Merge branch 'for-linus' of git://git.kernel.dk/linux-block

Pull block fixes from Jens Axboe:
 "A selection of fixes/changes that should make it into this series.
  This contains:

   - NVMe, two merges, containing:
        - pci-e, rdma, and fc fixes
        - Device quirks

   - Fix for a badblocks leak in null_blk

   - bcache fix from Rui Hua for a race condition regression where
     -EINTR was returned to upper layers that didn't expect it.

   - Regression fix for blktrace for a bug introduced in this series.

   - blktrace cleanup for cgroup id.

   - bdi registration error handling.

   - Small series with cleanups for blk-wbt.

   - Various little fixes for typos and the like.

  Nothing earth shattering, most important are the NVMe and bcache fixes"

* 'for-linus' of git://git.kernel.dk/linux-block: (34 commits)
  nvme-pci: fix NULL pointer dereference in nvme_free_host_mem()
  nvme-rdma: fix memory leak during queue allocation
  blktrace: fix trace mutex deadlock
  nvme-rdma: Use mr pool
  nvme-rdma: Check remotely invalidated rkey matches our expected rkey
  nvme-rdma: wait for local invalidation before completing a request
  nvme-rdma: don't complete requests before a send work request has completed
  nvme-rdma: don't suppress send completions
  bcache: check return value of register_shrinker
  bcache: recover data from backing when data is clean
  bcache: Fix building error on MIPS
  bcache: add a comment in journal bucket reading
  nvme-fc: don't use bit masks for set/test_bit() numbers
  blk-wbt: fix comments typo
  blk-wbt: move wbt_clear_stat to common place in wbt_done
  blk-sysfs: remove NULL pointer checking in queue_wb_lat_store
  blk-wbt: remove duplicated setting in wbt_init
  nvme-pci: add quirk for delay before CHK RDY for WDC SN200
  block: remove useless assignment in bio_split
  null_blk: fix dev->badblocks leak
  ...
This commit is contained in:
Linus Torvalds 2017-12-01 08:05:45 -05:00
commit 75f64f68af
22 changed files with 290 additions and 210 deletions

View File

@ -1819,7 +1819,7 @@ EXPORT_SYMBOL(bio_endio);
struct bio *bio_split(struct bio *bio, int sectors, struct bio *bio_split(struct bio *bio, int sectors,
gfp_t gfp, struct bio_set *bs) gfp_t gfp, struct bio_set *bs)
{ {
struct bio *split = NULL; struct bio *split;
BUG_ON(sectors <= 0); BUG_ON(sectors <= 0);
BUG_ON(sectors >= bio_sectors(bio)); BUG_ON(sectors >= bio_sectors(bio));

View File

@ -450,12 +450,9 @@ static ssize_t queue_wb_lat_store(struct request_queue *q, const char *page,
ret = wbt_init(q); ret = wbt_init(q);
if (ret) if (ret)
return ret; return ret;
rwb = q->rq_wb;
if (!rwb)
return -EINVAL;
} }
rwb = q->rq_wb;
if (val == -1) if (val == -1)
rwb->min_lat_nsec = wbt_default_latency_nsec(q); rwb->min_lat_nsec = wbt_default_latency_nsec(q);
else if (val >= 0) else if (val >= 0)

View File

@ -178,12 +178,11 @@ void wbt_done(struct rq_wb *rwb, struct blk_issue_stat *stat)
if (wbt_is_read(stat)) if (wbt_is_read(stat))
wb_timestamp(rwb, &rwb->last_comp); wb_timestamp(rwb, &rwb->last_comp);
wbt_clear_state(stat);
} else { } else {
WARN_ON_ONCE(stat == rwb->sync_cookie); WARN_ON_ONCE(stat == rwb->sync_cookie);
__wbt_done(rwb, wbt_stat_to_mask(stat)); __wbt_done(rwb, wbt_stat_to_mask(stat));
wbt_clear_state(stat);
} }
wbt_clear_state(stat);
} }
/* /*
@ -482,7 +481,7 @@ static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
/* /*
* At this point we know it's a buffered write. If this is * At this point we know it's a buffered write. If this is
* kswapd trying to free memory, or REQ_SYNC is set, set, then * kswapd trying to free memory, or REQ_SYNC is set, then
* it's WB_SYNC_ALL writeback, and we'll use the max limit for * it's WB_SYNC_ALL writeback, and we'll use the max limit for
* that. If the write is marked as a background write, then use * that. If the write is marked as a background write, then use
* the idle limit, or go to normal if we haven't had competing * the idle limit, or go to normal if we haven't had competing
@ -723,8 +722,6 @@ int wbt_init(struct request_queue *q)
init_waitqueue_head(&rwb->rq_wait[i].wait); init_waitqueue_head(&rwb->rq_wait[i].wait);
} }
rwb->wc = 1;
rwb->queue_depth = RWB_DEF_DEPTH;
rwb->last_comp = rwb->last_issue = jiffies; rwb->last_comp = rwb->last_issue = jiffies;
rwb->queue = q; rwb->queue = q;
rwb->win_nsec = RWB_WINDOW_NSEC; rwb->win_nsec = RWB_WINDOW_NSEC;

View File

@ -671,10 +671,13 @@ void device_add_disk(struct device *parent, struct gendisk *disk)
disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
disk->flags |= GENHD_FL_NO_PART_SCAN; disk->flags |= GENHD_FL_NO_PART_SCAN;
} else { } else {
int ret;
/* Register BDI before referencing it from bdev */ /* Register BDI before referencing it from bdev */
disk_to_dev(disk)->devt = devt; disk_to_dev(disk)->devt = devt;
bdi_register_owner(disk->queue->backing_dev_info, ret = bdi_register_owner(disk->queue->backing_dev_info,
disk_to_dev(disk)); disk_to_dev(disk));
WARN_ON(ret);
blk_register_region(disk_devt(disk), disk->minors, NULL, blk_register_region(disk_devt(disk), disk->minors, NULL,
exact_match, exact_lock, disk); exact_match, exact_lock, disk);
} }
@ -1389,7 +1392,7 @@ struct gendisk *__alloc_disk_node(int minors, int node_id)
if (minors > DISK_MAX_PARTS) { if (minors > DISK_MAX_PARTS) {
printk(KERN_ERR printk(KERN_ERR
"block: can't allocated more than %d partitions\n", "block: can't allocate more than %d partitions\n",
DISK_MAX_PARTS); DISK_MAX_PARTS);
minors = DISK_MAX_PARTS; minors = DISK_MAX_PARTS;
} }

View File

@ -471,7 +471,6 @@ static void nullb_device_release(struct config_item *item)
{ {
struct nullb_device *dev = to_nullb_device(item); struct nullb_device *dev = to_nullb_device(item);
badblocks_exit(&dev->badblocks);
null_free_device_storage(dev, false); null_free_device_storage(dev, false);
null_free_dev(dev); null_free_dev(dev);
} }
@ -582,6 +581,10 @@ static struct nullb_device *null_alloc_dev(void)
static void null_free_dev(struct nullb_device *dev) static void null_free_dev(struct nullb_device *dev)
{ {
if (!dev)
return;
badblocks_exit(&dev->badblocks);
kfree(dev); kfree(dev);
} }

View File

@ -490,7 +490,7 @@ int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
if (b == -1) if (b == -1)
goto err; goto err;
k->ptr[i] = PTR(ca->buckets[b].gen, k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
bucket_to_sector(c, b), bucket_to_sector(c, b),
ca->sb.nr_this_dev); ca->sb.nr_this_dev);

View File

@ -807,7 +807,10 @@ int bch_btree_cache_alloc(struct cache_set *c)
c->shrink.scan_objects = bch_mca_scan; c->shrink.scan_objects = bch_mca_scan;
c->shrink.seeks = 4; c->shrink.seeks = 4;
c->shrink.batch = c->btree_pages * 2; c->shrink.batch = c->btree_pages * 2;
register_shrinker(&c->shrink);
if (register_shrinker(&c->shrink))
pr_warn("bcache: %s: could not register shrinker",
__func__);
return 0; return 0;
} }

View File

@ -585,7 +585,7 @@ static bool bch_extent_merge(struct btree_keys *bk, struct bkey *l, struct bkey
return false; return false;
for (i = 0; i < KEY_PTRS(l); i++) for (i = 0; i < KEY_PTRS(l); i++)
if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] || if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i)) PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
return false; return false;

View File

@ -170,6 +170,11 @@ int bch_journal_read(struct cache_set *c, struct list_head *list)
* find a sequence of buckets with valid journal entries * find a sequence of buckets with valid journal entries
*/ */
for (i = 0; i < ca->sb.njournal_buckets; i++) { for (i = 0; i < ca->sb.njournal_buckets; i++) {
/*
* We must try the index l with ZERO first for
* correctness due to the scenario that the journal
* bucket is circular buffer which might have wrapped
*/
l = (i * 2654435769U) % ca->sb.njournal_buckets; l = (i * 2654435769U) % ca->sb.njournal_buckets;
if (test_bit(l, bitmap)) if (test_bit(l, bitmap))
@ -507,7 +512,7 @@ static void journal_reclaim(struct cache_set *c)
continue; continue;
ja->cur_idx = next; ja->cur_idx = next;
k->ptr[n++] = PTR(0, k->ptr[n++] = MAKE_PTR(0,
bucket_to_sector(c, ca->sb.d[ja->cur_idx]), bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
ca->sb.nr_this_dev); ca->sb.nr_this_dev);
} }

View File

@ -708,16 +708,15 @@ static void cached_dev_read_error(struct closure *cl)
{ {
struct search *s = container_of(cl, struct search, cl); struct search *s = container_of(cl, struct search, cl);
struct bio *bio = &s->bio.bio; struct bio *bio = &s->bio.bio;
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
/* /*
* If cache device is dirty (dc->has_dirty is non-zero), then * If read request hit dirty data (s->read_dirty_data is true),
* recovery a failed read request from cached device may get a * then recovery a failed read request from cached device may
* stale data back. So read failure recovery is only permitted * get a stale data back. So read failure recovery is only
* when cache device is clean. * permitted when read request hit clean data in cache device,
* or when cache read race happened.
*/ */
if (s->recoverable && if (s->recoverable && !s->read_dirty_data) {
(dc && !atomic_read(&dc->has_dirty))) {
/* Retry from the backing device: */ /* Retry from the backing device: */
trace_bcache_read_retry(s->orig_bio); trace_bcache_read_retry(s->orig_bio);

View File

@ -1449,19 +1449,19 @@ static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
int srcu_idx, ret; int srcu_idx, ret;
u8 data[16] = { 0, }; u8 data[16] = { 0, };
ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
if (unlikely(!ns))
return -EWOULDBLOCK;
put_unaligned_le64(key, &data[0]); put_unaligned_le64(key, &data[0]);
put_unaligned_le64(sa_key, &data[8]); put_unaligned_le64(sa_key, &data[8]);
memset(&c, 0, sizeof(c)); memset(&c, 0, sizeof(c));
c.common.opcode = op; c.common.opcode = op;
c.common.nsid = cpu_to_le32(head->ns_id); c.common.nsid = cpu_to_le32(ns->head->ns_id);
c.common.cdw10[0] = cpu_to_le32(cdw10); c.common.cdw10[0] = cpu_to_le32(cdw10);
ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
if (unlikely(!ns))
ret = -EWOULDBLOCK;
else
ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
nvme_put_ns_from_disk(head, srcu_idx); nvme_put_ns_from_disk(head, srcu_idx);
return ret; return ret;
} }
@ -2961,8 +2961,6 @@ static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
static void nvme_ns_remove(struct nvme_ns *ns) static void nvme_ns_remove(struct nvme_ns *ns)
{ {
struct nvme_ns_head *head = ns->head;
if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
return; return;
@ -2980,15 +2978,14 @@ static void nvme_ns_remove(struct nvme_ns *ns)
mutex_lock(&ns->ctrl->subsys->lock); mutex_lock(&ns->ctrl->subsys->lock);
nvme_mpath_clear_current_path(ns); nvme_mpath_clear_current_path(ns);
if (head) list_del_rcu(&ns->siblings);
list_del_rcu(&ns->siblings);
mutex_unlock(&ns->ctrl->subsys->lock); mutex_unlock(&ns->ctrl->subsys->lock);
mutex_lock(&ns->ctrl->namespaces_mutex); mutex_lock(&ns->ctrl->namespaces_mutex);
list_del_init(&ns->list); list_del_init(&ns->list);
mutex_unlock(&ns->ctrl->namespaces_mutex); mutex_unlock(&ns->ctrl->namespaces_mutex);
synchronize_srcu(&head->srcu); synchronize_srcu(&ns->head->srcu);
nvme_put_ns(ns); nvme_put_ns(ns);
} }

View File

@ -156,4 +156,34 @@ void nvmf_free_options(struct nvmf_ctrl_options *opts);
int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size); int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size);
bool nvmf_should_reconnect(struct nvme_ctrl *ctrl); bool nvmf_should_reconnect(struct nvme_ctrl *ctrl);
static inline blk_status_t nvmf_check_init_req(struct nvme_ctrl *ctrl,
struct request *rq)
{
struct nvme_command *cmd = nvme_req(rq)->cmd;
/*
* We cannot accept any other command until the connect command has
* completed, so only allow connect to pass.
*/
if (!blk_rq_is_passthrough(rq) ||
cmd->common.opcode != nvme_fabrics_command ||
cmd->fabrics.fctype != nvme_fabrics_type_connect) {
/*
* Reconnecting state means transport disruption, which can take
* a long time and even might fail permanently, fail fast to
* give upper layers a chance to failover.
* Deleting state means that the ctrl will never accept commands
* again, fail it permanently.
*/
if (ctrl->state == NVME_CTRL_RECONNECTING ||
ctrl->state == NVME_CTRL_DELETING) {
nvme_req(rq)->status = NVME_SC_ABORT_REQ;
return BLK_STS_IOERR;
}
return BLK_STS_RESOURCE; /* try again later */
}
return BLK_STS_OK;
}
#endif /* _NVME_FABRICS_H */ #endif /* _NVME_FABRICS_H */

View File

@ -31,7 +31,8 @@
enum nvme_fc_queue_flags { enum nvme_fc_queue_flags {
NVME_FC_Q_CONNECTED = (1 << 0), NVME_FC_Q_CONNECTED = 0,
NVME_FC_Q_LIVE,
}; };
#define NVMEFC_QUEUE_DELAY 3 /* ms units */ #define NVMEFC_QUEUE_DELAY 3 /* ms units */
@ -1927,6 +1928,7 @@ nvme_fc_free_queue(struct nvme_fc_queue *queue)
if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
return; return;
clear_bit(NVME_FC_Q_LIVE, &queue->flags);
/* /*
* Current implementation never disconnects a single queue. * Current implementation never disconnects a single queue.
* It always terminates a whole association. So there is never * It always terminates a whole association. So there is never
@ -1934,7 +1936,6 @@ nvme_fc_free_queue(struct nvme_fc_queue *queue)
*/ */
queue->connection_id = 0; queue->connection_id = 0;
clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
} }
static void static void
@ -2013,6 +2014,8 @@ nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
ret = nvmf_connect_io_queue(&ctrl->ctrl, i); ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
if (ret) if (ret)
break; break;
set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
} }
return ret; return ret;
@ -2320,6 +2323,14 @@ busy:
return BLK_STS_RESOURCE; return BLK_STS_RESOURCE;
} }
static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue,
struct request *rq)
{
if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags)))
return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
return BLK_STS_OK;
}
static blk_status_t static blk_status_t
nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd) const struct blk_mq_queue_data *bd)
@ -2335,6 +2346,10 @@ nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
u32 data_len; u32 data_len;
blk_status_t ret; blk_status_t ret;
ret = nvme_fc_is_ready(queue, rq);
if (unlikely(ret))
return ret;
ret = nvme_setup_cmd(ns, rq, sqe); ret = nvme_setup_cmd(ns, rq, sqe);
if (ret) if (ret)
return ret; return ret;
@ -2727,6 +2742,8 @@ nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
if (ret) if (ret)
goto out_disconnect_admin_queue; goto out_disconnect_admin_queue;
set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
/* /*
* Check controller capabilities * Check controller capabilities
* *

View File

@ -131,7 +131,7 @@ static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
bio->bi_opf |= REQ_NVME_MPATH; bio->bi_opf |= REQ_NVME_MPATH;
ret = direct_make_request(bio); ret = direct_make_request(bio);
} else if (!list_empty_careful(&head->list)) { } else if (!list_empty_careful(&head->list)) {
dev_warn_ratelimited(dev, "no path available - requeing I/O\n"); dev_warn_ratelimited(dev, "no path available - requeuing I/O\n");
spin_lock_irq(&head->requeue_lock); spin_lock_irq(&head->requeue_lock);
bio_list_add(&head->requeue_list, bio); bio_list_add(&head->requeue_list, bio);

View File

@ -114,7 +114,7 @@ static inline struct nvme_request *nvme_req(struct request *req)
* NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
* found empirically. * found empirically.
*/ */
#define NVME_QUIRK_DELAY_AMOUNT 2000 #define NVME_QUIRK_DELAY_AMOUNT 2300
enum nvme_ctrl_state { enum nvme_ctrl_state {
NVME_CTRL_NEW, NVME_CTRL_NEW,

View File

@ -1759,6 +1759,7 @@ static void nvme_free_host_mem(struct nvme_dev *dev)
dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
dev->host_mem_descs, dev->host_mem_descs_dma); dev->host_mem_descs, dev->host_mem_descs_dma);
dev->host_mem_descs = NULL; dev->host_mem_descs = NULL;
dev->nr_host_mem_descs = 0;
} }
static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
@ -1787,7 +1788,7 @@ static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
if (!bufs) if (!bufs)
goto out_free_descs; goto out_free_descs;
for (size = 0; size < preferred; size += len) { for (size = 0; size < preferred && i < max_entries; size += len) {
dma_addr_t dma_addr; dma_addr_t dma_addr;
len = min_t(u64, chunk_size, preferred - size); len = min_t(u64, chunk_size, preferred - size);
@ -2428,7 +2429,7 @@ static int nvme_dev_map(struct nvme_dev *dev)
return -ENODEV; return -ENODEV;
} }
static unsigned long check_dell_samsung_bug(struct pci_dev *pdev) static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
{ {
if (pdev->vendor == 0x144d && pdev->device == 0xa802) { if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
/* /*
@ -2443,6 +2444,14 @@ static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
(dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
return NVME_QUIRK_NO_DEEPEST_PS; return NVME_QUIRK_NO_DEEPEST_PS;
} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
/*
* Samsung SSD 960 EVO drops off the PCIe bus after system
* suspend on a Ryzen board, ASUS PRIME B350M-A.
*/
if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
dmi_match(DMI_BOARD_NAME, "PRIME B350M-A"))
return NVME_QUIRK_NO_APST;
} }
return 0; return 0;
@ -2482,7 +2491,7 @@ static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
if (result) if (result)
goto unmap; goto unmap;
quirks |= check_dell_samsung_bug(pdev); quirks |= check_vendor_combination_bug(pdev);
result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
quirks); quirks);
@ -2665,6 +2674,8 @@ static const struct pci_device_id nvme_id_table[] = {
.driver_data = NVME_QUIRK_IDENTIFY_CNS, }, .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
{ PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
{ PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
{ PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
{ PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */

View File

@ -15,6 +15,7 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <rdma/mr_pool.h>
#include <linux/err.h> #include <linux/err.h>
#include <linux/string.h> #include <linux/string.h>
#include <linux/atomic.h> #include <linux/atomic.h>
@ -59,6 +60,9 @@ struct nvme_rdma_request {
struct nvme_request req; struct nvme_request req;
struct ib_mr *mr; struct ib_mr *mr;
struct nvme_rdma_qe sqe; struct nvme_rdma_qe sqe;
union nvme_result result;
__le16 status;
refcount_t ref;
struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
u32 num_sge; u32 num_sge;
int nents; int nents;
@ -73,11 +77,11 @@ struct nvme_rdma_request {
enum nvme_rdma_queue_flags { enum nvme_rdma_queue_flags {
NVME_RDMA_Q_ALLOCATED = 0, NVME_RDMA_Q_ALLOCATED = 0,
NVME_RDMA_Q_LIVE = 1, NVME_RDMA_Q_LIVE = 1,
NVME_RDMA_Q_TR_READY = 2,
}; };
struct nvme_rdma_queue { struct nvme_rdma_queue {
struct nvme_rdma_qe *rsp_ring; struct nvme_rdma_qe *rsp_ring;
atomic_t sig_count;
int queue_size; int queue_size;
size_t cmnd_capsule_len; size_t cmnd_capsule_len;
struct nvme_rdma_ctrl *ctrl; struct nvme_rdma_ctrl *ctrl;
@ -258,32 +262,6 @@ static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
return ret; return ret;
} }
static int nvme_rdma_reinit_request(void *data, struct request *rq)
{
struct nvme_rdma_ctrl *ctrl = data;
struct nvme_rdma_device *dev = ctrl->device;
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
int ret = 0;
if (WARN_ON_ONCE(!req->mr))
return 0;
ib_dereg_mr(req->mr);
req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
ctrl->max_fr_pages);
if (IS_ERR(req->mr)) {
ret = PTR_ERR(req->mr);
req->mr = NULL;
goto out;
}
req->mr->need_inval = false;
out:
return ret;
}
static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
struct request *rq, unsigned int hctx_idx) struct request *rq, unsigned int hctx_idx)
{ {
@ -293,9 +271,6 @@ static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
struct nvme_rdma_device *dev = queue->device; struct nvme_rdma_device *dev = queue->device;
if (req->mr)
ib_dereg_mr(req->mr);
nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
DMA_TO_DEVICE); DMA_TO_DEVICE);
} }
@ -317,21 +292,9 @@ static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
if (ret) if (ret)
return ret; return ret;
req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
ctrl->max_fr_pages);
if (IS_ERR(req->mr)) {
ret = PTR_ERR(req->mr);
goto out_free_qe;
}
req->queue = queue; req->queue = queue;
return 0; return 0;
out_free_qe:
nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
DMA_TO_DEVICE);
return -ENOMEM;
} }
static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
@ -428,10 +391,23 @@ out_err:
static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
{ {
struct nvme_rdma_device *dev = queue->device; struct nvme_rdma_device *dev;
struct ib_device *ibdev = dev->dev; struct ib_device *ibdev;
rdma_destroy_qp(queue->cm_id); if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
return;
dev = queue->device;
ibdev = dev->dev;
ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
/*
* The cm_id object might have been destroyed during RDMA connection
* establishment error flow to avoid getting other cma events, thus
* the destruction of the QP shouldn't use rdma_cm API.
*/
ib_destroy_qp(queue->qp);
ib_free_cq(queue->ib_cq); ib_free_cq(queue->ib_cq);
nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
@ -440,6 +416,12 @@ static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
nvme_rdma_dev_put(dev); nvme_rdma_dev_put(dev);
} }
static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
{
return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
ibdev->attrs.max_fast_reg_page_list_len);
}
static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
{ {
struct ib_device *ibdev; struct ib_device *ibdev;
@ -482,8 +464,24 @@ static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
goto out_destroy_qp; goto out_destroy_qp;
} }
ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
queue->queue_size,
IB_MR_TYPE_MEM_REG,
nvme_rdma_get_max_fr_pages(ibdev));
if (ret) {
dev_err(queue->ctrl->ctrl.device,
"failed to initialize MR pool sized %d for QID %d\n",
queue->queue_size, idx);
goto out_destroy_ring;
}
set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
return 0; return 0;
out_destroy_ring:
nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
out_destroy_qp: out_destroy_qp:
rdma_destroy_qp(queue->cm_id); rdma_destroy_qp(queue->cm_id);
out_destroy_ib_cq: out_destroy_ib_cq:
@ -510,7 +508,6 @@ static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
queue->cmnd_capsule_len = sizeof(struct nvme_command); queue->cmnd_capsule_len = sizeof(struct nvme_command);
queue->queue_size = queue_size; queue->queue_size = queue_size;
atomic_set(&queue->sig_count, 0);
queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
RDMA_PS_TCP, IB_QPT_RC); RDMA_PS_TCP, IB_QPT_RC);
@ -546,6 +543,7 @@ static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
out_destroy_cm_id: out_destroy_cm_id:
rdma_destroy_id(queue->cm_id); rdma_destroy_id(queue->cm_id);
nvme_rdma_destroy_queue_ib(queue);
return ret; return ret;
} }
@ -756,8 +754,7 @@ static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
ctrl->device = ctrl->queues[0].device; ctrl->device = ctrl->queues[0].device;
ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
ctrl->device->dev->attrs.max_fast_reg_page_list_len);
if (new) { if (new) {
ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
@ -771,10 +768,6 @@ static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
error = PTR_ERR(ctrl->ctrl.admin_q); error = PTR_ERR(ctrl->ctrl.admin_q);
goto out_free_tagset; goto out_free_tagset;
} }
} else {
error = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
if (error)
goto out_free_queue;
} }
error = nvme_rdma_start_queue(ctrl, 0); error = nvme_rdma_start_queue(ctrl, 0);
@ -854,10 +847,6 @@ static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
goto out_free_tag_set; goto out_free_tag_set;
} }
} else { } else {
ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
if (ret)
goto out_free_io_queues;
blk_mq_update_nr_hw_queues(&ctrl->tag_set, blk_mq_update_nr_hw_queues(&ctrl->tag_set,
ctrl->ctrl.queue_count - 1); ctrl->ctrl.queue_count - 1);
} }
@ -1018,8 +1007,18 @@ static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{ {
if (unlikely(wc->status != IB_WC_SUCCESS)) struct nvme_rdma_request *req =
container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
struct request *rq = blk_mq_rq_from_pdu(req);
if (unlikely(wc->status != IB_WC_SUCCESS)) {
nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
return;
}
if (refcount_dec_and_test(&req->ref))
nvme_end_request(rq, req->status, req->result);
} }
static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
@ -1030,7 +1029,7 @@ static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
.opcode = IB_WR_LOCAL_INV, .opcode = IB_WR_LOCAL_INV,
.next = NULL, .next = NULL,
.num_sge = 0, .num_sge = 0,
.send_flags = 0, .send_flags = IB_SEND_SIGNALED,
.ex.invalidate_rkey = req->mr->rkey, .ex.invalidate_rkey = req->mr->rkey,
}; };
@ -1044,22 +1043,15 @@ static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
struct request *rq) struct request *rq)
{ {
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
struct nvme_rdma_device *dev = queue->device; struct nvme_rdma_device *dev = queue->device;
struct ib_device *ibdev = dev->dev; struct ib_device *ibdev = dev->dev;
int res;
if (!blk_rq_bytes(rq)) if (!blk_rq_bytes(rq))
return; return;
if (req->mr->need_inval && test_bit(NVME_RDMA_Q_LIVE, &req->queue->flags)) { if (req->mr) {
res = nvme_rdma_inv_rkey(queue, req); ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
if (unlikely(res < 0)) { req->mr = NULL;
dev_err(ctrl->ctrl.device,
"Queueing INV WR for rkey %#x failed (%d)\n",
req->mr->rkey, res);
nvme_rdma_error_recovery(queue->ctrl);
}
} }
ib_dma_unmap_sg(ibdev, req->sg_table.sgl, ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
@ -1118,12 +1110,18 @@ static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
int nr; int nr;
req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
if (WARN_ON_ONCE(!req->mr))
return -EAGAIN;
/* /*
* Align the MR to a 4K page size to match the ctrl page size and * Align the MR to a 4K page size to match the ctrl page size and
* the block virtual boundary. * the block virtual boundary.
*/ */
nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
if (unlikely(nr < count)) { if (unlikely(nr < count)) {
ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
req->mr = NULL;
if (nr < 0) if (nr < 0)
return nr; return nr;
return -EINVAL; return -EINVAL;
@ -1142,8 +1140,6 @@ static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_READ |
IB_ACCESS_REMOTE_WRITE; IB_ACCESS_REMOTE_WRITE;
req->mr->need_inval = true;
sg->addr = cpu_to_le64(req->mr->iova); sg->addr = cpu_to_le64(req->mr->iova);
put_unaligned_le24(req->mr->length, sg->length); put_unaligned_le24(req->mr->length, sg->length);
put_unaligned_le32(req->mr->rkey, sg->key); put_unaligned_le32(req->mr->rkey, sg->key);
@ -1163,7 +1159,7 @@ static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
req->num_sge = 1; req->num_sge = 1;
req->inline_data = false; req->inline_data = false;
req->mr->need_inval = false; refcount_set(&req->ref, 2); /* send and recv completions */
c->common.flags |= NVME_CMD_SGL_METABUF; c->common.flags |= NVME_CMD_SGL_METABUF;
@ -1200,25 +1196,24 @@ static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{ {
if (unlikely(wc->status != IB_WC_SUCCESS)) struct nvme_rdma_qe *qe =
container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
struct nvme_rdma_request *req =
container_of(qe, struct nvme_rdma_request, sqe);
struct request *rq = blk_mq_rq_from_pdu(req);
if (unlikely(wc->status != IB_WC_SUCCESS)) {
nvme_rdma_wr_error(cq, wc, "SEND"); nvme_rdma_wr_error(cq, wc, "SEND");
} return;
}
/* if (refcount_dec_and_test(&req->ref))
* We want to signal completion at least every queue depth/2. This returns the nvme_end_request(rq, req->status, req->result);
* largest power of two that is not above half of (queue size + 1) to optimize
* (avoid divisions).
*/
static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
{
int limit = 1 << ilog2((queue->queue_size + 1) / 2);
return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
} }
static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
struct ib_send_wr *first, bool flush) struct ib_send_wr *first)
{ {
struct ib_send_wr wr, *bad_wr; struct ib_send_wr wr, *bad_wr;
int ret; int ret;
@ -1227,31 +1222,12 @@ static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
sge->length = sizeof(struct nvme_command), sge->length = sizeof(struct nvme_command),
sge->lkey = queue->device->pd->local_dma_lkey; sge->lkey = queue->device->pd->local_dma_lkey;
qe->cqe.done = nvme_rdma_send_done;
wr.next = NULL; wr.next = NULL;
wr.wr_cqe = &qe->cqe; wr.wr_cqe = &qe->cqe;
wr.sg_list = sge; wr.sg_list = sge;
wr.num_sge = num_sge; wr.num_sge = num_sge;
wr.opcode = IB_WR_SEND; wr.opcode = IB_WR_SEND;
wr.send_flags = 0; wr.send_flags = IB_SEND_SIGNALED;
/*
* Unsignalled send completions are another giant desaster in the
* IB Verbs spec: If we don't regularly post signalled sends
* the send queue will fill up and only a QP reset will rescue us.
* Would have been way to obvious to handle this in hardware or
* at least the RDMA stack..
*
* Always signal the flushes. The magic request used for the flush
* sequencer is not allocated in our driver's tagset and it's
* triggered to be freed by blk_cleanup_queue(). So we need to
* always mark it as signaled to ensure that the "wr_cqe", which is
* embedded in request's payload, is not freed when __ib_process_cq()
* calls wr_cqe->done().
*/
if (nvme_rdma_queue_sig_limit(queue) || flush)
wr.send_flags |= IB_SEND_SIGNALED;
if (first) if (first)
first->next = &wr; first->next = &wr;
@ -1301,6 +1277,12 @@ static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
return queue->ctrl->tag_set.tags[queue_idx - 1]; return queue->ctrl->tag_set.tags[queue_idx - 1];
} }
static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
{
if (unlikely(wc->status != IB_WC_SUCCESS))
nvme_rdma_wr_error(cq, wc, "ASYNC");
}
static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
{ {
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
@ -1319,10 +1301,12 @@ static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
cmd->common.flags |= NVME_CMD_SGL_METABUF; cmd->common.flags |= NVME_CMD_SGL_METABUF;
nvme_rdma_set_sg_null(cmd); nvme_rdma_set_sg_null(cmd);
sqe->cqe.done = nvme_rdma_async_done;
ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
DMA_TO_DEVICE); DMA_TO_DEVICE);
ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
WARN_ON_ONCE(ret); WARN_ON_ONCE(ret);
} }
@ -1343,14 +1327,34 @@ static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
} }
req = blk_mq_rq_to_pdu(rq); req = blk_mq_rq_to_pdu(rq);
if (rq->tag == tag) req->status = cqe->status;
ret = 1; req->result = cqe->result;
if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
wc->ex.invalidate_rkey == req->mr->rkey) if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
req->mr->need_inval = false; dev_err(queue->ctrl->ctrl.device,
"Bogus remote invalidation for rkey %#x\n",
req->mr->rkey);
nvme_rdma_error_recovery(queue->ctrl);
}
} else if (req->mr) {
ret = nvme_rdma_inv_rkey(queue, req);
if (unlikely(ret < 0)) {
dev_err(queue->ctrl->ctrl.device,
"Queueing INV WR for rkey %#x failed (%d)\n",
req->mr->rkey, ret);
nvme_rdma_error_recovery(queue->ctrl);
}
/* the local invalidation completion will end the request */
return 0;
}
if (refcount_dec_and_test(&req->ref)) {
if (rq->tag == tag)
ret = 1;
nvme_end_request(rq, req->status, req->result);
}
nvme_end_request(rq, cqe->status, cqe->result);
return ret; return ret;
} }
@ -1591,31 +1595,11 @@ nvme_rdma_timeout(struct request *rq, bool reserved)
* We cannot accept any other command until the Connect command has completed. * We cannot accept any other command until the Connect command has completed.
*/ */
static inline blk_status_t static inline blk_status_t
nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq) nvme_rdma_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
{ {
if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags)))
struct nvme_command *cmd = nvme_req(rq)->cmd; return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
return BLK_STS_OK;
if (!blk_rq_is_passthrough(rq) ||
cmd->common.opcode != nvme_fabrics_command ||
cmd->fabrics.fctype != nvme_fabrics_type_connect) {
/*
* reconnecting state means transport disruption, which
* can take a long time and even might fail permanently,
* fail fast to give upper layers a chance to failover.
* deleting state means that the ctrl will never accept
* commands again, fail it permanently.
*/
if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING ||
queue->ctrl->ctrl.state == NVME_CTRL_DELETING) {
nvme_req(rq)->status = NVME_SC_ABORT_REQ;
return BLK_STS_IOERR;
}
return BLK_STS_RESOURCE; /* try again later */
}
}
return 0;
} }
static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
@ -1627,14 +1611,13 @@ static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_qe *sqe = &req->sqe; struct nvme_rdma_qe *sqe = &req->sqe;
struct nvme_command *c = sqe->data; struct nvme_command *c = sqe->data;
bool flush = false;
struct ib_device *dev; struct ib_device *dev;
blk_status_t ret; blk_status_t ret;
int err; int err;
WARN_ON_ONCE(rq->tag < 0); WARN_ON_ONCE(rq->tag < 0);
ret = nvme_rdma_queue_is_ready(queue, rq); ret = nvme_rdma_is_ready(queue, rq);
if (unlikely(ret)) if (unlikely(ret))
return ret; return ret;
@ -1656,13 +1639,13 @@ static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
goto err; goto err;
} }
sqe->cqe.done = nvme_rdma_send_done;
ib_dma_sync_single_for_device(dev, sqe->dma, ib_dma_sync_single_for_device(dev, sqe->dma,
sizeof(struct nvme_command), DMA_TO_DEVICE); sizeof(struct nvme_command), DMA_TO_DEVICE);
if (req_op(rq) == REQ_OP_FLUSH)
flush = true;
err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); req->mr ? &req->reg_wr.wr : NULL);
if (unlikely(err)) { if (unlikely(err)) {
nvme_rdma_unmap_data(queue, rq); nvme_rdma_unmap_data(queue, rq);
goto err; goto err;
@ -1810,7 +1793,6 @@ static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
.submit_async_event = nvme_rdma_submit_async_event, .submit_async_event = nvme_rdma_submit_async_event,
.delete_ctrl = nvme_rdma_delete_ctrl, .delete_ctrl = nvme_rdma_delete_ctrl,
.get_address = nvmf_get_address, .get_address = nvmf_get_address,
.reinit_request = nvme_rdma_reinit_request,
}; };
static inline bool static inline bool

View File

@ -533,15 +533,15 @@ nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq); tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
/* release the queue lookup reference on the completed IO */
nvmet_fc_tgt_q_put(queue);
spin_lock_irqsave(&queue->qlock, flags); spin_lock_irqsave(&queue->qlock, flags);
deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
struct nvmet_fc_defer_fcp_req, req_list); struct nvmet_fc_defer_fcp_req, req_list);
if (!deferfcp) { if (!deferfcp) {
list_add_tail(&fod->fcp_list, &fod->queue->fod_list); list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
spin_unlock_irqrestore(&queue->qlock, flags); spin_unlock_irqrestore(&queue->qlock, flags);
/* Release reference taken at queue lookup and fod allocation */
nvmet_fc_tgt_q_put(queue);
return; return;
} }
@ -760,6 +760,9 @@ nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
tgtport->ops->fcp_req_release(&tgtport->fc_target_port, tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
deferfcp->fcp_req); deferfcp->fcp_req);
/* release the queue lookup reference */
nvmet_fc_tgt_q_put(queue);
kfree(deferfcp); kfree(deferfcp);
spin_lock_irqsave(&queue->qlock, flags); spin_lock_irqsave(&queue->qlock, flags);

View File

@ -52,10 +52,15 @@ static inline struct nvme_loop_ctrl *to_loop_ctrl(struct nvme_ctrl *ctrl)
return container_of(ctrl, struct nvme_loop_ctrl, ctrl); return container_of(ctrl, struct nvme_loop_ctrl, ctrl);
} }
enum nvme_loop_queue_flags {
NVME_LOOP_Q_LIVE = 0,
};
struct nvme_loop_queue { struct nvme_loop_queue {
struct nvmet_cq nvme_cq; struct nvmet_cq nvme_cq;
struct nvmet_sq nvme_sq; struct nvmet_sq nvme_sq;
struct nvme_loop_ctrl *ctrl; struct nvme_loop_ctrl *ctrl;
unsigned long flags;
}; };
static struct nvmet_port *nvmet_loop_port; static struct nvmet_port *nvmet_loop_port;
@ -144,6 +149,14 @@ nvme_loop_timeout(struct request *rq, bool reserved)
return BLK_EH_HANDLED; return BLK_EH_HANDLED;
} }
static inline blk_status_t nvme_loop_is_ready(struct nvme_loop_queue *queue,
struct request *rq)
{
if (unlikely(!test_bit(NVME_LOOP_Q_LIVE, &queue->flags)))
return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
return BLK_STS_OK;
}
static blk_status_t nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx, static blk_status_t nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd) const struct blk_mq_queue_data *bd)
{ {
@ -153,6 +166,10 @@ static blk_status_t nvme_loop_queue_rq(struct blk_mq_hw_ctx *hctx,
struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req); struct nvme_loop_iod *iod = blk_mq_rq_to_pdu(req);
blk_status_t ret; blk_status_t ret;
ret = nvme_loop_is_ready(queue, req);
if (unlikely(ret))
return ret;
ret = nvme_setup_cmd(ns, req, &iod->cmd); ret = nvme_setup_cmd(ns, req, &iod->cmd);
if (ret) if (ret)
return ret; return ret;
@ -267,6 +284,7 @@ static const struct blk_mq_ops nvme_loop_admin_mq_ops = {
static void nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl *ctrl) static void nvme_loop_destroy_admin_queue(struct nvme_loop_ctrl *ctrl)
{ {
clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags);
nvmet_sq_destroy(&ctrl->queues[0].nvme_sq); nvmet_sq_destroy(&ctrl->queues[0].nvme_sq);
blk_cleanup_queue(ctrl->ctrl.admin_q); blk_cleanup_queue(ctrl->ctrl.admin_q);
blk_mq_free_tag_set(&ctrl->admin_tag_set); blk_mq_free_tag_set(&ctrl->admin_tag_set);
@ -297,8 +315,10 @@ static void nvme_loop_destroy_io_queues(struct nvme_loop_ctrl *ctrl)
{ {
int i; int i;
for (i = 1; i < ctrl->ctrl.queue_count; i++) for (i = 1; i < ctrl->ctrl.queue_count; i++) {
clear_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags);
nvmet_sq_destroy(&ctrl->queues[i].nvme_sq); nvmet_sq_destroy(&ctrl->queues[i].nvme_sq);
}
} }
static int nvme_loop_init_io_queues(struct nvme_loop_ctrl *ctrl) static int nvme_loop_init_io_queues(struct nvme_loop_ctrl *ctrl)
@ -338,6 +358,7 @@ static int nvme_loop_connect_io_queues(struct nvme_loop_ctrl *ctrl)
ret = nvmf_connect_io_queue(&ctrl->ctrl, i); ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
if (ret) if (ret)
return ret; return ret;
set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[i].flags);
} }
return 0; return 0;
@ -380,6 +401,8 @@ static int nvme_loop_configure_admin_queue(struct nvme_loop_ctrl *ctrl)
if (error) if (error)
goto out_cleanup_queue; goto out_cleanup_queue;
set_bit(NVME_LOOP_Q_LIVE, &ctrl->queues[0].flags);
error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap); error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
if (error) { if (error) {
dev_err(ctrl->ctrl.device, dev_err(ctrl->ctrl.device,

View File

@ -91,7 +91,7 @@ PTR_FIELD(PTR_GEN, 0, 8)
#define PTR_CHECK_DEV ((1 << PTR_DEV_BITS) - 1) #define PTR_CHECK_DEV ((1 << PTR_DEV_BITS) - 1)
#define PTR(gen, offset, dev) \ #define MAKE_PTR(gen, offset, dev) \
((((__u64) dev) << 51) | ((__u64) offset) << 8 | gen) ((((__u64) dev) << 51) | ((__u64) offset) << 8 | gen)
/* Bkey utility code */ /* Bkey utility code */

View File

@ -591,7 +591,7 @@ static int __blk_trace_setup(struct request_queue *q, char *name, dev_t dev,
return ret; return ret;
if (copy_to_user(arg, &buts, sizeof(buts))) { if (copy_to_user(arg, &buts, sizeof(buts))) {
blk_trace_remove(q); __blk_trace_remove(q);
return -EFAULT; return -EFAULT;
} }
return 0; return 0;
@ -637,7 +637,7 @@ static int compat_blk_trace_setup(struct request_queue *q, char *name,
return ret; return ret;
if (copy_to_user(arg, &buts.name, ARRAY_SIZE(buts.name))) { if (copy_to_user(arg, &buts.name, ARRAY_SIZE(buts.name))) {
blk_trace_remove(q); __blk_trace_remove(q);
return -EFAULT; return -EFAULT;
} }
@ -872,7 +872,7 @@ static void blk_add_trace_rq_complete(void *ignore, struct request *rq,
* *
**/ **/
static void blk_add_trace_bio(struct request_queue *q, struct bio *bio, static void blk_add_trace_bio(struct request_queue *q, struct bio *bio,
u32 what, int error, union kernfs_node_id *cgid) u32 what, int error)
{ {
struct blk_trace *bt = q->blk_trace; struct blk_trace *bt = q->blk_trace;
@ -880,22 +880,21 @@ static void blk_add_trace_bio(struct request_queue *q, struct bio *bio,
return; return;
__blk_add_trace(bt, bio->bi_iter.bi_sector, bio->bi_iter.bi_size, __blk_add_trace(bt, bio->bi_iter.bi_sector, bio->bi_iter.bi_size,
bio_op(bio), bio->bi_opf, what, error, 0, NULL, cgid); bio_op(bio), bio->bi_opf, what, error, 0, NULL,
blk_trace_bio_get_cgid(q, bio));
} }
static void blk_add_trace_bio_bounce(void *ignore, static void blk_add_trace_bio_bounce(void *ignore,
struct request_queue *q, struct bio *bio) struct request_queue *q, struct bio *bio)
{ {
blk_add_trace_bio(q, bio, BLK_TA_BOUNCE, 0, blk_add_trace_bio(q, bio, BLK_TA_BOUNCE, 0);
blk_trace_bio_get_cgid(q, bio));
} }
static void blk_add_trace_bio_complete(void *ignore, static void blk_add_trace_bio_complete(void *ignore,
struct request_queue *q, struct bio *bio, struct request_queue *q, struct bio *bio,
int error) int error)
{ {
blk_add_trace_bio(q, bio, BLK_TA_COMPLETE, error, blk_add_trace_bio(q, bio, BLK_TA_COMPLETE, error);
blk_trace_bio_get_cgid(q, bio));
} }
static void blk_add_trace_bio_backmerge(void *ignore, static void blk_add_trace_bio_backmerge(void *ignore,
@ -903,8 +902,7 @@ static void blk_add_trace_bio_backmerge(void *ignore,
struct request *rq, struct request *rq,
struct bio *bio) struct bio *bio)
{ {
blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE, 0, blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE, 0);
blk_trace_bio_get_cgid(q, bio));
} }
static void blk_add_trace_bio_frontmerge(void *ignore, static void blk_add_trace_bio_frontmerge(void *ignore,
@ -912,15 +910,13 @@ static void blk_add_trace_bio_frontmerge(void *ignore,
struct request *rq, struct request *rq,
struct bio *bio) struct bio *bio)
{ {
blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE, 0, blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE, 0);
blk_trace_bio_get_cgid(q, bio));
} }
static void blk_add_trace_bio_queue(void *ignore, static void blk_add_trace_bio_queue(void *ignore,
struct request_queue *q, struct bio *bio) struct request_queue *q, struct bio *bio)
{ {
blk_add_trace_bio(q, bio, BLK_TA_QUEUE, 0, blk_add_trace_bio(q, bio, BLK_TA_QUEUE, 0);
blk_trace_bio_get_cgid(q, bio));
} }
static void blk_add_trace_getrq(void *ignore, static void blk_add_trace_getrq(void *ignore,
@ -928,8 +924,7 @@ static void blk_add_trace_getrq(void *ignore,
struct bio *bio, int rw) struct bio *bio, int rw)
{ {
if (bio) if (bio)
blk_add_trace_bio(q, bio, BLK_TA_GETRQ, 0, blk_add_trace_bio(q, bio, BLK_TA_GETRQ, 0);
blk_trace_bio_get_cgid(q, bio));
else { else {
struct blk_trace *bt = q->blk_trace; struct blk_trace *bt = q->blk_trace;
@ -945,8 +940,7 @@ static void blk_add_trace_sleeprq(void *ignore,
struct bio *bio, int rw) struct bio *bio, int rw)
{ {
if (bio) if (bio)
blk_add_trace_bio(q, bio, BLK_TA_SLEEPRQ, 0, blk_add_trace_bio(q, bio, BLK_TA_SLEEPRQ, 0);
blk_trace_bio_get_cgid(q, bio));
else { else {
struct blk_trace *bt = q->blk_trace; struct blk_trace *bt = q->blk_trace;

View File

@ -113,11 +113,23 @@ static const struct file_operations bdi_debug_stats_fops = {
.release = single_release, .release = single_release,
}; };
static void bdi_debug_register(struct backing_dev_info *bdi, const char *name) static int bdi_debug_register(struct backing_dev_info *bdi, const char *name)
{ {
if (!bdi_debug_root)
return -ENOMEM;
bdi->debug_dir = debugfs_create_dir(name, bdi_debug_root); bdi->debug_dir = debugfs_create_dir(name, bdi_debug_root);
if (!bdi->debug_dir)
return -ENOMEM;
bdi->debug_stats = debugfs_create_file("stats", 0444, bdi->debug_dir, bdi->debug_stats = debugfs_create_file("stats", 0444, bdi->debug_dir,
bdi, &bdi_debug_stats_fops); bdi, &bdi_debug_stats_fops);
if (!bdi->debug_stats) {
debugfs_remove(bdi->debug_dir);
return -ENOMEM;
}
return 0;
} }
static void bdi_debug_unregister(struct backing_dev_info *bdi) static void bdi_debug_unregister(struct backing_dev_info *bdi)
@ -129,9 +141,10 @@ static void bdi_debug_unregister(struct backing_dev_info *bdi)
static inline void bdi_debug_init(void) static inline void bdi_debug_init(void)
{ {
} }
static inline void bdi_debug_register(struct backing_dev_info *bdi, static inline int bdi_debug_register(struct backing_dev_info *bdi,
const char *name) const char *name)
{ {
return 0;
} }
static inline void bdi_debug_unregister(struct backing_dev_info *bdi) static inline void bdi_debug_unregister(struct backing_dev_info *bdi)
{ {
@ -869,10 +882,13 @@ int bdi_register_va(struct backing_dev_info *bdi, const char *fmt, va_list args)
if (IS_ERR(dev)) if (IS_ERR(dev))
return PTR_ERR(dev); return PTR_ERR(dev);
if (bdi_debug_register(bdi, dev_name(dev))) {
device_destroy(bdi_class, dev->devt);
return -ENOMEM;
}
cgwb_bdi_register(bdi); cgwb_bdi_register(bdi);
bdi->dev = dev; bdi->dev = dev;
bdi_debug_register(bdi, dev_name(dev));
set_bit(WB_registered, &bdi->wb.state); set_bit(WB_registered, &bdi->wb.state);
spin_lock_bh(&bdi_lock); spin_lock_bh(&bdi_lock);