
int total_len, data_left;
struct bufdesc *bdp = fep->cur_tx;
struct tso_t tso;
unsigned int index = 0;
int ret;
if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep)) {
dev_kfree_skb_any(skb);
if (net_ratelimit())
netdev_err(ndev, "NOT enough BD for TSO!\n");
return NETDEV_TX_OK;
}
/* Protocol checksum off-load for TCP and UDP. */
if (fec_enet_clear_csum(skb, ndev)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* Initialize the TSO handler, and prepare the first payload */
tso_start(skb, &tso);
total_len = skb->len - hdr_len;
while (total_len > 0) {
char *hdr;
index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
total_len -= data_left;
/* prepare packet headers: MAC + IP + TCP */
hdr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
ret = fec_enet_txq_put_hdr_tso(skb, ndev, bdp, index);
if (ret)
goto err_release;
while (data_left > 0) {
int size;
size = min_t(int, tso.size, data_left);
bdp = fec_enet_get_nextdesc(bdp, fep);
index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
ret = fec_enet_txq_put_data_tso(skb, ndev, bdp, index, tso.data,
size, size == data_left,
total_len == 0);
if (ret)
goto err_release;
data_left -= size;
tso_build_data(skb, &tso, size);
}
bdp = fec_enet_get_nextdesc(bdp, fep);
}
/* Save skb pointer */
fep->tx_skbuff[index] = skb;
fec_enet_submit_work(bdp, fep);
skb_tx_timestamp(skb);
fep->cur_tx = bdp;
/* Trigger transmission start */
writel(0, fep->hwp + FEC_X_DES_ACTIVE);
return 0;
err_release:
/* TODO: Release all used data descriptors for TSO */
return ret;
}
static netdev_tx_t static netdev_tx_t
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{ {
struct fec_enet_private *fep = netdev_priv(ndev); struct fec_enet_private *fep = netdev_priv(ndev);
struct bufdesc *bdp;
unsigned short status;
int entries_free; int entries_free;
int ret; int ret;
/* Fill in a Tx ring entry */ if (skb_is_gso(skb))
bdp = fep->cur_tx; ret = fec_enet_txq_submit_tso(skb, ndev);
else
status = bdp->cbd_sc; ret = fec_enet_txq_submit_skb(skb, ndev);
if (status & BD_ENET_TX_READY) {
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since ndev->tbusy should be set.
*/
if (net_ratelimit())
netdev_err(ndev, "tx queue full!\n");
return NETDEV_TX_BUSY;
}
ret = fec_enet_txq_submit_skb(skb, ndev);
if (ret) if (ret)
return ret; return ret;
entries_free = fec_enet_get_free_txdesc_num(fep); entries_free = fec_enet_get_free_txdesc_num(fep);
if (entries_free < MAX_SKB_FRAGS + 1) if (entries_free <= fep->tx_stop_threshold)
netif_stop_queue(ndev); netif_stop_queue(ndev);
return NETDEV_TX_OK; return NETDEV_TX_OK;
@ -883,7 +1077,7 @@ fec_enet_tx(struct net_device *ndev)
unsigned short status; unsigned short status;
struct sk_buff *skb; struct sk_buff *skb;
int index = 0; int index = 0;
int entries; int entries_free;
fep = netdev_priv(ndev); fep = netdev_priv(ndev);
bdp = fep->dirty_tx; bdp = fep->dirty_tx;
@ -900,8 +1094,9 @@ fec_enet_tx(struct net_device *ndev)
index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep); index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
skb = fep->tx_skbuff[index]; skb = fep->tx_skbuff[index];
dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, bdp->cbd_datlen, if (!IS_TSO_HEADER(fep, bdp->cbd_bufaddr))
DMA_TO_DEVICE); dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
bdp->cbd_datlen, DMA_TO_DEVICE);
bdp->cbd_bufaddr = 0; bdp->cbd_bufaddr = 0;
if (!skb) { if (!skb) {
bdp = fec_enet_get_nextdesc(bdp, fep); bdp = fec_enet_get_nextdesc(bdp, fep);
@ -962,9 +1157,11 @@ fec_enet_tx(struct net_device *ndev)
/* Since we have freed up a buffer, the ring is no longer full /* Since we have freed up a buffer, the ring is no longer full
*/ */
entries = fec_enet_get_free_txdesc_num(fep); if (netif_queue_stopped(ndev)) {
if (entries >= MAX_SKB_FRAGS + 1 && netif_queue_stopped(ndev)) entries_free = fec_enet_get_free_txdesc_num(fep);
netif_wake_queue(ndev); if (entries_free >= fep->tx_wake_threshold)
netif_wake_queue(ndev);
}
} }
return; return;
} }
@ -2166,6 +2363,9 @@ static int fec_enet_init(struct net_device *ndev)
fep->tx_ring_size = TX_RING_SIZE; fep->tx_ring_size = TX_RING_SIZE;
fep->rx_ring_size = RX_RING_SIZE; fep->rx_ring_size = RX_RING_SIZE;
fep->tx_stop_threshold = FEC_MAX_SKB_DESCS;
fep->tx_wake_threshold = (fep->tx_ring_size - fep->tx_stop_threshold) / 2;
if (fep->bufdesc_ex) if (fep->bufdesc_ex)
fep->bufdesc_size = sizeof(struct bufdesc_ex); fep->bufdesc_size = sizeof(struct bufdesc_ex);
else else
@ -2179,6 +2379,13 @@ static int fec_enet_init(struct net_device *ndev)
if (!cbd_base) if (!cbd_base)
return -ENOMEM; return -ENOMEM;
fep->tso_hdrs = dma_alloc_coherent(NULL, fep->tx_ring_size * TSO_HEADER_SIZE,
&fep->tso_hdrs_dma, GFP_KERNEL);
if (!fep->tso_hdrs) {
dma_free_coherent(NULL, bd_size, cbd_base, fep->bd_dma);
return -ENOMEM;
}
memset(cbd_base, 0, PAGE_SIZE); memset(cbd_base, 0, PAGE_SIZE);
fep->netdev = ndev; fep->netdev = ndev;
@ -2209,9 +2416,11 @@ static int fec_enet_init(struct net_device *ndev)
ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) { if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
/* enable hw accelerator */ /* enable hw accelerator */
ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
| NETIF_F_RXCSUM | NETIF_F_SG); | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
fep->csum_flags |= FLAG_RX_CSUM_ENABLED; fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
} }