Merge branch 'akpm' (patches from Andrew)

Merge updates from Andrew Morton:
 "A large amount of MM, plenty more to come.

  Subsystems affected by this patch series:
   - tools
   - kthread
   - kbuild
   - scripts
   - ocfs2
   - vfs
   - mm: slub, kmemleak, pagecache, gup, swap, memcg, pagemap, mremap,
         sparsemem, kasan, pagealloc, vmscan, compaction, mempolicy,
         hugetlbfs, hugetlb"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (155 commits)
  include/linux/huge_mm.h: check PageTail in hpage_nr_pages even when !THP
  mm/hugetlb: fix build failure with HUGETLB_PAGE but not HUGEBTLBFS
  selftests/vm: fix map_hugetlb length used for testing read and write
  mm/hugetlb: remove unnecessary memory fetch in PageHeadHuge()
  mm/hugetlb.c: clean code by removing unnecessary initialization
  hugetlb_cgroup: add hugetlb_cgroup reservation docs
  hugetlb_cgroup: add hugetlb_cgroup reservation tests
  hugetlb: support file_region coalescing again
  hugetlb_cgroup: support noreserve mappings
  hugetlb_cgroup: add accounting for shared mappings
  hugetlb: disable region_add file_region coalescing
  hugetlb_cgroup: add reservation accounting for private mappings
  mm/hugetlb_cgroup: fix hugetlb_cgroup migration
  hugetlb_cgroup: add interface for charge/uncharge hugetlb reservations
  hugetlb_cgroup: add hugetlb_cgroup reservation counter
  hugetlbfs: Use i_mmap_rwsem to address page fault/truncate race
  hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
  mm/memblock.c: remove redundant assignment to variable max_addr
  mm: mempolicy: require at least one nodeid for MPOL_PREFERRED
  mm: mempolicy: use VM_BUG_ON_VMA in queue_pages_test_walk()
  ...
This commit is contained in:
Linus Torvalds 2020-04-02 13:55:34 -07:00
commit 6cad420cc6
165 changed files with 4904 additions and 2260 deletions

View File

@ -2,13 +2,6 @@
HugeTLB Controller
==================
The HugeTLB controller allows to limit the HugeTLB usage per control group and
enforces the controller limit during page fault. Since HugeTLB doesn't
support page reclaim, enforcing the limit at page fault time implies that,
the application will get SIGBUS signal if it tries to access HugeTLB pages
beyond its limit. This requires the application to know beforehand how much
HugeTLB pages it would require for its use.
HugeTLB controller can be created by first mounting the cgroup filesystem.
# mount -t cgroup -o hugetlb none /sys/fs/cgroup
@ -28,10 +21,14 @@ process (bash) into it.
Brief summary of control files::
hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb usage
hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded
hugetlb.<hugepagesize>.usage_in_bytes # show current usage for "hugepagesize" hugetlb
hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB limit
hugetlb.<hugepagesize>.rsvd.limit_in_bytes # set/show limit of "hugepagesize" hugetlb reservations
hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes # show max "hugepagesize" hugetlb reservations and no-reserve faults
hugetlb.<hugepagesize>.rsvd.usage_in_bytes # show current reservations and no-reserve faults for "hugepagesize" hugetlb
hugetlb.<hugepagesize>.rsvd.failcnt # show the number of allocation failure due to HugeTLB reservation limit
hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb faults
hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded
hugetlb.<hugepagesize>.usage_in_bytes # show current usage for "hugepagesize" hugetlb
hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB usage limit
For a system supporting three hugepage sizes (64k, 32M and 1G), the control
files include::
@ -40,11 +37,95 @@ files include::
hugetlb.1GB.max_usage_in_bytes
hugetlb.1GB.usage_in_bytes
hugetlb.1GB.failcnt
hugetlb.1GB.rsvd.limit_in_bytes
hugetlb.1GB.rsvd.max_usage_in_bytes
hugetlb.1GB.rsvd.usage_in_bytes
hugetlb.1GB.rsvd.failcnt
hugetlb.64KB.limit_in_bytes
hugetlb.64KB.max_usage_in_bytes
hugetlb.64KB.usage_in_bytes
hugetlb.64KB.failcnt
hugetlb.64KB.rsvd.limit_in_bytes
hugetlb.64KB.rsvd.max_usage_in_bytes
hugetlb.64KB.rsvd.usage_in_bytes
hugetlb.64KB.rsvd.failcnt
hugetlb.32MB.limit_in_bytes
hugetlb.32MB.max_usage_in_bytes
hugetlb.32MB.usage_in_bytes
hugetlb.32MB.failcnt
hugetlb.32MB.rsvd.limit_in_bytes
hugetlb.32MB.rsvd.max_usage_in_bytes
hugetlb.32MB.rsvd.usage_in_bytes
hugetlb.32MB.rsvd.failcnt
1. Page fault accounting
hugetlb.<hugepagesize>.limit_in_bytes
hugetlb.<hugepagesize>.max_usage_in_bytes
hugetlb.<hugepagesize>.usage_in_bytes
hugetlb.<hugepagesize>.failcnt
The HugeTLB controller allows users to limit the HugeTLB usage (page fault) per
control group and enforces the limit during page fault. Since HugeTLB
doesn't support page reclaim, enforcing the limit at page fault time implies
that, the application will get SIGBUS signal if it tries to fault in HugeTLB
pages beyond its limit. Therefore the application needs to know exactly how many
HugeTLB pages it uses before hand, and the sysadmin needs to make sure that
there are enough available on the machine for all the users to avoid processes
getting SIGBUS.
2. Reservation accounting
hugetlb.<hugepagesize>.rsvd.limit_in_bytes
hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes
hugetlb.<hugepagesize>.rsvd.usage_in_bytes
hugetlb.<hugepagesize>.rsvd.failcnt
The HugeTLB controller allows to limit the HugeTLB reservations per control
group and enforces the controller limit at reservation time and at the fault of
HugeTLB memory for which no reservation exists. Since reservation limits are
enforced at reservation time (on mmap or shget), reservation limits never causes
the application to get SIGBUS signal if the memory was reserved before hand. For
MAP_NORESERVE allocations, the reservation limit behaves the same as the fault
limit, enforcing memory usage at fault time and causing the application to
receive a SIGBUS if it's crossing its limit.
Reservation limits are superior to page fault limits described above, since
reservation limits are enforced at reservation time (on mmap or shget), and
never causes the application to get SIGBUS signal if the memory was reserved
before hand. This allows for easier fallback to alternatives such as
non-HugeTLB memory for example. In the case of page fault accounting, it's very
hard to avoid processes getting SIGBUS since the sysadmin needs precisely know
the HugeTLB usage of all the tasks in the system and make sure there is enough
pages to satisfy all requests. Avoiding tasks getting SIGBUS on overcommited
systems is practically impossible with page fault accounting.
3. Caveats with shared memory
For shared HugeTLB memory, both HugeTLB reservation and page faults are charged
to the first task that causes the memory to be reserved or faulted, and all
subsequent uses of this reserved or faulted memory is done without charging.
Shared HugeTLB memory is only uncharged when it is unreserved or deallocated.
This is usually when the HugeTLB file is deleted, and not when the task that
caused the reservation or fault has exited.
4. Caveats with HugeTLB cgroup offline.
When a HugeTLB cgroup goes offline with some reservations or faults still
charged to it, the behavior is as follows:
- The fault charges are charged to the parent HugeTLB cgroup (reparented),
- the reservation charges remain on the offline HugeTLB cgroup.
This means that if a HugeTLB cgroup gets offlined while there is still HugeTLB
reservations charged to it, that cgroup persists as a zombie until all HugeTLB
reservations are uncharged. HugeTLB reservations behave in this manner to match
the memory controller whose cgroups also persist as zombie until all charged
memory is uncharged. Also, the tracking of HugeTLB reservations is a bit more
complex compared to the tracking of HugeTLB faults, so it is significantly
harder to reparent reservations at offline time.

View File

@ -188,6 +188,17 @@ cgroup v2 currently supports the following mount options.
modified through remount from the init namespace. The mount
option is ignored on non-init namespace mounts.
memory_recursiveprot
Recursively apply memory.min and memory.low protection to
entire subtrees, without requiring explicit downward
propagation into leaf cgroups. This allows protecting entire
subtrees from one another, while retaining free competition
within those subtrees. This should have been the default
behavior but is a mount-option to avoid regressing setups
relying on the original semantics (e.g. specifying bogusly
high 'bypass' protection values at higher tree levels).
Organizing Processes and Threads
--------------------------------

View File

@ -128,6 +128,9 @@ allowed to examine the unevictable lru (mlocked pages) for pages to compact.
This should be used on systems where stalls for minor page faults are an
acceptable trade for large contiguous free memory. Set to 0 to prevent
compaction from moving pages that are unevictable. Default value is 1.
On CONFIG_PREEMPT_RT the default value is 0 in order to avoid a page fault, due
to compaction, which would block the task from becomming active until the fault
is resolved.
dirty_background_bytes

View File

@ -73,6 +73,9 @@ File Mapping and Page Cache
.. kernel-doc:: mm/truncate.c
:export:
.. kernel-doc:: include/linux/pagemap.h
:internal:
Memory pools
============

View File

@ -52,8 +52,22 @@ Which flags are set by each wrapper
For these pin_user_pages*() functions, FOLL_PIN is OR'd in with whatever gup
flags the caller provides. The caller is required to pass in a non-null struct
pages* array, and the function then pin pages by incrementing each by a special
value. For now, that value is +1, just like get_user_pages*().::
pages* array, and the function then pins pages by incrementing each by a special
value: GUP_PIN_COUNTING_BIAS.
For huge pages (and in fact, any compound page of more than 2 pages), the
GUP_PIN_COUNTING_BIAS scheme is not used. Instead, an exact form of pin counting
is achieved, by using the 3rd struct page in the compound page. A new struct
page field, hpage_pinned_refcount, has been added in order to support this.
This approach for compound pages avoids the counting upper limit problems that
are discussed below. Those limitations would have been aggravated severely by
huge pages, because each tail page adds a refcount to the head page. And in
fact, testing revealed that, without a separate hpage_pinned_refcount field,
page overflows were seen in some huge page stress tests.
This also means that huge pages and compound pages (of order > 1) do not suffer
from the false positives problem that is mentioned below.::
Function
--------
@ -99,27 +113,6 @@ pages:
This also leads to limitations: there are only 31-10==21 bits available for a
counter that increments 10 bits at a time.
TODO: for 1GB and larger huge pages, this is cutting it close. That's because
when pin_user_pages() follows such pages, it increments the head page by "1"
(where "1" used to mean "+1" for get_user_pages(), but now means "+1024" for
pin_user_pages()) for each tail page. So if you have a 1GB huge page:
* There are 256K (18 bits) worth of 4 KB tail pages.
* There are 21 bits available to count up via GUP_PIN_COUNTING_BIAS (that is,
10 bits at a time)
* There are 21 - 18 == 3 bits available to count. Except that there aren't,
because you need to allow for a few normal get_page() calls on the head page,
as well. Fortunately, the approach of using addition, rather than "hard"
bitfields, within page->_refcount, allows for sharing these bits gracefully.
But we're still looking at about 8 references.
This, however, is a missing feature more than anything else, because it's easily
solved by addressing an obvious inefficiency in the original get_user_pages()
approach of retrieving pages: stop treating all the pages as if they were
PAGE_SIZE. Retrieve huge pages as huge pages. The callers need to be aware of
this, so some work is required. Once that's in place, this limitation mostly
disappears from view, because there will be ample refcounting range available.
* Callers must specifically request "dma-pinned tracking of pages". In other
words, just calling get_user_pages() will not suffice; a new set of functions,
pin_user_page() and related, must be used.
@ -173,8 +166,8 @@ CASE 4: Pinning for struct page manipulation only
-------------------------------------------------
Here, normal GUP calls are sufficient, so neither flag needs to be set.
page_dma_pinned(): the whole point of pinning
=============================================
page_maybe_dma_pinned(): the whole point of pinning
===================================================
The whole point of marking pages as "DMA-pinned" or "gup-pinned" is to be able
to query, "is this page DMA-pinned?" That allows code such as page_mkclean()
@ -186,7 +179,7 @@ and debates (see the References at the end of this document). It's a TODO item
here: fill in the details once that's worked out. Meanwhile, it's safe to say
that having this available: ::
static inline bool page_dma_pinned(struct page *page)
static inline bool page_maybe_dma_pinned(struct page *page)
...is a prerequisite to solving the long-running gup+DMA problem.
@ -215,12 +208,42 @@ has the following new calls to exercise the new pin*() wrapper functions:
You can monitor how many total dma-pinned pages have been acquired and released
since the system was booted, via two new /proc/vmstat entries: ::
/proc/vmstat/nr_foll_pin_requested
/proc/vmstat/nr_foll_pin_requested
/proc/vmstat/nr_foll_pin_acquired
/proc/vmstat/nr_foll_pin_released
Those are both going to show zero, unless CONFIG_DEBUG_VM is set. This is
because there is a noticeable performance drop in unpin_user_page(), when they
are activated.
Under normal conditions, these two values will be equal unless there are any
long-term [R]DMA pins in place, or during pin/unpin transitions.
* nr_foll_pin_acquired: This is the number of logical pins that have been
acquired since the system was powered on. For huge pages, the head page is
pinned once for each page (head page and each tail page) within the huge page.
This follows the same sort of behavior that get_user_pages() uses for huge
pages: the head page is refcounted once for each tail or head page in the huge
page, when get_user_pages() is applied to a huge page.
* nr_foll_pin_released: The number of logical pins that have been released since
the system was powered on. Note that pages are released (unpinned) on a
PAGE_SIZE granularity, even if the original pin was applied to a huge page.
Becaused of the pin count behavior described above in "nr_foll_pin_acquired",
the accounting balances out, so that after doing this::
pin_user_pages(huge_page);
for (each page in huge_page)
unpin_user_page(page);
...the following is expected::
nr_foll_pin_released == nr_foll_pin_acquired
(...unless it was already out of balance due to a long-term RDMA pin being in
place.)
Other diagnostics
=================
dump_page() has been enhanced slightly, to handle these new counting fields, and
to better report on compound pages in general. Specifically, for compound pages
with order > 1, the exact (hpage_pinned_refcount) pincount is reported.
References
==========
@ -228,5 +251,6 @@ References
* `Some slow progress on get_user_pages() (Apr 2, 2019) <https://lwn.net/Articles/784574/>`_
* `DMA and get_user_pages() (LPC: Dec 12, 2018) <https://lwn.net/Articles/774411/>`_
* `The trouble with get_user_pages() (Apr 30, 2018) <https://lwn.net/Articles/753027/>`_
* `LWN kernel index: get_user_pages() <https://lwn.net/Kernel/Index/#Memory_management-get_user_pages>`_
John Hubbard, October, 2019

View File

@ -1,17 +1,6 @@
# SPDX-License-Identifier: GPL-2.0
generated-y += syscall_table.h
generic-y += compat.h
generic-y += exec.h
generic-y += export.h
generic-y += fb.h
generic-y += irq_work.h
generic-y += kvm_para.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += preempt.h
generic-y += sections.h
generic-y += trace_clock.h
generic-y += current.h
generic-y += kprobes.h

View File

@ -89,7 +89,7 @@ do_page_fault(unsigned long address, unsigned long mmcsr,
const struct exception_table_entry *fixup;
int si_code = SEGV_MAPERR;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
/* As of EV6, a load into $31/$f31 is a prefetch, and never faults
(or is suppressed by the PALcode). Support that for older CPUs
@ -150,7 +150,7 @@ retry:
the fault. */
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return;
if (unlikely(fault & VM_FAULT_ERROR)) {
@ -169,7 +169,7 @@ retry:
else
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would
* have already released it in __lock_page_or_retry

View File

@ -1,28 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += bugs.h
generic-y += compat.h
generic-y += device.h
generic-y += div64.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += extable.h
generic-y += ftrace.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += parport.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += user.h
generic-y += vga.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -100,7 +100,7 @@ void do_page_fault(unsigned long address, struct pt_regs *regs)
(regs->ecr_cause == ECR_C_PROTV_INST_FETCH))
exec = 1;
flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
flags = FAULT_FLAG_DEFAULT;
if (user_mode(regs))
flags |= FAULT_FLAG_USER;
if (write)
@ -133,29 +133,20 @@ retry:
fault = handle_mm_fault(vma, address, flags);
/*
* Fault retry nuances
*/
if (unlikely(fault & VM_FAULT_RETRY)) {
/* Quick path to respond to signals */
if (fault_signal_pending(fault, regs)) {
if (!user_mode(regs))
goto no_context;
return;
}
/*
* If fault needs to be retried, handle any pending signals
* first (by returning to user mode).
* mmap_sem already relinquished by core mm for RETRY case
*/
if (fatal_signal_pending(current)) {
if (!user_mode(regs))
goto no_context;
return;
}
/*
* retry state machine
*/
if (flags & FAULT_FLAG_ALLOW_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
goto retry;
}
/*
* Fault retry nuances, mmap_sem already relinquished by core mm
*/
if (unlikely((fault & VM_FAULT_RETRY) &&
(flags & FAULT_FLAG_ALLOW_RETRY))) {
flags |= FAULT_FLAG_TRIED;
goto retry;
}
bad_area:

View File

@ -1,22 +1,10 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += compat.h
generic-y += current.h
generic-y += early_ioremap.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += extable.h
generic-y += flat.h
generic-y += irq_regs.h
generic-y += kdebug.h
generic-y += local.h
generic-y += local64.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += parport.h
generic-y += preempt.h
generic-y += seccomp.h
generic-y += serial.h
generic-y += trace_clock.h
generated-y += mach-types.h
generated-y += unistd-nr.h

View File

@ -241,7 +241,7 @@ do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
struct mm_struct *mm;
int sig, code;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
if (kprobe_page_fault(regs, fsr))
return 0;
@ -295,7 +295,7 @@ retry:
* signal first. We do not need to release the mmap_sem because
* it would already be released in __lock_page_or_retry in
* mm/filemap.c. */
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
if (fault_signal_pending(fault, regs)) {
if (!user_mode(regs))
goto no_context;
return 0;
@ -319,9 +319,6 @@ retry:
regs, addr);
}
if (fault & VM_FAULT_RETRY) {
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation. */
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
goto retry;
}

View File

@ -1,26 +1,8 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += bugs.h
generic-y += delay.h
generic-y += div64.h
generic-y += dma.h
generic-y += dma-mapping.h
generic-y += early_ioremap.h
generic-y += emergency-restart.h
generic-y += hw_irq.h
generic-y += irq_regs.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += local.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += qrwlock.h
generic-y += qspinlock.h
generic-y += serial.h
generic-y += set_memory.h
generic-y += switch_to.h
generic-y += trace_clock.h
generic-y += unaligned.h
generic-y += user.h
generic-y += vga.h

View File

@ -446,7 +446,7 @@ static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
struct mm_struct *mm = current->mm;
vm_fault_t fault, major = 0;
unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int mm_flags = FAULT_FLAG_DEFAULT;
if (kprobe_page_fault(regs, esr))
return 0;
@ -513,25 +513,15 @@ retry:
fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
major |= fault & VM_FAULT_MAJOR;
if (fault & VM_FAULT_RETRY) {
/*
* If we need to retry but a fatal signal is pending,
* handle the signal first. We do not need to release
* the mmap_sem because it would already be released
* in __lock_page_or_retry in mm/filemap.c.
*/
if (fatal_signal_pending(current)) {
if (!user_mode(regs))
goto no_context;
return 0;
}
/* Quick path to respond to signals */
if (fault_signal_pending(fault, regs)) {
if (!user_mode(regs))
goto no_context;
return 0;
}
/*
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
* starvation.
*/
if (fault & VM_FAULT_RETRY) {
if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
mm_flags |= FAULT_FLAG_TRIED;
goto retry;
}

View File

@ -1,42 +1,5 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += atomic.h
generic-y += barrier.h
generic-y += bugs.h
generic-y += compat.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
generic-y += dma.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += extable.h
generic-y += fb.h
generic-y += futex.h
generic-y += hw_irq.h
generic-y += io.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += mmu.h
generic-y += mmu_context.h
generic-y += pci.h
generic-y += percpu.h
generic-y += pgalloc.h
generic-y += preempt.h
generic-y += serial.h
generic-y += shmparam.h
generic-y += tlbflush.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += user.h
generic-y += vga.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -1,44 +1,8 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += asm-offsets.h
generic-y += bugs.h
generic-y += compat.h
generic-y += current.h
generic-y += delay.h
generic-y += device.h
generic-y += div64.h
generic-y += dma.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += fb.h
generic-y += futex.h
generic-y += gpio.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += linkage.h
generic-y += local.h
generic-y += local64.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += module.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += qrwlock.h
generic-y += sections.h
generic-y += serial.h
generic-y += timex.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += unaligned.h
generic-y += user.h
generic-y += vga.h
generic-y += vmlinux.lds.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -1,54 +1,8 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += asm-offsets.h
generic-y += barrier.h
generic-y += bugs.h
generic-y += cacheflush.h
generic-y += checksum.h
generic-y += compat.h
generic-y += current.h
generic-y += delay.h
generic-y += device.h
generic-y += div64.h
generic-y += dma.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += extable.h
generic-y += fb.h
generic-y += ftrace.h
generic-y += futex.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += linkage.h
generic-y += local.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += mmu.h
generic-y += mmu_context.h
generic-y += module.h
generic-y += parport.h
generic-y += pci.h
generic-y += percpu.h
generic-y += pgalloc.h
generic-y += preempt.h
generic-y += sections.h
generic-y += serial.h
generic-y += shmparam.h
generic-y += spinlock.h
generic-y += timex.h
generic-y += tlbflush.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += uaccess.h
generic-y += unaligned.h
generic-y += vga.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -1,39 +1,6 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += barrier.h
generic-y += bug.h
generic-y += bugs.h
generic-y += compat.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += extable.h
generic-y += fb.h
generic-y += ftrace.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += iomap.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += pci.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += sections.h
generic-y += serial.h
generic-y += shmparam.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += unaligned.h
generic-y += vga.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -41,7 +41,7 @@ void do_page_fault(unsigned long address, long cause, struct pt_regs *regs)
int si_code = SEGV_MAPERR;
vm_fault_t fault;
const struct exception_table_entry *fixup;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
/*
* If we're in an interrupt or have no user context,
@ -91,7 +91,7 @@ good_area:
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return;
/* The most common case -- we are done. */
@ -102,7 +102,6 @@ good_area:
else
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
goto retry;
}

View File

@ -1,12 +1,5 @@
# SPDX-License-Identifier: GPL-2.0
generated-y += syscall_table.h
generic-y += compat.h
generic-y += exec.h
generic-y += irq_work.h
generic-y += kvm_para.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += preempt.h
generic-y += trace_clock.h
generic-y += vtime.h
generic-y += word-at-a-time.h

View File

@ -65,7 +65,7 @@ ia64_do_page_fault (unsigned long address, unsigned long isr, struct pt_regs *re
struct mm_struct *mm = current->mm;
unsigned long mask;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
mask = ((((isr >> IA64_ISR_X_BIT) & 1UL) << VM_EXEC_BIT)
| (((isr >> IA64_ISR_W_BIT) & 1UL) << VM_WRITE_BIT));
@ -141,7 +141,7 @@ retry:
*/
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return;
if (unlikely(fault & VM_FAULT_ERROR)) {
@ -167,7 +167,6 @@ retry:
else
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would

View File

@ -1,32 +1,8 @@
# SPDX-License-Identifier: GPL-2.0
generated-y += syscall_table.h
generic-y += barrier.h
generic-y += compat.h
generic-y += device.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += extable.h
generic-y += futex.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += sections.h
generic-y += shmparam.h
generic-y += spinlock.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -71,7 +71,7 @@ int do_page_fault(struct pt_regs *regs, unsigned long address,
struct mm_struct *mm = current->mm;
struct vm_area_struct * vma;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
pr_debug("do page fault:\nregs->sr=%#x, regs->pc=%#lx, address=%#lx, %ld, %p\n",
regs->sr, regs->pc, address, error_code, mm ? mm->pgd : NULL);
@ -138,7 +138,7 @@ good_area:
fault = handle_mm_fault(vma, address, flags);
pr_debug("handle_mm_fault returns %x\n", fault);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return 0;
if (unlikely(fault & VM_FAULT_ERROR)) {
@ -162,9 +162,6 @@ good_area:
else
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation. */
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*

View File

@ -1,40 +1,11 @@
# SPDX-License-Identifier: GPL-2.0
generated-y += syscall_table.h
generic-y += bitops.h
generic-y += bug.h
generic-y += bugs.h
generic-y += compat.h
generic-y += device.h
generic-y += div64.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += extable.h
generic-y += fb.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += linkage.h
generic-y += local.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += parport.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += serial.h
generic-y += shmparam.h
generic-y += syscalls.h
generic-y += tlb.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += user.h
generic-y += vga.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -91,7 +91,7 @@ void do_page_fault(struct pt_regs *regs, unsigned long address,
int code = SEGV_MAPERR;
int is_write = error_code & ESR_S;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
regs->ear = address;
regs->esr = error_code;
@ -217,7 +217,7 @@ good_area:
*/
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return;
if (unlikely(fault & VM_FAULT_ERROR)) {
@ -236,7 +236,6 @@ good_area:
else
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*

View File

@ -4,23 +4,10 @@ generated-y += syscall_table_32_o32.h
generated-y += syscall_table_64_n32.h
generated-y += syscall_table_64_n64.h
generated-y += syscall_table_64_o32.h
generic-y += current.h
generic-y += device.h
generic-y += emergency-restart.h
generic-y += export.h
generic-y += irq_work.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += parport.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += qrwlock.h
generic-y += qspinlock.h
generic-y += sections.h
generic-y += serial.h
generic-y += trace_clock.h
generic-y += unaligned.h
generic-y += user.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -44,7 +44,7 @@ static void __kprobes __do_page_fault(struct pt_regs *regs, unsigned long write,
const int field = sizeof(unsigned long) * 2;
int si_code;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
@ -154,7 +154,7 @@ good_area:
*/
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
@ -178,7 +178,6 @@ good_area:
tsk->min_flt++;
}
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*

View File

@ -1,46 +1,9 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += asm-offsets.h
generic-y += atomic.h
generic-y += bitops.h
generic-y += bug.h
generic-y += bugs.h
generic-y += checksum.h
generic-y += cmpxchg.h
generic-y += compat.h
generic-y += device.h
generic-y += div64.h
generic-y += dma.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += export.h
generic-y += fb.h
generic-y += gpio.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += local64.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += parport.h
generic-y += pci.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += sections.h
generic-y += serial.h
generic-y += switch_to.h
generic-y += timex.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += xor.h
generic-y += unaligned.h
generic-y += user.h
generic-y += vga.h
generic-y += word-at-a-time.h

View File

@ -80,7 +80,7 @@ void do_page_fault(unsigned long entry, unsigned long addr,
int si_code;
vm_fault_t fault;
unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
error_code = error_code & (ITYPE_mskINST | ITYPE_mskETYPE);
tsk = current;
@ -214,7 +214,7 @@ good_area:
* signal first. We do not need to release the mmap_sem because it
* would already be released in __lock_page_or_retry in mm/filemap.c.
*/
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
if (fault_signal_pending(fault, regs)) {
if (!user_mode(regs))
goto no_context;
return;
@ -246,7 +246,6 @@ good_area:
1, regs, addr);
}
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would

View File

@ -1,45 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += atomic.h
generic-y += barrier.h
generic-y += bitops.h
generic-y += bug.h
generic-y += bugs.h
generic-y += cmpxchg.h
generic-y += compat.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
generic-y += dma.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += extable.h
generic-y += fb.h
generic-y += ftrace.h
generic-y += futex.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += module.h
generic-y += pci.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += sections.h
generic-y += serial.h
generic-y += spinlock.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += unaligned.h
generic-y += user.h
generic-y += vga.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -47,7 +47,7 @@ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long cause,
struct mm_struct *mm = tsk->mm;
int code = SEGV_MAPERR;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
cause >>= 2;
@ -133,7 +133,7 @@ good_area:
*/
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return;
if (unlikely(fault & VM_FAULT_ERROR)) {
@ -157,9 +157,6 @@ good_area:
else
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation. */
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*

View File

@ -1,45 +1,9 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += barrier.h
generic-y += bug.h
generic-y += bugs.h
generic-y += checksum.h
generic-y += compat.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
generic-y += dma.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += extable.h
generic-y += fb.h
generic-y += ftrace.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += module.h
generic-y += pci.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += qspinlock_types.h
generic-y += qspinlock.h
generic-y += qrwlock_types.h
generic-y += qrwlock.h
generic-y += sections.h
generic-y += shmparam.h
generic-y += switch_to.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += user.h
generic-y += vga.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -50,7 +50,7 @@ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
struct vm_area_struct *vma;
int si_code;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
tsk = current;
@ -161,7 +161,7 @@ good_area:
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return;
if (unlikely(fault & VM_FAULT_ERROR)) {
@ -181,7 +181,6 @@ good_area:
else
tsk->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would

View File

@ -2,26 +2,8 @@
generated-y += syscall_table_32.h
generated-y += syscall_table_64.h
generated-y += syscall_table_c32.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += hw_irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += seccomp.h
generic-y += trace_clock.h
generic-y += user.h
generic-y += vga.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -274,7 +274,7 @@ void do_page_fault(struct pt_regs *regs, unsigned long code,
if (!mm)
goto no_context;
flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
flags = FAULT_FLAG_DEFAULT;
if (user_mode(regs))
flags |= FAULT_FLAG_USER;
@ -304,7 +304,7 @@ good_area:
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return;
if (unlikely(fault & VM_FAULT_ERROR)) {
@ -328,14 +328,12 @@ good_area:
else
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
/*
* No need to up_read(&mm->mmap_sem) as we would
* have already released it in __lock_page_or_retry
* in mm/filemap.c.
*/
flags |= FAULT_FLAG_TRIED;
goto retry;
}
}

View File

@ -3,12 +3,8 @@ generated-y += syscall_table_32.h
generated-y += syscall_table_64.h
generated-y += syscall_table_c32.h
generated-y += syscall_table_spu.h
generic-y += div64.h
generic-y += dma-mapping.h
generic-y += export.h
generic-y += irq_regs.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += preempt.h
generic-y += vtime.h
generic-y += early_ioremap.h

View File

@ -381,18 +381,6 @@ bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
* So do not enforce things if the VMA is not from the current mm, or if we are
* in a kernel thread.
*/
static inline bool vma_is_foreign(struct vm_area_struct *vma)
{
if (!current->mm)
return true;
/* if it is not our ->mm, it has to be foreign */
if (current->mm != vma->vm_mm)
return true;
return false;
}
bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
bool execute, bool foreign)
{

View File

@ -434,7 +434,7 @@ static int __do_page_fault(struct pt_regs *regs, unsigned long address,
{
struct vm_area_struct * vma;
struct mm_struct *mm = current->mm;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
int is_exec = TRAP(regs) == 0x400;
int is_user = user_mode(regs);
int is_write = page_fault_is_write(error_code);
@ -582,28 +582,18 @@ good_area:
major |= fault & VM_FAULT_MAJOR;
if (fault_signal_pending(fault, regs))
return user_mode(regs) ? 0 : SIGBUS;
/*
* Handle the retry right now, the mmap_sem has been released in that
* case.
*/
if (unlikely(fault & VM_FAULT_RETRY)) {
/* We retry only once */
if (flags & FAULT_FLAG_ALLOW_RETRY) {
/*
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation.
*/
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
if (!fatal_signal_pending(current))
goto retry;
goto retry;
}
/*
* User mode? Just return to handle the fatal exception otherwise
* return to bad_page_fault
*/
return is_user ? 0 : SIGBUS;
}
up_read(&current->mm->mmap_sem);

View File

@ -360,7 +360,7 @@ static bool lmb_is_removable(struct drmem_lmb *lmb)
for (i = 0; i < scns_per_block; i++) {
pfn = PFN_DOWN(phys_addr);
if (!pfn_present(pfn)) {
if (!pfn_in_present_section(pfn)) {
phys_addr += MIN_MEMORY_BLOCK_SIZE;
continue;
}

View File

@ -1,35 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += bugs.h
generic-y += checksum.h
generic-y += compat.h
generic-y += device.h
generic-y += div64.h
generic-y += extable.h
generic-y += flat.h
generic-y += dma.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += fb.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += local64.h
generic-y += mm-arch-hooks.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += sections.h
generic-y += serial.h
generic-y += shmparam.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += unaligned.h
generic-y += user.h
generic-y += vga.h
generic-y += vmlinux.lds.h
generic-y += xor.h

View File

@ -30,7 +30,7 @@ asmlinkage void do_page_fault(struct pt_regs *regs)
struct vm_area_struct *vma;
struct mm_struct *mm;
unsigned long addr, cause;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
int code = SEGV_MAPERR;
vm_fault_t fault;
@ -117,7 +117,7 @@ good_area:
* signal first. We do not need to release the mmap_sem because it
* would already be released in __lock_page_or_retry in mm/filemap.c.
*/
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(tsk))
if (fault_signal_pending(fault, regs))
return;
if (unlikely(fault & VM_FAULT_ERROR)) {
@ -144,11 +144,6 @@ good_area:
1, regs, addr);
}
if (fault & VM_FAULT_RETRY) {
/*
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation.
*/
flags &= ~(FAULT_FLAG_ALLOW_RETRY);
flags |= FAULT_FLAG_TRIED;
/*

View File

@ -5,21 +5,6 @@ generated-y += syscall_table.h
generated-y += unistd_nr.h
generic-y += asm-offsets.h
generic-y += cacheflush.h
generic-y += device.h
generic-y += dma-mapping.h
generic-y += div64.h
generic-y += emergency-restart.h
generic-y += export.h
generic-y += fb.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kmap_types.h
generic-y += local.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += trace_clock.h
generic-y += unaligned.h
generic-y += word-at-a-time.h

View File

@ -429,7 +429,7 @@ static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
address = trans_exc_code & __FAIL_ADDR_MASK;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
flags = FAULT_FLAG_DEFAULT;
if (user_mode(regs))
flags |= FAULT_FLAG_USER;
if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
@ -480,8 +480,7 @@ retry:
* the fault.
*/
fault = handle_mm_fault(vma, address, flags);
/* No reason to continue if interrupted by SIGKILL. */
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
if (fault_signal_pending(fault, regs)) {
fault = VM_FAULT_SIGNAL;
if (flags & FAULT_FLAG_RETRY_NOWAIT)
goto out_up;
@ -514,10 +513,7 @@ retry:
fault = VM_FAULT_PFAULT;
goto out_up;
}
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation. */
flags &= ~(FAULT_FLAG_ALLOW_RETRY |
FAULT_FLAG_RETRY_NOWAIT);
flags &= ~FAULT_FLAG_RETRY_NOWAIT;
flags |= FAULT_FLAG_TRIED;
down_read(&mm->mmap_sem);
goto retry;

View File

@ -1,22 +1,6 @@
# SPDX-License-Identifier: GPL-2.0
generated-y += syscall_table.h
generic-y += compat.h
generic-y += current.h
generic-y += delay.h
generic-y += div64.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += parport.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += serial.h
generic-y += trace_clock.h
generic-y += xor.h

View File

@ -302,25 +302,25 @@ mm_fault_error(struct pt_regs *regs, unsigned long error_code,
* Pagefault was interrupted by SIGKILL. We have no reason to
* continue pagefault.
*/
if (fatal_signal_pending(current)) {
if (!(fault & VM_FAULT_RETRY))
up_read(&current->mm->mmap_sem);
if (fault_signal_pending(fault, regs)) {
if (!user_mode(regs))
no_context(regs, error_code, address);
return 1;
}
/* Release mmap_sem first if necessary */
if (!(fault & VM_FAULT_RETRY))
up_read(&current->mm->mmap_sem);
if (!(fault & VM_FAULT_ERROR))
return 0;
if (fault & VM_FAULT_OOM) {
/* Kernel mode? Handle exceptions or die: */
if (!user_mode(regs)) {
up_read(&current->mm->mmap_sem);
no_context(regs, error_code, address);
return 1;
}
up_read(&current->mm->mmap_sem);
/*
* We ran out of memory, call the OOM killer, and return the
@ -380,7 +380,7 @@ asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
struct mm_struct *mm;
struct vm_area_struct * vma;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
tsk = current;
mm = tsk->mm;
@ -481,7 +481,6 @@ good_area:
regs, address);
}
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*

View File

@ -4,21 +4,7 @@
generated-y += syscall_table_32.h
generated-y += syscall_table_64.h
generated-y += syscall_table_c32.h
generic-y += div64.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += export.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kvm_para.h
generic-y += linkage.h
generic-y += local.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += module.h
generic-y += preempt.h
generic-y += serial.h
generic-y += trace_clock.h
generic-y += word-at-a-time.h

View File

@ -168,7 +168,7 @@ asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
int from_user = !(regs->psr & PSR_PS);
int code;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
if (text_fault)
address = regs->pc;
@ -237,7 +237,7 @@ good_area:
*/
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return;
if (unlikely(fault & VM_FAULT_ERROR)) {
@ -261,7 +261,6 @@ good_area:
1, regs, address);
}
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would

View File

@ -271,7 +271,7 @@ asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
int si_code, fault_code;
vm_fault_t fault;
unsigned long address, mm_rss;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
fault_code = get_thread_fault_code();
@ -425,7 +425,7 @@ good_area:
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
goto exit_exception;
if (unlikely(fault & VM_FAULT_ERROR)) {
@ -449,7 +449,6 @@ good_area:
1, regs, address);
}
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would

View File

@ -33,7 +33,7 @@ int handle_page_fault(unsigned long address, unsigned long ip,
pmd_t *pmd;
pte_t *pte;
int err = -EFAULT;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
*code_out = SEGV_MAPERR;
@ -97,7 +97,6 @@ good_area:
else
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
goto retry;

View File

@ -1,41 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
generic-y += atomic.h
generic-y += bugs.h
generic-y += compat.h
generic-y += current.h
generic-y += device.h
generic-y += div64.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += extable.h
generic-y += fb.h
generic-y += ftrace.h
generic-y += futex.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += module.h
generic-y += parport.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += sections.h
generic-y += serial.h
generic-y += shmparam.h
generic-y += syscalls.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += unaligned.h
generic-y += user.h
generic-y += vga.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -202,7 +202,7 @@ static int do_pf(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
struct mm_struct *mm;
int sig, code;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
tsk = current;
mm = tsk->mm;
@ -250,7 +250,7 @@ retry:
* signal first. We do not need to release the mmap_sem because
* it would already be released in __lock_page_or_retry in
* mm/filemap.c. */
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return 0;
if (!(fault & VM_FAULT_ERROR) && (flags & FAULT_FLAG_ALLOW_RETRY)) {
@ -259,9 +259,7 @@ retry:
else
tsk->min_flt++;
if (fault & VM_FAULT_RETRY) {
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation. */
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
goto retry;
}
}

View File

@ -10,5 +10,3 @@ generated-y += xen-hypercalls.h
generic-y += early_ioremap.h
generic-y += export.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h

View File

@ -213,21 +213,6 @@ static inline void arch_unmap(struct mm_struct *mm, unsigned long start,
* So do not enforce things if the VMA is not from the current
* mm, or if we are in a kernel thread.
*/
static inline bool vma_is_foreign(struct vm_area_struct *vma)
{
if (!current->mm)
return true;
/*
* Should PKRU be enforced on the access to this VMA? If
* the VMA is from another process, then PKRU has no
* relevance and should not be enforced.
*/
if (current->mm != vma->vm_mm)
return true;
return false;
}
static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
bool write, bool execute, bool foreign)
{

View File

@ -1310,7 +1310,7 @@ void do_user_addr_fault(struct pt_regs *regs,
struct task_struct *tsk;
struct mm_struct *mm;
vm_fault_t fault, major = 0;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
tsk = current;
mm = tsk->mm;
@ -1464,27 +1464,23 @@ good_area:
fault = handle_mm_fault(vma, address, flags);
major |= fault & VM_FAULT_MAJOR;
/* Quick path to respond to signals */
if (fault_signal_pending(fault, regs)) {
if (!user_mode(regs))
no_context(regs, hw_error_code, address, SIGBUS,
BUS_ADRERR);
return;
}
/*
* If we need to retry the mmap_sem has already been released,
* and if there is a fatal signal pending there is no guarantee
* that we made any progress. Handle this case first.
*/
if (unlikely(fault & VM_FAULT_RETRY)) {
/* Retry at most once */
if (flags & FAULT_FLAG_ALLOW_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
if (!fatal_signal_pending(tsk))
goto retry;
}
/* User mode? Just return to handle the fatal exception */
if (flags & FAULT_FLAG_USER)
return;
/* Not returning to user mode? Handle exceptions or die: */
no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
return;
if (unlikely((fault & VM_FAULT_RETRY) &&
(flags & FAULT_FLAG_ALLOW_RETRY))) {
flags |= FAULT_FLAG_TRIED;
goto retry;
}
up_read(&mm->mmap_sem);

View File

@ -1,36 +1,10 @@
# SPDX-License-Identifier: GPL-2.0
generated-y += syscall_table.h
generic-y += bug.h
generic-y += compat.h
generic-y += device.h
generic-y += div64.h
generic-y += dma-mapping.h
generic-y += emergency-restart.h
generic-y += exec.h
generic-y += extable.h
generic-y += fb.h
generic-y += hardirq.h
generic-y += hw_irq.h
generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += local.h
generic-y += local64.h
generic-y += mcs_spinlock.h
generic-y += mm-arch-hooks.h
generic-y += mmiowb.h
generic-y += param.h
generic-y += percpu.h
generic-y += preempt.h
generic-y += qrwlock.h
generic-y += qspinlock.h
generic-y += sections.h
generic-y += topology.h
generic-y += trace_clock.h
generic-y += user.h
generic-y += vga.h
generic-y += word-at-a-time.h
generic-y += xor.h

View File

@ -43,7 +43,7 @@ void do_page_fault(struct pt_regs *regs)
int is_write, is_exec;
vm_fault_t fault;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
unsigned int flags = FAULT_FLAG_DEFAULT;
code = SEGV_MAPERR;
@ -110,7 +110,7 @@ good_area:
*/
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
if (fault_signal_pending(fault, regs))
return;
if (unlikely(fault & VM_FAULT_ERROR)) {
@ -128,7 +128,6 @@ good_area:
else
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would

View File

@ -772,7 +772,7 @@ static int register_mem_sect_under_node(struct memory_block *mem_blk,
* memory block could have several absent sections from start.
* skip pfn range from absent section
*/
if (!pfn_present(pfn)) {
if (!pfn_in_present_section(pfn)) {
pfn = round_down(pfn + PAGES_PER_SECTION,
PAGES_PER_SECTION) - 1;
continue;

View File

@ -59,9 +59,10 @@ static vm_fault_t ttm_bo_vm_fault_idle(struct ttm_buffer_object *bo,
/*
* If possible, avoid waiting for GPU with mmap_sem
* held.
* held. We only do this if the fault allows retry and this
* is the first attempt.
*/
if (vmf->flags & FAULT_FLAG_ALLOW_RETRY) {
if (fault_flag_allow_retry_first(vmf->flags)) {
ret = VM_FAULT_RETRY;
if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
goto out_unlock;
@ -135,7 +136,12 @@ vm_fault_t ttm_bo_vm_reserve(struct ttm_buffer_object *bo,
* for the buffer to become unreserved.
*/
if (unlikely(!dma_resv_trylock(bo->base.resv))) {
if (vmf->flags & FAULT_FLAG_ALLOW_RETRY) {
/*
* If the fault allows retry and this is the first
* fault attempt, we try to release the mmap_sem
* before waiting
*/
if (fault_flag_allow_retry_first(vmf->flags)) {
if (!(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
ttm_bo_get(bo);
up_read(&vmf->vma->vm_mm->mmap_sem);

View File

@ -368,8 +368,6 @@ bool fs_validate_description(const char *name,
const struct fs_parameter_spec *param, *p2;
bool good = true;
pr_notice("*** VALIDATE %s ***\n", name);
for (param = desc; param->name; param++) {
/* Check for duplicate parameter names */
for (p2 = desc; p2 < param; p2++) {

View File

@ -393,10 +393,9 @@ hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
* In this case, we first scan the range and release found pages.
* After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
* maps and global counts. Page faults can not race with truncation
* in this routine. hugetlb_no_page() prevents page faults in the
* truncated range. It checks i_size before allocation, and again after
* with the page table lock for the page held. The same lock must be
* acquired to unmap a page.
* in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents
* page faults in the truncated range by checking i_size. i_size is
* modified while holding i_mmap_rwsem.
* hole punch is indicated if end is not LLONG_MAX
* In the hole punch case we scan the range and release found pages.
* Only when releasing a page is the associated region/reserv map
@ -436,7 +435,15 @@ static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
index = page->index;
hash = hugetlb_fault_mutex_hash(mapping, index);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
if (!truncate_op) {
/*
* Only need to hold the fault mutex in the
* hole punch case. This prevents races with
* page faults. Races are not possible in the
* case of truncation.
*/
mutex_lock(&hugetlb_fault_mutex_table[hash]);
}
/*
* If page is mapped, it was faulted in after being
@ -450,7 +457,9 @@ static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
if (unlikely(page_mapped(page))) {
BUG_ON(truncate_op);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_lock_write(mapping);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
hugetlb_vmdelete_list(&mapping->i_mmap,
index * pages_per_huge_page(h),
(index + 1) * pages_per_huge_page(h));
@ -477,7 +486,8 @@ static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
}
unlock_page(page);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
if (!truncate_op)
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
}
huge_pagevec_release(&pvec);
cond_resched();
@ -515,8 +525,8 @@ static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
BUG_ON(offset & ~huge_page_mask(h));
pgoff = offset >> PAGE_SHIFT;
i_size_write(inode, offset);
i_mmap_lock_write(mapping);
i_size_write(inode, offset);
if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
i_mmap_unlock_write(mapping);
@ -638,7 +648,11 @@ static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
/* addr is the offset within the file (zero based) */
addr = index * hpage_size;
/* mutex taken here, fault path and hole punch */
/*
* fault mutex taken here, protects against fault path
* and hole punch. inode_lock previously taken protects
* against truncation.
*/
hash = hugetlb_fault_mutex_hash(mapping, index);
mutex_lock(&hugetlb_fault_mutex_table[hash]);

View File

@ -1060,7 +1060,6 @@ bail:
brelse(bhs[i]);
bhs[i] = NULL;
}
mlog_errno(status);
}
return status;
}
@ -3942,7 +3941,7 @@ rotate:
* above.
*
* This leaf needs to have space, either by the empty 1st
* extent record, or by virtue of an l_next_rec < l_count.
* extent record, or by virtue of an l_next_free_rec < l_count.
*/
ocfs2_rotate_leaf(el, insert_rec);
}

View File

@ -101,8 +101,6 @@ static struct o2hb_callback {
static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
#define O2HB_DEFAULT_BLOCK_BITS 9
enum o2hb_heartbeat_modes {
O2HB_HEARTBEAT_LOCAL = 0,
O2HB_HEARTBEAT_GLOBAL,
@ -1309,7 +1307,7 @@ static int o2hb_debug_open(struct inode *inode, struct file *file)
case O2HB_DB_TYPE_REGION_NUMBER:
reg = (struct o2hb_region *)db->db_data;
out += snprintf(buf + out, PAGE_SIZE - out, "%d\n",
out += scnprintf(buf + out, PAGE_SIZE - out, "%d\n",
reg->hr_region_num);
goto done;
@ -1319,12 +1317,12 @@ static int o2hb_debug_open(struct inode *inode, struct file *file)
/* If 0, it has never been set before */
if (lts)
lts = jiffies_to_msecs(jiffies - lts);
out += snprintf(buf + out, PAGE_SIZE - out, "%lu\n", lts);
out += scnprintf(buf + out, PAGE_SIZE - out, "%lu\n", lts);
goto done;
case O2HB_DB_TYPE_REGION_PINNED:
reg = (struct o2hb_region *)db->db_data;
out += snprintf(buf + out, PAGE_SIZE - out, "%u\n",
out += scnprintf(buf + out, PAGE_SIZE - out, "%u\n",
!!reg->hr_item_pinned);
goto done;
@ -1333,8 +1331,8 @@ static int o2hb_debug_open(struct inode *inode, struct file *file)
}
while ((i = find_next_bit(map, db->db_len, i + 1)) < db->db_len)
out += snprintf(buf + out, PAGE_SIZE - out, "%d ", i);
out += snprintf(buf + out, PAGE_SIZE - out, "\n");
out += scnprintf(buf + out, PAGE_SIZE - out, "%d ", i);
out += scnprintf(buf + out, PAGE_SIZE - out, "\n");
done:
i_size_write(inode, out);

View File

@ -443,8 +443,8 @@ static int o2net_fill_bitmap(char *buf, int len)
o2net_fill_node_map(map, sizeof(map));
while ((i = find_next_bit(map, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES)
out += snprintf(buf + out, PAGE_SIZE - out, "%d ", i);
out += snprintf(buf + out, PAGE_SIZE - out, "\n");
out += scnprintf(buf + out, PAGE_SIZE - out, "%d ", i);
out += scnprintf(buf + out, PAGE_SIZE - out, "\n");
return out;
}

View File

@ -1570,15 +1570,13 @@ static void o2net_start_connect(struct work_struct *work)
struct sockaddr_in myaddr = {0, }, remoteaddr = {0, };
int ret = 0, stop;
unsigned int timeout;
unsigned int noio_flag;
unsigned int nofs_flag;
/*
* sock_create allocates the sock with GFP_KERNEL. We must set
* per-process flag PF_MEMALLOC_NOIO so that all allocations done
* by this process are done as if GFP_NOIO was specified. So we
* are not reentering filesystem while doing memory reclaim.
* sock_create allocates the sock with GFP_KERNEL. We must
* prevent the filesystem from being reentered by memory reclaim.
*/
noio_flag = memalloc_noio_save();
nofs_flag = memalloc_nofs_save();
/* if we're greater we initiate tx, otherwise we accept */
if (o2nm_this_node() <= o2net_num_from_nn(nn))
goto out;
@ -1683,7 +1681,7 @@ out:
if (mynode)
o2nm_node_put(mynode);
memalloc_noio_restore(noio_flag);
memalloc_nofs_restore(nofs_flag);
return;
}
@ -1810,15 +1808,13 @@ static int o2net_accept_one(struct socket *sock, int *more)
struct o2nm_node *local_node = NULL;
struct o2net_sock_container *sc = NULL;
struct o2net_node *nn;
unsigned int noio_flag;
unsigned int nofs_flag;
/*
* sock_create_lite allocates the sock with GFP_KERNEL. We must set
* per-process flag PF_MEMALLOC_NOIO so that all allocations done
* by this process are done as if GFP_NOIO was specified. So we
* are not reentering filesystem while doing memory reclaim.
* sock_create_lite allocates the sock with GFP_KERNEL. We must
* prevent the filesystem from being reentered by memory reclaim.
*/
noio_flag = memalloc_noio_save();
nofs_flag = memalloc_nofs_save();
BUG_ON(sock == NULL);
*more = 0;
@ -1934,7 +1930,7 @@ out:
if (sc)
sc_put(sc);
memalloc_noio_restore(noio_flag);
memalloc_nofs_restore(nofs_flag);
return ret;
}
@ -1948,7 +1944,6 @@ static void o2net_accept_many(struct work_struct *work)
{
struct socket *sock = o2net_listen_sock;
int more;
int err;
/*
* It is critical to note that due to interrupt moderation
@ -1963,7 +1958,7 @@ static void o2net_accept_many(struct work_struct *work)
*/
for (;;) {
err = o2net_accept_one(sock, &more);
o2net_accept_one(sock, &more);
if (!more)
break;
cond_resched();

View File

@ -32,7 +32,7 @@ struct o2net_msg
__be32 status;
__be32 key;
__be32 msg_num;
__u8 buf[0];
__u8 buf[];
};
typedef int (o2net_msg_handler_func)(struct o2net_msg *msg, u32 len, void *data,

View File

@ -676,7 +676,7 @@ static struct buffer_head *ocfs2_find_entry_el(const char *name, int namelen,
int ra_ptr = 0; /* Current index into readahead
buffer */
int num = 0;
int nblocks, i, err;
int nblocks, i;
sb = dir->i_sb;
@ -708,7 +708,7 @@ restart:
num++;
bh = NULL;
err = ocfs2_read_dir_block(dir, b++, &bh,
ocfs2_read_dir_block(dir, b++, &bh,
OCFS2_BH_READAHEAD);
bh_use[ra_max] = bh;
}

View File

@ -564,7 +564,7 @@ struct dlm_migratable_lockres
// 48 bytes
u8 lvb[DLM_LVB_LEN];
// 112 bytes
struct dlm_migratable_lock ml[0]; // 16 bytes each, begins at byte 112
struct dlm_migratable_lock ml[]; // 16 bytes each, begins at byte 112
};
#define DLM_MIG_LOCKRES_MAX_LEN \
(sizeof(struct dlm_migratable_lockres) + \
@ -601,7 +601,7 @@ struct dlm_convert_lock
u8 name[O2NM_MAX_NAME_LEN];
s8 lvb[0];
s8 lvb[];
};
#define DLM_CONVERT_LOCK_MAX_LEN (sizeof(struct dlm_convert_lock)+DLM_LVB_LEN)
@ -616,7 +616,7 @@ struct dlm_unlock_lock
u8 name[O2NM_MAX_NAME_LEN];
s8 lvb[0];
s8 lvb[];
};
#define DLM_UNLOCK_LOCK_MAX_LEN (sizeof(struct dlm_unlock_lock)+DLM_LVB_LEN)
@ -632,7 +632,7 @@ struct dlm_proxy_ast
u8 name[O2NM_MAX_NAME_LEN];
s8 lvb[0];
s8 lvb[];
};
#define DLM_PROXY_AST_MAX_LEN (sizeof(struct dlm_proxy_ast)+DLM_LVB_LEN)

View File

@ -244,11 +244,11 @@ static int stringify_lockname(const char *lockname, int locklen, char *buf,
memcpy((__be64 *)&inode_blkno_be,
(char *)&lockname[OCFS2_DENTRY_LOCK_INO_START],
sizeof(__be64));
out += snprintf(buf + out, len - out, "%.*s%08x",
out += scnprintf(buf + out, len - out, "%.*s%08x",
OCFS2_DENTRY_LOCK_INO_START - 1, lockname,
(unsigned int)be64_to_cpu(inode_blkno_be));
} else
out += snprintf(buf + out, len - out, "%.*s",
out += scnprintf(buf + out, len - out, "%.*s",
locklen, lockname);
return out;
}
@ -260,7 +260,7 @@ static int stringify_nodemap(unsigned long *nodemap, int maxnodes,
int i = -1;
while ((i = find_next_bit(nodemap, maxnodes, i + 1)) < maxnodes)
out += snprintf(buf + out, len - out, "%d ", i);
out += scnprintf(buf + out, len - out, "%d ", i);
return out;
}
@ -278,34 +278,34 @@ static int dump_mle(struct dlm_master_list_entry *mle, char *buf, int len)
mle_type = "MIG";
out += stringify_lockname(mle->mname, mle->mnamelen, buf + out, len - out);
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"\t%3s\tmas=%3u\tnew=%3u\tevt=%1d\tuse=%1d\tref=%3d\n",
mle_type, mle->master, mle->new_master,
!list_empty(&mle->hb_events),
!!mle->inuse,
kref_read(&mle->mle_refs));
out += snprintf(buf + out, len - out, "Maybe=");
out += scnprintf(buf + out, len - out, "Maybe=");
out += stringify_nodemap(mle->maybe_map, O2NM_MAX_NODES,
buf + out, len - out);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
out += snprintf(buf + out, len - out, "Vote=");
out += scnprintf(buf + out, len - out, "Vote=");
out += stringify_nodemap(mle->vote_map, O2NM_MAX_NODES,
buf + out, len - out);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
out += snprintf(buf + out, len - out, "Response=");
out += scnprintf(buf + out, len - out, "Response=");
out += stringify_nodemap(mle->response_map, O2NM_MAX_NODES,
buf + out, len - out);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
out += snprintf(buf + out, len - out, "Node=");
out += scnprintf(buf + out, len - out, "Node=");
out += stringify_nodemap(mle->node_map, O2NM_MAX_NODES,
buf + out, len - out);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
return out;
}
@ -353,7 +353,7 @@ static int debug_purgelist_print(struct dlm_ctxt *dlm, char *buf, int len)
int out = 0;
unsigned long total = 0;
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"Dumping Purgelist for Domain: %s\n", dlm->name);
spin_lock(&dlm->spinlock);
@ -365,13 +365,13 @@ static int debug_purgelist_print(struct dlm_ctxt *dlm, char *buf, int len)
out += stringify_lockname(res->lockname.name,
res->lockname.len,
buf + out, len - out);
out += snprintf(buf + out, len - out, "\t%ld\n",
out += scnprintf(buf + out, len - out, "\t%ld\n",
(jiffies - res->last_used)/HZ);
spin_unlock(&res->spinlock);
}
spin_unlock(&dlm->spinlock);
out += snprintf(buf + out, len - out, "Total on list: %lu\n", total);
out += scnprintf(buf + out, len - out, "Total on list: %lu\n", total);
return out;
}
@ -410,7 +410,7 @@ static int debug_mle_print(struct dlm_ctxt *dlm, char *buf, int len)
int i, out = 0;
unsigned long total = 0, longest = 0, bucket_count = 0;
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"Dumping MLEs for Domain: %s\n", dlm->name);
spin_lock(&dlm->master_lock);
@ -428,7 +428,7 @@ static int debug_mle_print(struct dlm_ctxt *dlm, char *buf, int len)
}
spin_unlock(&dlm->master_lock);
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"Total: %lu, Longest: %lu\n", total, longest);
return out;
}
@ -467,7 +467,7 @@ static int dump_lock(struct dlm_lock *lock, int list_type, char *buf, int len)
#define DEBUG_LOCK_VERSION 1
spin_lock(&lock->spinlock);
out = snprintf(buf, len, "LOCK:%d,%d,%d,%d,%d,%d:%lld,%d,%d,%d,%d,%d,"
out = scnprintf(buf, len, "LOCK:%d,%d,%d,%d,%d,%d:%lld,%d,%d,%d,%d,%d,"
"%d,%d,%d,%d\n",
DEBUG_LOCK_VERSION,
list_type, lock->ml.type, lock->ml.convert_type,
@ -491,13 +491,13 @@ static int dump_lockres(struct dlm_lock_resource *res, char *buf, int len)
int i;
int out = 0;
out += snprintf(buf + out, len - out, "NAME:");
out += scnprintf(buf + out, len - out, "NAME:");
out += stringify_lockname(res->lockname.name, res->lockname.len,
buf + out, len - out);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
#define DEBUG_LRES_VERSION 1
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"LRES:%d,%d,%d,%ld,%d,%d,%d,%d,%d,%d,%d\n",
DEBUG_LRES_VERSION,
res->owner, res->state, res->last_used,
@ -509,17 +509,17 @@ static int dump_lockres(struct dlm_lock_resource *res, char *buf, int len)
kref_read(&res->refs));
/* refmap */
out += snprintf(buf + out, len - out, "RMAP:");
out += scnprintf(buf + out, len - out, "RMAP:");
out += stringify_nodemap(res->refmap, O2NM_MAX_NODES,
buf + out, len - out);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
/* lvb */
out += snprintf(buf + out, len - out, "LVBX:");
out += scnprintf(buf + out, len - out, "LVBX:");
for (i = 0; i < DLM_LVB_LEN; i++)
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%02x", (unsigned char)res->lvb[i]);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
/* granted */
list_for_each_entry(lock, &res->granted, list)
@ -533,7 +533,7 @@ static int dump_lockres(struct dlm_lock_resource *res, char *buf, int len)
list_for_each_entry(lock, &res->blocked, list)
out += dump_lock(lock, 2, buf + out, len - out);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
return out;
}
@ -683,41 +683,41 @@ static int debug_state_print(struct dlm_ctxt *dlm, char *buf, int len)
}
/* Domain: xxxxxxxxxx Key: 0xdfbac769 */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"Domain: %s Key: 0x%08x Protocol: %d.%d\n",
dlm->name, dlm->key, dlm->dlm_locking_proto.pv_major,
dlm->dlm_locking_proto.pv_minor);
/* Thread Pid: xxx Node: xxx State: xxxxx */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"Thread Pid: %d Node: %d State: %s\n",
task_pid_nr(dlm->dlm_thread_task), dlm->node_num, state);
/* Number of Joins: xxx Joining Node: xxx */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"Number of Joins: %d Joining Node: %d\n",
dlm->num_joins, dlm->joining_node);
/* Domain Map: xx xx xx */
out += snprintf(buf + out, len - out, "Domain Map: ");
out += scnprintf(buf + out, len - out, "Domain Map: ");
out += stringify_nodemap(dlm->domain_map, O2NM_MAX_NODES,
buf + out, len - out);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
/* Exit Domain Map: xx xx xx */
out += snprintf(buf + out, len - out, "Exit Domain Map: ");
out += scnprintf(buf + out, len - out, "Exit Domain Map: ");
out += stringify_nodemap(dlm->exit_domain_map, O2NM_MAX_NODES,
buf + out, len - out);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
/* Live Map: xx xx xx */
out += snprintf(buf + out, len - out, "Live Map: ");
out += scnprintf(buf + out, len - out, "Live Map: ");
out += stringify_nodemap(dlm->live_nodes_map, O2NM_MAX_NODES,
buf + out, len - out);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
/* Lock Resources: xxx (xxx) */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"Lock Resources: %d (%d)\n",
atomic_read(&dlm->res_cur_count),
atomic_read(&dlm->res_tot_count));
@ -729,29 +729,29 @@ static int debug_state_print(struct dlm_ctxt *dlm, char *buf, int len)
cur_mles += atomic_read(&dlm->mle_cur_count[i]);
/* MLEs: xxx (xxx) */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"MLEs: %d (%d)\n", cur_mles, tot_mles);
/* Blocking: xxx (xxx) */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
" Blocking: %d (%d)\n",
atomic_read(&dlm->mle_cur_count[DLM_MLE_BLOCK]),
atomic_read(&dlm->mle_tot_count[DLM_MLE_BLOCK]));
/* Mastery: xxx (xxx) */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
" Mastery: %d (%d)\n",
atomic_read(&dlm->mle_cur_count[DLM_MLE_MASTER]),
atomic_read(&dlm->mle_tot_count[DLM_MLE_MASTER]));
/* Migration: xxx (xxx) */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
" Migration: %d (%d)\n",
atomic_read(&dlm->mle_cur_count[DLM_MLE_MIGRATION]),
atomic_read(&dlm->mle_tot_count[DLM_MLE_MIGRATION]));
/* Lists: Dirty=Empty Purge=InUse PendingASTs=Empty ... */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"Lists: Dirty=%s Purge=%s PendingASTs=%s "
"PendingBASTs=%s\n",
(list_empty(&dlm->dirty_list) ? "Empty" : "InUse"),
@ -760,12 +760,12 @@ static int debug_state_print(struct dlm_ctxt *dlm, char *buf, int len)
(list_empty(&dlm->pending_basts) ? "Empty" : "InUse"));
/* Purge Count: xxx Refs: xxx */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"Purge Count: %d Refs: %d\n", dlm->purge_count,
kref_read(&dlm->dlm_refs));
/* Dead Node: xxx */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"Dead Node: %d\n", dlm->reco.dead_node);
/* What about DLM_RECO_STATE_FINALIZE? */
@ -775,19 +775,19 @@ static int debug_state_print(struct dlm_ctxt *dlm, char *buf, int len)
state = "INACTIVE";
/* Recovery Pid: xxxx Master: xxx State: xxxx */
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"Recovery Pid: %d Master: %d State: %s\n",
task_pid_nr(dlm->dlm_reco_thread_task),
dlm->reco.new_master, state);
/* Recovery Map: xx xx */
out += snprintf(buf + out, len - out, "Recovery Map: ");
out += scnprintf(buf + out, len - out, "Recovery Map: ");
out += stringify_nodemap(dlm->recovery_map, O2NM_MAX_NODES,
buf + out, len - out);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
/* Recovery Node State: */
out += snprintf(buf + out, len - out, "Recovery Node State:\n");
out += scnprintf(buf + out, len - out, "Recovery Node State:\n");
list_for_each_entry(node, &dlm->reco.node_data, list) {
switch (node->state) {
case DLM_RECO_NODE_DATA_INIT:
@ -815,7 +815,7 @@ static int debug_state_print(struct dlm_ctxt *dlm, char *buf, int len)
state = "BAD";
break;
}
out += snprintf(buf + out, len - out, "\t%u - %s\n",
out += scnprintf(buf + out, len - out, "\t%u - %s\n",
node->node_num, state);
}

View File

@ -2749,8 +2749,6 @@ leave:
return ret;
}
#define DLM_MIGRATION_RETRY_MS 100
/*
* Should be called only after beginning the domain leave process.
* There should not be any remaining locks on nonlocal lock resources,

View File

@ -39,8 +39,6 @@
static int dlm_thread(void *data);
static void dlm_flush_asts(struct dlm_ctxt *dlm);
#define dlm_lock_is_remote(dlm, lock) ((lock)->ml.node != (dlm)->node_num)
/* will exit holding res->spinlock, but may drop in function */
/* waits until flags are cleared on res->state */
void __dlm_wait_on_lockres_flags(struct dlm_lock_resource *res, int flags)
@ -680,7 +678,6 @@ static void dlm_flush_asts(struct dlm_ctxt *dlm)
#define DLM_THREAD_TIMEOUT_MS (4 * 1000)
#define DLM_THREAD_MAX_DIRTY 100
#define DLM_THREAD_MAX_ASTS 10
static int dlm_thread(void *data)
{

View File

@ -2133,7 +2133,7 @@ static void ocfs2_downconvert_on_unlock(struct ocfs2_super *osb,
}
#define OCFS2_SEC_BITS 34
#define OCFS2_SEC_SHIFT (64 - 34)
#define OCFS2_SEC_SHIFT (64 - OCFS2_SEC_BITS)
#define OCFS2_NSEC_MASK ((1ULL << OCFS2_SEC_SHIFT) - 1)
/* LVB only has room for 64 bits of time here so we pack it for

View File

@ -91,7 +91,7 @@ enum ocfs2_replay_state {
struct ocfs2_replay_map {
unsigned int rm_slots;
enum ocfs2_replay_state rm_state;
unsigned char rm_replay_slots[0];
unsigned char rm_replay_slots[];
};
static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)

View File

@ -406,7 +406,7 @@ static int ocfs2_mknod(struct inode *dir,
if (status < 0) {
mlog_errno(status);
goto leave;
goto roll_back;
}
if (si.enable) {
@ -414,7 +414,7 @@ static int ocfs2_mknod(struct inode *dir,
meta_ac, data_ac);
if (status < 0) {
mlog_errno(status);
goto leave;
goto roll_back;
}
}
@ -427,7 +427,7 @@ static int ocfs2_mknod(struct inode *dir,
OCFS2_I(dir)->ip_blkno);
if (status) {
mlog_errno(status);
goto leave;
goto roll_back;
}
dl = dentry->d_fsdata;
@ -437,12 +437,19 @@ static int ocfs2_mknod(struct inode *dir,
&lookup);
if (status < 0) {
mlog_errno(status);
goto leave;
goto roll_back;
}
insert_inode_hash(inode);
d_instantiate(dentry, inode);
status = 0;
roll_back:
if (status < 0 && S_ISDIR(mode)) {
ocfs2_add_links_count(dirfe, -1);
drop_nlink(dir);
}
leave:
if (status < 0 && did_quota_inode)
dquot_free_inode(inode);

View File

@ -470,7 +470,7 @@ struct ocfs2_extent_list {
__le16 l_reserved1;
__le64 l_reserved2; /* Pad to
sizeof(ocfs2_extent_rec) */
/*10*/ struct ocfs2_extent_rec l_recs[0]; /* Extent records */
/*10*/ struct ocfs2_extent_rec l_recs[]; /* Extent records */
};
/*
@ -484,7 +484,7 @@ struct ocfs2_chain_list {
__le16 cl_count; /* Total chains in this list */
__le16 cl_next_free_rec; /* Next unused chain slot */
__le64 cl_reserved1;
/*10*/ struct ocfs2_chain_rec cl_recs[0]; /* Chain records */
/*10*/ struct ocfs2_chain_rec cl_recs[]; /* Chain records */
};
/*
@ -496,7 +496,7 @@ struct ocfs2_truncate_log {
/*00*/ __le16 tl_count; /* Total records in this log */
__le16 tl_used; /* Number of records in use */
__le32 tl_reserved1;
/*08*/ struct ocfs2_truncate_rec tl_recs[0]; /* Truncate records */
/*08*/ struct ocfs2_truncate_rec tl_recs[]; /* Truncate records */
};
/*
@ -640,7 +640,7 @@ struct ocfs2_local_alloc
__le16 la_size; /* Size of included bitmap, in bytes */
__le16 la_reserved1;
__le64 la_reserved2;
/*10*/ __u8 la_bitmap[0];
/*10*/ __u8 la_bitmap[];
};
/*
@ -653,7 +653,7 @@ struct ocfs2_inline_data
* for data, starting at id_data */
__le16 id_reserved0;
__le32 id_reserved1;
__u8 id_data[0]; /* Start of user data */
__u8 id_data[]; /* Start of user data */
};
/*
@ -798,7 +798,7 @@ struct ocfs2_dx_entry_list {
* possible in de_entries */
__le16 de_num_used; /* Current number of
* de_entries entries */
struct ocfs2_dx_entry de_entries[0]; /* Indexed dir entries
struct ocfs2_dx_entry de_entries[]; /* Indexed dir entries
* in a packed array of
* length de_num_used */
};
@ -935,7 +935,7 @@ struct ocfs2_refcount_list {
__le16 rl_used; /* Current number of used records */
__le32 rl_reserved2;
__le64 rl_reserved1; /* Pad to sizeof(ocfs2_refcount_record) */
/*10*/ struct ocfs2_refcount_rec rl_recs[0]; /* Refcount records */
/*10*/ struct ocfs2_refcount_rec rl_recs[]; /* Refcount records */
};
@ -1021,7 +1021,7 @@ struct ocfs2_xattr_header {
buckets. A block uses
xb_check and sets
this field to zero.) */
struct ocfs2_xattr_entry xh_entries[0]; /* xattr entry list. */
struct ocfs2_xattr_entry xh_entries[]; /* xattr entry list. */
};
/*
@ -1207,7 +1207,7 @@ struct ocfs2_local_disk_dqinfo {
/* Header of one chunk of a quota file */
struct ocfs2_local_disk_chunk {
__le32 dqc_free; /* Number of free entries in the bitmap */
__u8 dqc_bitmap[0]; /* Bitmap of entries in the corresponding
__u8 dqc_bitmap[]; /* Bitmap of entries in the corresponding
* chunk of quota file */
};

View File

@ -154,6 +154,7 @@ ocfs2_refcount_cache_get_super(struct ocfs2_caching_info *ci)
}
static void ocfs2_refcount_cache_lock(struct ocfs2_caching_info *ci)
__acquires(&rf->rf_lock)
{
struct ocfs2_refcount_tree *rf = cache_info_to_refcount(ci);
@ -161,6 +162,7 @@ static void ocfs2_refcount_cache_lock(struct ocfs2_caching_info *ci)
}
static void ocfs2_refcount_cache_unlock(struct ocfs2_caching_info *ci)
__releases(&rf->rf_lock)
{
struct ocfs2_refcount_tree *rf = cache_info_to_refcount(ci);

View File

@ -33,9 +33,6 @@
static DEFINE_SPINLOCK(resv_lock);
#define OCFS2_MIN_RESV_WINDOW_BITS 8
#define OCFS2_MAX_RESV_WINDOW_BITS 1024
int ocfs2_dir_resv_allowed(struct ocfs2_super *osb)
{
return (osb->osb_resv_level && osb->osb_dir_resv_level);

View File

@ -656,8 +656,6 @@ error:
* and easier to preserve the name.
*/
#define FS_OCFS2_NM 1
static struct ctl_table ocfs2_nm_table[] = {
{
.procname = "hb_ctl_path",

View File

@ -2509,9 +2509,6 @@ static int _ocfs2_free_suballoc_bits(handle_t *handle,
bail:
brelse(group_bh);
if (status)
mlog_errno(status);
return status;
}
@ -2582,8 +2579,6 @@ static int _ocfs2_free_clusters(handle_t *handle,
num_clusters);
out:
if (status)
mlog_errno(status);
return status;
}

View File

@ -220,31 +220,31 @@ static int ocfs2_osb_dump(struct ocfs2_super *osb, char *buf, int len)
int i, out = 0;
unsigned long flags;
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => Id: %-s Uuid: %-s Gen: 0x%X Label: %-s\n",
"Device", osb->dev_str, osb->uuid_str,
osb->fs_generation, osb->vol_label);
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => State: %d Flags: 0x%lX\n", "Volume",
atomic_read(&osb->vol_state), osb->osb_flags);
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => Block: %lu Cluster: %d\n", "Sizes",
osb->sb->s_blocksize, osb->s_clustersize);
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => Compat: 0x%X Incompat: 0x%X "
"ROcompat: 0x%X\n",
"Features", osb->s_feature_compat,
osb->s_feature_incompat, osb->s_feature_ro_compat);
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => Opts: 0x%lX AtimeQuanta: %u\n", "Mount",
osb->s_mount_opt, osb->s_atime_quantum);
if (cconn) {
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => Stack: %s Name: %*s "
"Version: %d.%d\n", "Cluster",
(*osb->osb_cluster_stack == '\0' ?
@ -255,7 +255,7 @@ static int ocfs2_osb_dump(struct ocfs2_super *osb, char *buf, int len)
}
spin_lock_irqsave(&osb->dc_task_lock, flags);
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => Pid: %d Count: %lu WakeSeq: %lu "
"WorkSeq: %lu\n", "DownCnvt",
(osb->dc_task ? task_pid_nr(osb->dc_task) : -1),
@ -264,32 +264,32 @@ static int ocfs2_osb_dump(struct ocfs2_super *osb, char *buf, int len)
spin_unlock_irqrestore(&osb->dc_task_lock, flags);
spin_lock(&osb->osb_lock);
out += snprintf(buf + out, len - out, "%10s => Pid: %d Nodes:",
out += scnprintf(buf + out, len - out, "%10s => Pid: %d Nodes:",
"Recovery",
(osb->recovery_thread_task ?
task_pid_nr(osb->recovery_thread_task) : -1));
if (rm->rm_used == 0)
out += snprintf(buf + out, len - out, " None\n");
out += scnprintf(buf + out, len - out, " None\n");
else {
for (i = 0; i < rm->rm_used; i++)
out += snprintf(buf + out, len - out, " %d",
out += scnprintf(buf + out, len - out, " %d",
rm->rm_entries[i]);
out += snprintf(buf + out, len - out, "\n");
out += scnprintf(buf + out, len - out, "\n");
}
spin_unlock(&osb->osb_lock);
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => Pid: %d Interval: %lu\n", "Commit",
(osb->commit_task ? task_pid_nr(osb->commit_task) : -1),
osb->osb_commit_interval);
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => State: %d TxnId: %lu NumTxns: %d\n",
"Journal", osb->journal->j_state,
osb->journal->j_trans_id,
atomic_read(&osb->journal->j_num_trans));
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => GlobalAllocs: %d LocalAllocs: %d "
"SubAllocs: %d LAWinMoves: %d SAExtends: %d\n",
"Stats",
@ -299,7 +299,7 @@ static int ocfs2_osb_dump(struct ocfs2_super *osb, char *buf, int len)
atomic_read(&osb->alloc_stats.moves),
atomic_read(&osb->alloc_stats.bg_extends));
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => State: %u Descriptor: %llu Size: %u bits "
"Default: %u bits\n",
"LocalAlloc", osb->local_alloc_state,
@ -307,7 +307,7 @@ static int ocfs2_osb_dump(struct ocfs2_super *osb, char *buf, int len)
osb->local_alloc_bits, osb->local_alloc_default_bits);
spin_lock(&osb->osb_lock);
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s => InodeSlot: %d StolenInodes: %d, "
"MetaSlot: %d StolenMeta: %d\n", "Steal",
osb->s_inode_steal_slot,
@ -316,20 +316,20 @@ static int ocfs2_osb_dump(struct ocfs2_super *osb, char *buf, int len)
atomic_read(&osb->s_num_meta_stolen));
spin_unlock(&osb->osb_lock);
out += snprintf(buf + out, len - out, "OrphanScan => ");
out += snprintf(buf + out, len - out, "Local: %u Global: %u ",
out += scnprintf(buf + out, len - out, "OrphanScan => ");
out += scnprintf(buf + out, len - out, "Local: %u Global: %u ",
os->os_count, os->os_seqno);
out += snprintf(buf + out, len - out, " Last Scan: ");
out += scnprintf(buf + out, len - out, " Last Scan: ");
if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
out += snprintf(buf + out, len - out, "Disabled\n");
out += scnprintf(buf + out, len - out, "Disabled\n");
else
out += snprintf(buf + out, len - out, "%lu seconds ago\n",
out += scnprintf(buf + out, len - out, "%lu seconds ago\n",
(unsigned long)(ktime_get_seconds() - os->os_scantime));
out += snprintf(buf + out, len - out, "%10s => %3s %10s\n",
out += scnprintf(buf + out, len - out, "%10s => %3s %10s\n",
"Slots", "Num", "RecoGen");
for (i = 0; i < osb->max_slots; ++i) {
out += snprintf(buf + out, len - out,
out += scnprintf(buf + out, len - out,
"%10s %c %3d %10d\n",
" ",
(i == osb->slot_num ? '*' : ' '),

View File

@ -146,7 +146,7 @@ static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
struct page *page = buf->page;
if (page_count(page) == 1) {
memcg_kmem_uncharge(page, 0);
memcg_kmem_uncharge_page(page, 0);
__SetPageLocked(page);
return 0;
}

View File

@ -334,6 +334,30 @@ out:
return ret;
}
/* Should pair with userfaultfd_signal_pending() */
static inline long userfaultfd_get_blocking_state(unsigned int flags)
{
if (flags & FAULT_FLAG_INTERRUPTIBLE)
return TASK_INTERRUPTIBLE;
if (flags & FAULT_FLAG_KILLABLE)
return TASK_KILLABLE;
return TASK_UNINTERRUPTIBLE;
}
/* Should pair with userfaultfd_get_blocking_state() */
static inline bool userfaultfd_signal_pending(unsigned int flags)
{
if (flags & FAULT_FLAG_INTERRUPTIBLE)
return signal_pending(current);
if (flags & FAULT_FLAG_KILLABLE)
return fatal_signal_pending(current);
return false;
}
/*
* The locking rules involved in returning VM_FAULT_RETRY depending on
* FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
@ -355,7 +379,7 @@ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
struct userfaultfd_ctx *ctx;
struct userfaultfd_wait_queue uwq;
vm_fault_t ret = VM_FAULT_SIGBUS;
bool must_wait, return_to_userland;
bool must_wait;
long blocking_state;
/*
@ -462,11 +486,7 @@ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
uwq.ctx = ctx;
uwq.waken = false;
return_to_userland =
(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
TASK_KILLABLE;
blocking_state = userfaultfd_get_blocking_state(vmf->flags);
spin_lock_irq(&ctx->fault_pending_wqh.lock);
/*
@ -492,8 +512,7 @@ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
up_read(&mm->mmap_sem);
if (likely(must_wait && !READ_ONCE(ctx->released) &&
(return_to_userland ? !signal_pending(current) :
!fatal_signal_pending(current)))) {
!userfaultfd_signal_pending(vmf->flags))) {
wake_up_poll(&ctx->fd_wqh, EPOLLIN);
schedule();
ret |= VM_FAULT_MAJOR;
@ -515,8 +534,7 @@ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
set_current_state(blocking_state);
if (READ_ONCE(uwq.waken) ||
READ_ONCE(ctx->released) ||
(return_to_userland ? signal_pending(current) :
fatal_signal_pending(current)))
userfaultfd_signal_pending(vmf->flags))
break;
schedule();
}
@ -524,30 +542,6 @@ vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
__set_current_state(TASK_RUNNING);
if (return_to_userland) {
if (signal_pending(current) &&
!fatal_signal_pending(current)) {
/*
* If we got a SIGSTOP or SIGCONT and this is
* a normal userland page fault, just let
* userland return so the signal will be
* handled and gdb debugging works. The page
* fault code immediately after we return from
* this function is going to release the
* mmap_sem and it's not depending on it
* (unlike gup would if we were not to return
* VM_FAULT_RETRY).
*
* If a fatal signal is pending we still take
* the streamlined VM_FAULT_RETRY failure path
* and there's no need to retake the mmap_sem
* in such case.
*/
down_read(&mm->mmap_sem);
ret = VM_FAULT_NOPAGE;
}
}
/*
* Here we race with the list_del; list_add in
* userfaultfd_ctx_read(), however because we don't ever run

View File

@ -4,6 +4,58 @@
# (This file is not included when SRCARCH=um since UML borrows several
# asm headers from the host architecutre.)
mandatory-y += atomic.h
mandatory-y += barrier.h
mandatory-y += bitops.h
mandatory-y += bug.h
mandatory-y += bugs.h
mandatory-y += cacheflush.h
mandatory-y += checksum.h
mandatory-y += compat.h
mandatory-y += current.h
mandatory-y += delay.h
mandatory-y += device.h
mandatory-y += div64.h
mandatory-y += dma-contiguous.h
mandatory-y += dma-mapping.h
mandatory-y += dma.h
mandatory-y += emergency-restart.h
mandatory-y += exec.h
mandatory-y += fb.h
mandatory-y += ftrace.h
mandatory-y += futex.h
mandatory-y += hardirq.h
mandatory-y += hw_irq.h
mandatory-y += io.h
mandatory-y += irq.h
mandatory-y += irq_regs.h
mandatory-y += irq_work.h
mandatory-y += kdebug.h
mandatory-y += kmap_types.h
mandatory-y += kprobes.h
mandatory-y += linkage.h
mandatory-y += local.h
mandatory-y += mm-arch-hooks.h
mandatory-y += mmiowb.h
mandatory-y += mmu.h
mandatory-y += mmu_context.h
mandatory-y += module.h
mandatory-y += msi.h
mandatory-y += pci.h
mandatory-y += percpu.h
mandatory-y += pgalloc.h
mandatory-y += preempt.h
mandatory-y += sections.h
mandatory-y += serial.h
mandatory-y += shmparam.h
mandatory-y += simd.h
mandatory-y += switch_to.h
mandatory-y += timex.h
mandatory-y += tlbflush.h
mandatory-y += topology.h
mandatory-y += trace_clock.h
mandatory-y += uaccess.h
mandatory-y += unaligned.h
mandatory-y += vga.h
mandatory-y += word-at-a-time.h
mandatory-y += xor.h

View File

@ -94,6 +94,11 @@ enum {
* Enable legacy local memory.events.
*/
CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5),
/*
* Enable recursive subtree protection
*/
CGRP_ROOT_MEMORY_RECURSIVE_PROT = (1 << 6),
};
/* cftype->flags */

View File

@ -526,6 +526,11 @@ static inline void i_mmap_lock_write(struct address_space *mapping)
down_write(&mapping->i_mmap_rwsem);
}
static inline int i_mmap_trylock_write(struct address_space *mapping)
{
return down_write_trylock(&mapping->i_mmap_rwsem);
}
static inline void i_mmap_unlock_write(struct address_space *mapping)
{
up_write(&mapping->i_mmap_rwsem);

View File

@ -485,6 +485,12 @@ static inline void arch_free_page(struct page *page, int order) { }
#ifndef HAVE_ARCH_ALLOC_PAGE
static inline void arch_alloc_page(struct page *page, int order) { }
#endif
#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
static inline int arch_make_page_accessible(struct page *page)
{
return 0;
}
#endif
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,

View File

@ -87,8 +87,6 @@ extern struct kobj_attribute shmem_enabled_attr;
#define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT)
#define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1))
extern bool is_vma_temporary_stack(struct vm_area_struct *vma);
extern unsigned long transparent_hugepage_flags;
/*
@ -100,7 +98,7 @@ static inline bool __transparent_hugepage_enabled(struct vm_area_struct *vma)
if (vma->vm_flags & VM_NOHUGEPAGE)
return false;
if (is_vma_temporary_stack(vma))
if (vma_is_temporary_stack(vma))
return false;
if (test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
@ -289,7 +287,11 @@ static inline struct list_head *page_deferred_list(struct page *page)
#define HPAGE_PUD_MASK ({ BUILD_BUG(); 0; })
#define HPAGE_PUD_SIZE ({ BUILD_BUG(); 0; })
#define hpage_nr_pages(x) 1
static inline int hpage_nr_pages(struct page *page)
{
VM_BUG_ON_PAGE(PageTail(page), page);
return 1;
}
static inline bool __transparent_hugepage_enabled(struct vm_area_struct *vma)
{

View File

@ -46,7 +46,52 @@ struct resv_map {
long adds_in_progress;
struct list_head region_cache;
long region_cache_count;
#ifdef CONFIG_CGROUP_HUGETLB
/*
* On private mappings, the counter to uncharge reservations is stored
* here. If these fields are 0, then either the mapping is shared, or
* cgroup accounting is disabled for this resv_map.
*/
struct page_counter *reservation_counter;
unsigned long pages_per_hpage;
struct cgroup_subsys_state *css;
#endif
};
/*
* Region tracking -- allows tracking of reservations and instantiated pages
* across the pages in a mapping.
*
* The region data structures are embedded into a resv_map and protected
* by a resv_map's lock. The set of regions within the resv_map represent
* reservations for huge pages, or huge pages that have already been
* instantiated within the map. The from and to elements are huge page
* indicies into the associated mapping. from indicates the starting index
* of the region. to represents the first index past the end of the region.
*
* For example, a file region structure with from == 0 and to == 4 represents
* four huge pages in a mapping. It is important to note that the to element
* represents the first element past the end of the region. This is used in
* arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
*
* Interval notation of the form [from, to) will be used to indicate that
* the endpoint from is inclusive and to is exclusive.
*/
struct file_region {
struct list_head link;
long from;
long to;
#ifdef CONFIG_CGROUP_HUGETLB
/*
* On shared mappings, each reserved region appears as a struct
* file_region in resv_map. These fields hold the info needed to
* uncharge each reservation.
*/
struct page_counter *reservation_counter;
struct cgroup_subsys_state *css;
#endif
};
extern struct resv_map *resv_map_alloc(void);
void resv_map_release(struct kref *ref);
@ -109,6 +154,8 @@ u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud);
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage);
extern int sysctl_hugetlb_shm_group;
extern struct list_head huge_boot_pages;
@ -151,6 +198,12 @@ static inline unsigned long hugetlb_total_pages(void)
return 0;
}
static inline struct address_space *hugetlb_page_mapping_lock_write(
struct page *hpage)
{
return NULL;
}
static inline int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr,
pte_t *ptep)
{
@ -390,7 +443,10 @@ static inline bool is_file_hugepages(struct file *file)
return is_file_shm_hugepages(file);
}
static inline struct hstate *hstate_inode(struct inode *i)
{
return HUGETLBFS_SB(i->i_sb)->hstate;
}
#else /* !CONFIG_HUGETLBFS */
#define is_file_hugepages(file) false
@ -402,6 +458,10 @@ hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
return ERR_PTR(-ENOSYS);
}
static inline struct hstate *hstate_inode(struct inode *i)
{
return NULL;
}
#endif /* !CONFIG_HUGETLBFS */
#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
@ -432,8 +492,8 @@ struct hstate {
unsigned int surplus_huge_pages_node[MAX_NUMNODES];
#ifdef CONFIG_CGROUP_HUGETLB
/* cgroup control files */
struct cftype cgroup_files_dfl[5];
struct cftype cgroup_files_legacy[5];
struct cftype cgroup_files_dfl[7];
struct cftype cgroup_files_legacy[9];
#endif
char name[HSTATE_NAME_LEN];
};
@ -472,11 +532,6 @@ extern unsigned int default_hstate_idx;
#define default_hstate (hstates[default_hstate_idx])
static inline struct hstate *hstate_inode(struct inode *i)
{
return HUGETLBFS_SB(i->i_sb)->hstate;
}
static inline struct hstate *hstate_file(struct file *f)
{
return hstate_inode(file_inode(f));
@ -729,11 +784,6 @@ static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
return NULL;
}
static inline struct hstate *hstate_inode(struct inode *i)
{
return NULL;
}
static inline struct hstate *page_hstate(struct page *page)
{
return NULL;

View File

@ -18,34 +18,96 @@
#include <linux/mmdebug.h>
struct hugetlb_cgroup;
struct resv_map;
struct file_region;
/*
* Minimum page order trackable by hugetlb cgroup.
* At least 3 pages are necessary for all the tracking information.
* At least 4 pages are necessary for all the tracking information.
* The second tail page (hpage[2]) is the fault usage cgroup.
* The third tail page (hpage[3]) is the reservation usage cgroup.
*/
#define HUGETLB_CGROUP_MIN_ORDER 2
#ifdef CONFIG_CGROUP_HUGETLB
enum hugetlb_memory_event {
HUGETLB_MAX,
HUGETLB_NR_MEMORY_EVENTS,
};
static inline struct hugetlb_cgroup *hugetlb_cgroup_from_page(struct page *page)
struct hugetlb_cgroup {
struct cgroup_subsys_state css;
/*
* the counter to account for hugepages from hugetlb.
*/
struct page_counter hugepage[HUGE_MAX_HSTATE];
/*
* the counter to account for hugepage reservations from hugetlb.
*/
struct page_counter rsvd_hugepage[HUGE_MAX_HSTATE];
atomic_long_t events[HUGE_MAX_HSTATE][HUGETLB_NR_MEMORY_EVENTS];
atomic_long_t events_local[HUGE_MAX_HSTATE][HUGETLB_NR_MEMORY_EVENTS];
/* Handle for "hugetlb.events" */
struct cgroup_file events_file[HUGE_MAX_HSTATE];
/* Handle for "hugetlb.events.local" */
struct cgroup_file events_local_file[HUGE_MAX_HSTATE];
};
static inline struct hugetlb_cgroup *
__hugetlb_cgroup_from_page(struct page *page, bool rsvd)
{
VM_BUG_ON_PAGE(!PageHuge(page), page);
if (compound_order(page) < HUGETLB_CGROUP_MIN_ORDER)
return NULL;
return (struct hugetlb_cgroup *)page[2].private;
if (rsvd)
return (struct hugetlb_cgroup *)page[3].private;
else
return (struct hugetlb_cgroup *)page[2].private;
}
static inline
int set_hugetlb_cgroup(struct page *page, struct hugetlb_cgroup *h_cg)
static inline struct hugetlb_cgroup *hugetlb_cgroup_from_page(struct page *page)
{
return __hugetlb_cgroup_from_page(page, false);
}
static inline struct hugetlb_cgroup *
hugetlb_cgroup_from_page_rsvd(struct page *page)
{
return __hugetlb_cgroup_from_page(page, true);
}
static inline int __set_hugetlb_cgroup(struct page *page,
struct hugetlb_cgroup *h_cg, bool rsvd)
{
VM_BUG_ON_PAGE(!PageHuge(page), page);
if (compound_order(page) < HUGETLB_CGROUP_MIN_ORDER)
return -1;
page[2].private = (unsigned long)h_cg;
if (rsvd)
page[3].private = (unsigned long)h_cg;
else
page[2].private = (unsigned long)h_cg;
return 0;
}
static inline int set_hugetlb_cgroup(struct page *page,
struct hugetlb_cgroup *h_cg)
{
return __set_hugetlb_cgroup(page, h_cg, false);
}
static inline int set_hugetlb_cgroup_rsvd(struct page *page,
struct hugetlb_cgroup *h_cg)
{
return __set_hugetlb_cgroup(page, h_cg, true);
}
static inline bool hugetlb_cgroup_disabled(void)
{
return !cgroup_subsys_enabled(hugetlb_cgrp_subsys);
@ -53,25 +115,67 @@ static inline bool hugetlb_cgroup_disabled(void)
extern int hugetlb_cgroup_charge_cgroup(int idx, unsigned long nr_pages,
struct hugetlb_cgroup **ptr);
extern int hugetlb_cgroup_charge_cgroup_rsvd(int idx, unsigned long nr_pages,
struct hugetlb_cgroup **ptr);
extern void hugetlb_cgroup_commit_charge(int idx, unsigned long nr_pages,
struct hugetlb_cgroup *h_cg,
struct page *page);
extern void hugetlb_cgroup_commit_charge_rsvd(int idx, unsigned long nr_pages,
struct hugetlb_cgroup *h_cg,
struct page *page);
extern void hugetlb_cgroup_uncharge_page(int idx, unsigned long nr_pages,
struct page *page);
extern void hugetlb_cgroup_uncharge_page_rsvd(int idx, unsigned long nr_pages,
struct page *page);
extern void hugetlb_cgroup_uncharge_cgroup(int idx, unsigned long nr_pages,
struct hugetlb_cgroup *h_cg);
extern void hugetlb_cgroup_uncharge_cgroup_rsvd(int idx, unsigned long nr_pages,
struct hugetlb_cgroup *h_cg);
extern void hugetlb_cgroup_uncharge_counter(struct resv_map *resv,
unsigned long start,
unsigned long end);
extern void hugetlb_cgroup_uncharge_file_region(struct resv_map *resv,
struct file_region *rg,
unsigned long nr_pages);
extern void hugetlb_cgroup_file_init(void) __init;
extern void hugetlb_cgroup_migrate(struct page *oldhpage,
struct page *newhpage);
#else
static inline void hugetlb_cgroup_uncharge_file_region(struct resv_map *resv,
struct file_region *rg,
unsigned long nr_pages)
{
}
static inline struct hugetlb_cgroup *hugetlb_cgroup_from_page(struct page *page)
{
return NULL;
}
static inline
int set_hugetlb_cgroup(struct page *page, struct hugetlb_cgroup *h_cg)
static inline struct hugetlb_cgroup *
hugetlb_cgroup_from_page_resv(struct page *page)
{
return NULL;
}
static inline struct hugetlb_cgroup *
hugetlb_cgroup_from_page_rsvd(struct page *page)
{
return NULL;
}
static inline int set_hugetlb_cgroup(struct page *page,
struct hugetlb_cgroup *h_cg)
{
return 0;
}
static inline int set_hugetlb_cgroup_rsvd(struct page *page,
struct hugetlb_cgroup *h_cg)
{
return 0;
}
@ -81,28 +185,57 @@ static inline bool hugetlb_cgroup_disabled(void)
return true;
}
static inline int
hugetlb_cgroup_charge_cgroup(int idx, unsigned long nr_pages,
struct hugetlb_cgroup **ptr)
static inline int hugetlb_cgroup_charge_cgroup(int idx, unsigned long nr_pages,
struct hugetlb_cgroup **ptr)
{
return 0;
}
static inline void
hugetlb_cgroup_commit_charge(int idx, unsigned long nr_pages,
struct hugetlb_cgroup *h_cg,
struct page *page)
static inline int hugetlb_cgroup_charge_cgroup_rsvd(int idx,
unsigned long nr_pages,
struct hugetlb_cgroup **ptr)
{
return 0;
}
static inline void hugetlb_cgroup_commit_charge(int idx, unsigned long nr_pages,
struct hugetlb_cgroup *h_cg,
struct page *page)
{
}
static inline void
hugetlb_cgroup_uncharge_page(int idx, unsigned long nr_pages, struct page *page)
hugetlb_cgroup_commit_charge_rsvd(int idx, unsigned long nr_pages,
struct hugetlb_cgroup *h_cg,
struct page *page)
{
}
static inline void hugetlb_cgroup_uncharge_page(int idx, unsigned long nr_pages,
struct page *page)
{
}
static inline void hugetlb_cgroup_uncharge_page_rsvd(int idx,
unsigned long nr_pages,
struct page *page)
{
}
static inline void hugetlb_cgroup_uncharge_cgroup(int idx,
unsigned long nr_pages,
struct hugetlb_cgroup *h_cg)
{
}
static inline void
hugetlb_cgroup_uncharge_cgroup(int idx, unsigned long nr_pages,
struct hugetlb_cgroup *h_cg)
hugetlb_cgroup_uncharge_cgroup_rsvd(int idx, unsigned long nr_pages,
struct hugetlb_cgroup *h_cg)
{
}
static inline void hugetlb_cgroup_uncharge_counter(struct resv_map *resv,
unsigned long start,
unsigned long end)
{
}

View File

@ -190,7 +190,7 @@ void kasan_init_tags(void);
void *kasan_reset_tag(const void *addr);
void kasan_report(unsigned long addr, size_t size,
bool kasan_report(unsigned long addr, size_t size,
bool is_write, unsigned long ip);
#else /* CONFIG_KASAN_SW_TAGS */

View File

@ -165,7 +165,8 @@ extern void __kthread_init_worker(struct kthread_worker *worker,
do { \
kthread_init_work(&(dwork)->work, (fn)); \
timer_setup(&(dwork)->timer, \
kthread_delayed_work_timer_fn, 0); \
kthread_delayed_work_timer_fn, \
TIMER_IRQSAFE); \
} while (0)
int kthread_worker_fn(void *worker_ptr);

View File

@ -1367,12 +1367,11 @@ struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
void memcg_kmem_put_cache(struct kmem_cache *cachep);
#ifdef CONFIG_MEMCG_KMEM
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
void __memcg_kmem_uncharge(struct page *page, int order);
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
struct mem_cgroup *memcg);
void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
unsigned int nr_pages);
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
unsigned int nr_pages);
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
void __memcg_kmem_uncharge_page(struct page *page, int order);
extern struct static_key_false memcg_kmem_enabled_key;
extern struct workqueue_struct *memcg_kmem_cache_wq;
@ -1394,32 +1393,33 @@ static inline bool memcg_kmem_enabled(void)
return static_branch_unlikely(&memcg_kmem_enabled_key);
}
static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
int order)
{
if (memcg_kmem_enabled())
return __memcg_kmem_charge(page, gfp, order);
return __memcg_kmem_charge_page(page, gfp, order);
return 0;
}
static inline void memcg_kmem_uncharge(struct page *page, int order)
static inline void memcg_kmem_uncharge_page(struct page *page, int order)
{
if (memcg_kmem_enabled())
__memcg_kmem_uncharge(page, order);
__memcg_kmem_uncharge_page(page, order);
}
static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
int order, struct mem_cgroup *memcg)
static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
unsigned int nr_pages)
{
if (memcg_kmem_enabled())
return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
return __memcg_kmem_charge(memcg, gfp, nr_pages);
return 0;
}
static inline void memcg_kmem_uncharge_memcg(struct page *page, int order,
struct mem_cgroup *memcg)
static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
unsigned int nr_pages)
{
if (memcg_kmem_enabled())
__memcg_kmem_uncharge_memcg(memcg, 1 << order);
__memcg_kmem_uncharge(memcg, nr_pages);
}
/*
@ -1436,21 +1436,23 @@ struct mem_cgroup *mem_cgroup_from_obj(void *p);
#else
static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
int order)
{
return 0;
}
static inline void memcg_kmem_uncharge(struct page *page, int order)
static inline void memcg_kmem_uncharge_page(struct page *page, int order)
{
}
static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
int order)
{
return 0;
}
static inline void __memcg_kmem_uncharge(struct page *page, int order)
static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
{
}

View File

@ -173,34 +173,7 @@ extern int mpol_parse_str(char *str, struct mempolicy **mpol);
extern void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol);
/* Check if a vma is migratable */
static inline bool vma_migratable(struct vm_area_struct *vma)
{
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
return false;
/*
* DAX device mappings require predictable access latency, so avoid
* incurring periodic faults.
*/
if (vma_is_dax(vma))
return false;
#ifndef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
if (vma->vm_flags & VM_HUGETLB)
return false;
#endif
/*
* Migration allocates pages in the highest zone. If we cannot
* do so then migration (at least from node to node) is not
* possible.
*/
if (vma->vm_file &&
gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
< policy_zone)
return false;
return true;
}
extern bool vma_migratable(struct vm_area_struct *vma);
extern int mpol_misplaced(struct page *, struct vm_area_struct *, unsigned long);
extern void mpol_put_task_policy(struct task_struct *);

View File

@ -27,6 +27,7 @@
#include <linux/memremap.h>
#include <linux/overflow.h>
#include <linux/sizes.h>
#include <linux/sched.h>
struct mempolicy;
struct anon_vma;
@ -356,10 +357,12 @@ extern unsigned int kobjsize(const void *objp);
/*
* Special vmas that are non-mergable, non-mlock()able.
* Note: mm/huge_memory.c VM_NO_THP depends on this definition.
*/
#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
/* This mask prevents VMA from being scanned with khugepaged */
#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
/* This mask defines which mm->def_flags a process can inherit its parent */
#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
@ -378,15 +381,75 @@ extern unsigned int kobjsize(const void *objp);
*/
extern pgprot_t protection_map[16];
#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
#define FAULT_FLAG_TRIED 0x20 /* Second try */
#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
/**
* Fault flag definitions.
*
* @FAULT_FLAG_WRITE: Fault was a write fault.
* @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
* @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
* @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_sem and wait when retrying.
* @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
* @FAULT_FLAG_TRIED: The fault has been tried once.
* @FAULT_FLAG_USER: The fault originated in userspace.
* @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
* @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
* @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
*
* About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
* whether we would allow page faults to retry by specifying these two
* fault flags correctly. Currently there can be three legal combinations:
*
* (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
* this is the first try
*
* (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
* we've already tried at least once
*
* (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
*
* The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
* be used. Note that page faults can be allowed to retry for multiple times,
* in which case we'll have an initial fault with flags (a) then later on
* continuous faults with flags (b). We should always try to detect pending
* signals before a retry to make sure the continuous page faults can still be
* interrupted if necessary.
*/
#define FAULT_FLAG_WRITE 0x01
#define FAULT_FLAG_MKWRITE 0x02
#define FAULT_FLAG_ALLOW_RETRY 0x04
#define FAULT_FLAG_RETRY_NOWAIT 0x08
#define FAULT_FLAG_KILLABLE 0x10
#define FAULT_FLAG_TRIED 0x20
#define FAULT_FLAG_USER 0x40
#define FAULT_FLAG_REMOTE 0x80
#define FAULT_FLAG_INSTRUCTION 0x100
#define FAULT_FLAG_INTERRUPTIBLE 0x200
/*
* The default fault flags that should be used by most of the
* arch-specific page fault handlers.
*/
#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
FAULT_FLAG_KILLABLE | \
FAULT_FLAG_INTERRUPTIBLE)
/**
* fault_flag_allow_retry_first - check ALLOW_RETRY the first time
*
* This is mostly used for places where we want to try to avoid taking
* the mmap_sem for too long a time when waiting for another condition
* to change, in which case we can try to be polite to release the
* mmap_sem in the first round to avoid potential starvation of other
* processes that would also want the mmap_sem.
*
* Return: true if the page fault allows retry and this is the first
* attempt of the fault handling; false otherwise.
*/
static inline bool fault_flag_allow_retry_first(unsigned int flags)
{
return (flags & FAULT_FLAG_ALLOW_RETRY) &&
(!(flags & FAULT_FLAG_TRIED));
}
#define FAULT_FLAG_TRACE \
{ FAULT_FLAG_WRITE, "WRITE" }, \
@ -397,7 +460,8 @@ extern pgprot_t protection_map[16];
{ FAULT_FLAG_TRIED, "TRIED" }, \
{ FAULT_FLAG_USER, "USER" }, \
{ FAULT_FLAG_REMOTE, "REMOTE" }, \
{ FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
{ FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
{ FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
/*
* vm_fault is filled by the the pagefault handler and passed to the vma's
@ -541,6 +605,30 @@ static inline bool vma_is_anonymous(struct vm_area_struct *vma)
return !vma->vm_ops;
}
static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
{
int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
if (!maybe_stack)
return false;
if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
VM_STACK_INCOMPLETE_SETUP)
return true;
return false;
}
static inline bool vma_is_foreign(struct vm_area_struct *vma)
{
if (!current->mm)
return true;
if (current->mm != vma->vm_mm)
return true;
return false;
}
#ifdef CONFIG_SHMEM
/*
* The vma_is_shmem is not inline because it is used only by slow
@ -770,6 +858,24 @@ static inline unsigned int compound_order(struct page *page)
return page[1].compound_order;
}
static inline bool hpage_pincount_available(struct page *page)
{
/*
* Can the page->hpage_pinned_refcount field be used? That field is in
* the 3rd page of the compound page, so the smallest (2-page) compound
* pages cannot support it.
*/
page = compound_head(page);
return PageCompound(page) && compound_order(page) > 1;
}
static inline int compound_pincount(struct page *page)
{
VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
page = compound_head(page);
return atomic_read(compound_pincount_ptr(page));
}
static inline void set_compound_order(struct page *page, unsigned int order)
{
page[1].compound_order = order;
@ -1001,6 +1107,8 @@ static inline void get_page(struct page *page)
page_ref_inc(page);
}
bool __must_check try_grab_page(struct page *page, unsigned int flags);
static inline __must_check bool try_get_page(struct page *page)
{
page = compound_head(page);
@ -1029,29 +1137,87 @@ static inline void put_page(struct page *page)
__put_page(page);
}
/**
* unpin_user_page() - release a gup-pinned page
* @page: pointer to page to be released
/*
* GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
* the page's refcount so that two separate items are tracked: the original page
* reference count, and also a new count of how many pin_user_pages() calls were
* made against the page. ("gup-pinned" is another term for the latter).
*
* Pages that were pinned via pin_user_pages*() must be released via either
* unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
* that eventually such pages can be separately tracked and uniquely handled. In
* particular, interactions with RDMA and filesystems need special handling.
* With this scheme, pin_user_pages() becomes special: such pages are marked as
* distinct from normal pages. As such, the unpin_user_page() call (and its
* variants) must be used in order to release gup-pinned pages.
*
* unpin_user_page() and put_page() are not interchangeable, despite this early
* implementation that makes them look the same. unpin_user_page() calls must
* be perfectly matched up with pin*() calls.
* Choice of value:
*
* By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
* counts with respect to pin_user_pages() and unpin_user_page() becomes
* simpler, due to the fact that adding an even power of two to the page
* refcount has the effect of using only the upper N bits, for the code that
* counts up using the bias value. This means that the lower bits are left for
* the exclusive use of the original code that increments and decrements by one
* (or at least, by much smaller values than the bias value).
*
* Of course, once the lower bits overflow into the upper bits (and this is
* OK, because subtraction recovers the original values), then visual inspection
* no longer suffices to directly view the separate counts. However, for normal
* applications that don't have huge page reference counts, this won't be an
* issue.
*
* Locking: the lockless algorithm described in page_cache_get_speculative()
* and page_cache_gup_pin_speculative() provides safe operation for
* get_user_pages and page_mkclean and other calls that race to set up page
* table entries.
*/
static inline void unpin_user_page(struct page *page)
{
put_page(page);
}
#define GUP_PIN_COUNTING_BIAS (1U << 10)
void unpin_user_page(struct page *page);
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
bool make_dirty);
void unpin_user_pages(struct page **pages, unsigned long npages);
/**
* page_maybe_dma_pinned() - report if a page is pinned for DMA.
*
* This function checks if a page has been pinned via a call to
* pin_user_pages*().
*
* For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
* because it means "definitely not pinned for DMA", but true means "probably
* pinned for DMA, but possibly a false positive due to having at least
* GUP_PIN_COUNTING_BIAS worth of normal page references".
*
* False positives are OK, because: a) it's unlikely for a page to get that many
* refcounts, and b) all the callers of this routine are expected to be able to
* deal gracefully with a false positive.
*
* For huge pages, the result will be exactly correct. That's because we have
* more tracking data available: the 3rd struct page in the compound page is
* used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
* scheme).
*
* For more information, please see Documentation/vm/pin_user_pages.rst.
*
* @page: pointer to page to be queried.
* @Return: True, if it is likely that the page has been "dma-pinned".
* False, if the page is definitely not dma-pinned.
*/
static inline bool page_maybe_dma_pinned(struct page *page)
{
if (hpage_pincount_available(page))
return compound_pincount(page) > 0;
/*
* page_ref_count() is signed. If that refcount overflows, then
* page_ref_count() returns a negative value, and callers will avoid
* further incrementing the refcount.
*
* Here, for that overflow case, use the signed bit to count a little
* bit higher via unsigned math, and thus still get an accurate result.
*/
return ((unsigned int)page_ref_count(compound_head(page))) >=
GUP_PIN_COUNTING_BIAS;
}
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define SECTION_IN_PAGE_FLAGS
#endif
@ -2364,26 +2530,7 @@ struct vm_unmapped_area_info {
unsigned long align_offset;
};
extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
/*
* Search for an unmapped address range.
*
* We are looking for a range that:
* - does not intersect with any VMA;
* - is contained within the [low_limit, high_limit) interval;
* - is at least the desired size.
* - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
*/
static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info *info)
{
if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
return unmapped_area_topdown(info);
else
return unmapped_area(info);
}
extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
/* truncate.c */
extern void truncate_inode_pages(struct address_space *, loff_t);

View File

@ -137,7 +137,7 @@ struct page {
};
struct { /* Second tail page of compound page */
unsigned long _compound_pad_1; /* compound_head */
unsigned long _compound_pad_2;
atomic_t hpage_pinned_refcount;
/* For both global and memcg */
struct list_head deferred_list;
};
@ -226,6 +226,11 @@ static inline atomic_t *compound_mapcount_ptr(struct page *page)
return &page[1].compound_mapcount;
}
static inline atomic_t *compound_pincount_ptr(struct page *page)
{
return &page[2].hpage_pinned_refcount;
}
/*
* Used for sizing the vmemmap region on some architectures
*/

View File

@ -243,6 +243,8 @@ enum node_stat_item {
NR_DIRTIED, /* page dirtyings since bootup */
NR_WRITTEN, /* page writings since bootup */
NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
NR_VM_NODE_STAT_ITEMS
};
@ -1372,7 +1374,7 @@ static inline int pfn_valid(unsigned long pfn)
}
#endif
static inline int pfn_present(unsigned long pfn)
static inline int pfn_in_present_section(unsigned long pfn)
{
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
return 0;
@ -1409,7 +1411,7 @@ void sparse_init(void);
#else
#define sparse_init() do {} while (0)
#define sparse_index_init(_sec, _nid) do {} while (0)
#define pfn_present pfn_valid
#define pfn_in_present_section pfn_valid
#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
#endif /* CONFIG_SPARSEMEM */

View File

@ -102,6 +102,15 @@ static inline void page_ref_sub(struct page *page, int nr)
__page_ref_mod(page, -nr);
}
static inline int page_ref_sub_return(struct page *page, int nr)
{
int ret = atomic_sub_return(nr, &page->_refcount);
if (page_ref_tracepoint_active(__tracepoint_page_ref_mod_and_return))
__page_ref_mod_and_return(page, -nr, ret);
return ret;
}
static inline void page_ref_inc(struct page *page)
{
atomic_inc(&page->_refcount);

View File

@ -33,8 +33,8 @@ enum mapping_flags {
/**
* mapping_set_error - record a writeback error in the address_space
* @mapping - the mapping in which an error should be set
* @error - the error to set in the mapping
* @mapping: the mapping in which an error should be set
* @error: the error to set in the mapping
*
* When writeback fails in some way, we must record that error so that
* userspace can be informed when fsync and the like are called. We endeavor
@ -70,11 +70,9 @@ static inline void mapping_clear_unevictable(struct address_space *mapping)
clear_bit(AS_UNEVICTABLE, &mapping->flags);
}
static inline int mapping_unevictable(struct address_space *mapping)
static inline bool mapping_unevictable(struct address_space *mapping)
{
if (mapping)
return test_bit(AS_UNEVICTABLE, &mapping->flags);
return !!mapping;
return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
}
static inline void mapping_set_exiting(struct address_space *mapping)
@ -305,9 +303,9 @@ static inline struct page *find_lock_page(struct address_space *mapping,
* atomic allocation!
*/
static inline struct page *find_or_create_page(struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
pgoff_t index, gfp_t gfp_mask)
{
return pagecache_get_page(mapping, offset,
return pagecache_get_page(mapping, index,
FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
gfp_mask);
}
@ -333,14 +331,19 @@ static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
mapping_gfp_mask(mapping));
}
static inline struct page *find_subpage(struct page *page, pgoff_t offset)
/*
* Given the page we found in the page cache, return the page corresponding
* to this index in the file
*/
static inline struct page *find_subpage(struct page *head, pgoff_t index)
{
if (PageHuge(page))
return page;
/* HugeTLBfs wants the head page regardless */
if (PageHuge(head))
return head;
VM_BUG_ON_PAGE(PageTail(page), page);
VM_BUG_ON_PAGE(PageTail(head), head);
return page + (offset & (compound_nr(page) - 1));
return head + (index & (compound_nr(head) - 1));
}
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);

View File

@ -10,6 +10,8 @@
#include <linux/cred.h>
#include <linux/refcount.h>
#include <linux/posix-timers.h>
#include <linux/mm_types.h>
#include <asm/ptrace.h>
/*
* Types defining task->signal and task->sighand and APIs using them:
@ -376,6 +378,20 @@ static inline int signal_pending_state(long state, struct task_struct *p)
return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
}
/*
* This should only be used in fault handlers to decide whether we
* should stop the current fault routine to handle the signals
* instead, especially with the case where we've got interrupted with
* a VM_FAULT_RETRY.
*/
static inline bool fault_signal_pending(vm_fault_t fault_flags,
struct pt_regs *regs)
{
return unlikely((fault_flags & VM_FAULT_RETRY) &&
(fatal_signal_pending(current) ||
(user_mode(regs) && signal_pending(current))));
}
/*
* Reevaluate whether the task has signals pending delivery.
* Wake the task if so.

View File

@ -374,7 +374,6 @@ extern int sysctl_min_slab_ratio;
#define node_reclaim_mode 0
#endif
extern int page_evictable(struct page *page);
extern void check_move_unevictable_pages(struct pagevec *pvec);
extern int kswapd_run(int nid);

View File

@ -130,20 +130,11 @@ static inline int numa_node_id(void)
* Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem().
*/
DECLARE_PER_CPU(int, _numa_mem_);
extern int _node_numa_mem_[MAX_NUMNODES];
#ifndef set_numa_mem
static inline void set_numa_mem(int node)
{
this_cpu_write(_numa_mem_, node);
_node_numa_mem_[numa_node_id()] = node;
}
#endif
#ifndef node_to_mem_node
static inline int node_to_mem_node(int node)
{
return _node_numa_mem_[node];
}
#endif
@ -166,7 +157,6 @@ static inline int cpu_to_mem(int cpu)
static inline void set_cpu_numa_mem(int cpu, int node)
{
per_cpu(_numa_mem_, cpu) = node;
_node_numa_mem_[cpu_to_node(cpu)] = node;
}
#endif
@ -180,13 +170,6 @@ static inline int numa_mem_id(void)
}
#endif
#ifndef node_to_mem_node
static inline int node_to_mem_node(int node)
{
return node;
}
#endif
#ifndef cpu_to_mem
static inline int cpu_to_mem(int cpu)
{

View File

@ -0,0 +1,48 @@
/* SPDX-License-Identifier: GPL-2.0 */
#undef TRACE_SYSTEM
#define TRACE_SYSTEM mmap
#if !defined(_TRACE_MMAP_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_MMAP_H
#include <linux/tracepoint.h>
TRACE_EVENT(vm_unmapped_area,
TP_PROTO(unsigned long addr, struct vm_unmapped_area_info *info),
TP_ARGS(addr, info),
TP_STRUCT__entry(
__field(unsigned long, addr)
__field(unsigned long, total_vm)
__field(unsigned long, flags)
__field(unsigned long, length)
__field(unsigned long, low_limit)
__field(unsigned long, high_limit)
__field(unsigned long, align_mask)
__field(unsigned long, align_offset)
),
TP_fast_assign(
__entry->addr = addr;
__entry->total_vm = current->mm->total_vm;
__entry->flags = info->flags;
__entry->length = info->length;
__entry->low_limit = info->low_limit;
__entry->high_limit = info->high_limit;
__entry->align_mask = info->align_mask;
__entry->align_offset = info->align_offset;
),
TP_printk("addr=0x%lx err=%ld total_vm=0x%lx flags=0x%lx len=0x%lx lo=0x%lx hi=0x%lx mask=0x%lx ofs=0x%lx\n",
IS_ERR_VALUE(__entry->addr) ? 0 : __entry->addr,
IS_ERR_VALUE(__entry->addr) ? __entry->addr : 0,
__entry->total_vm, __entry->flags, __entry->length,
__entry->low_limit, __entry->high_limit, __entry->align_mask,
__entry->align_offset)
);
#endif
/* This part must be outside protection */
#include <trace/define_trace.h>

Some files were not shown because too many files have changed in this diff Show More