mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 14:11:52 +00:00
Document the flex_array library.
A brief document on how to use flexible arrays, derived from an article first published on LWN. Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
parent
e8188807b7
commit
6c19efb46a
99
Documentation/flexible-arrays.txt
Normal file
99
Documentation/flexible-arrays.txt
Normal file
@ -0,0 +1,99 @@
|
||||
Using flexible arrays in the kernel
|
||||
Last updated for 2.6.31
|
||||
Jonathan Corbet <corbet@lwn.net>
|
||||
|
||||
Large contiguous memory allocations can be unreliable in the Linux kernel.
|
||||
Kernel programmers will sometimes respond to this problem by allocating
|
||||
pages with vmalloc(). This solution not ideal, though. On 32-bit systems,
|
||||
memory from vmalloc() must be mapped into a relatively small address space;
|
||||
it's easy to run out. On SMP systems, the page table changes required by
|
||||
vmalloc() allocations can require expensive cross-processor interrupts on
|
||||
all CPUs. And, on all systems, use of space in the vmalloc() range
|
||||
increases pressure on the translation lookaside buffer (TLB), reducing the
|
||||
performance of the system.
|
||||
|
||||
In many cases, the need for memory from vmalloc() can be eliminated by
|
||||
piecing together an array from smaller parts; the flexible array library
|
||||
exists to make this task easier.
|
||||
|
||||
A flexible array holds an arbitrary (within limits) number of fixed-sized
|
||||
objects, accessed via an integer index. Sparse arrays are handled
|
||||
reasonably well. Only single-page allocations are made, so memory
|
||||
allocation failures should be relatively rare. The down sides are that the
|
||||
arrays cannot be indexed directly, individual object size cannot exceed the
|
||||
system page size, and putting data into a flexible array requires a copy
|
||||
operation. It's also worth noting that flexible arrays do no internal
|
||||
locking at all; if concurrent access to an array is possible, then the
|
||||
caller must arrange for appropriate mutual exclusion.
|
||||
|
||||
The creation of a flexible array is done with:
|
||||
|
||||
#include <linux/flex_array.h>
|
||||
|
||||
struct flex_array *flex_array_alloc(int element_size,
|
||||
unsigned int total,
|
||||
gfp_t flags);
|
||||
|
||||
The individual object size is provided by element_size, while total is the
|
||||
maximum number of objects which can be stored in the array. The flags
|
||||
argument is passed directly to the internal memory allocation calls. With
|
||||
the current code, using flags to ask for high memory is likely to lead to
|
||||
notably unpleasant side effects.
|
||||
|
||||
Storing data into a flexible array is accomplished with a call to:
|
||||
|
||||
int flex_array_put(struct flex_array *array, unsigned int element_nr,
|
||||
void *src, gfp_t flags);
|
||||
|
||||
This call will copy the data from src into the array, in the position
|
||||
indicated by element_nr (which must be less than the maximum specified when
|
||||
the array was created). If any memory allocations must be performed, flags
|
||||
will be used. The return value is zero on success, a negative error code
|
||||
otherwise.
|
||||
|
||||
There might possibly be a need to store data into a flexible array while
|
||||
running in some sort of atomic context; in this situation, sleeping in the
|
||||
memory allocator would be a bad thing. That can be avoided by using
|
||||
GFP_ATOMIC for the flags value, but, often, there is a better way. The
|
||||
trick is to ensure that any needed memory allocations are done before
|
||||
entering atomic context, using:
|
||||
|
||||
int flex_array_prealloc(struct flex_array *array, unsigned int start,
|
||||
unsigned int end, gfp_t flags);
|
||||
|
||||
This function will ensure that memory for the elements indexed in the range
|
||||
defined by start and end has been allocated. Thereafter, a
|
||||
flex_array_put() call on an element in that range is guaranteed not to
|
||||
block.
|
||||
|
||||
Getting data back out of the array is done with:
|
||||
|
||||
void *flex_array_get(struct flex_array *fa, unsigned int element_nr);
|
||||
|
||||
The return value is a pointer to the data element, or NULL if that
|
||||
particular element has never been allocated.
|
||||
|
||||
Note that it is possible to get back a valid pointer for an element which
|
||||
has never been stored in the array. Memory for array elements is allocated
|
||||
one page at a time; a single allocation could provide memory for several
|
||||
adjacent elements. The flexible array code does not know if a specific
|
||||
element has been written; it only knows if the associated memory is
|
||||
present. So a flex_array_get() call on an element which was never stored
|
||||
in the array has the potential to return a pointer to random data. If the
|
||||
caller does not have a separate way to know which elements were actually
|
||||
stored, it might be wise, at least, to add GFP_ZERO to the flags argument
|
||||
to ensure that all elements are zeroed.
|
||||
|
||||
There is no way to remove a single element from the array. It is possible,
|
||||
though, to remove all elements with a call to:
|
||||
|
||||
void flex_array_free_parts(struct flex_array *array);
|
||||
|
||||
This call frees all elements, but leaves the array itself in place.
|
||||
Freeing the entire array is done with:
|
||||
|
||||
void flex_array_free(struct flex_array *array);
|
||||
|
||||
As of this writing, there are no users of flexible arrays in the mainline
|
||||
kernel. The functions described here are also not exported to modules;
|
||||
that will probably be fixed when somebody comes up with a need for it.
|
Loading…
Reference in New Issue
Block a user