Merge back cpufreq changes for 6.4-rc1.

This commit is contained in:
Rafael J. Wysocki 2023-04-14 17:18:07 +02:00
commit 684952212c
12 changed files with 321 additions and 96 deletions

View File

@ -339,6 +339,29 @@
This mode requires kvm-amd.avic=1.
(Default when IOMMU HW support is present.)
amd_pstate= [X86]
disable
Do not enable amd_pstate as the default
scaling driver for the supported processors
passive
Use amd_pstate with passive mode as a scaling driver.
In this mode autonomous selection is disabled.
Driver requests a desired performance level and platform
tries to match the same performance level if it is
satisfied by guaranteed performance level.
active
Use amd_pstate_epp driver instance as the scaling driver,
driver provides a hint to the hardware if software wants
to bias toward performance (0x0) or energy efficiency (0xff)
to the CPPC firmware. then CPPC power algorithm will
calculate the runtime workload and adjust the realtime cores
frequency.
guided
Activate guided autonomous mode. Driver requests minimum and
maximum performance level and the platform autonomously
selects a performance level in this range and appropriate
to the current workload.
amijoy.map= [HW,JOY] Amiga joystick support
Map of devices attached to JOY0DAT and JOY1DAT
Format: <a>,<b>
@ -7059,20 +7082,3 @@
xmon commands.
off xmon is disabled.
amd_pstate= [X86]
disable
Do not enable amd_pstate as the default
scaling driver for the supported processors
passive
Use amd_pstate as a scaling driver, driver requests a
desired performance on this abstract scale and the power
management firmware translates the requests into actual
hardware states (core frequency, data fabric and memory
clocks etc.)
active
Use amd_pstate_epp driver instance as the scaling driver,
driver provides a hint to the hardware if software wants
to bias toward performance (0x0) or energy efficiency (0xff)
to the CPPC firmware. then CPPC power algorithm will
calculate the runtime workload and adjust the realtime cores
frequency.

View File

@ -303,13 +303,18 @@ efficiency frequency management method on AMD processors.
AMD Pstate Driver Operation Modes
=================================
``amd_pstate`` CPPC has two operation modes: CPPC Autonomous(active) mode and
CPPC non-autonomous(passive) mode.
active mode and passive mode can be chosen by different kernel parameters.
When in Autonomous mode, CPPC ignores requests done in the Desired Performance
Target register and takes into account only the values set to the Minimum requested
performance, Maximum requested performance, and Energy Performance Preference
registers. When Autonomous is disabled, it only considers the Desired Performance Target.
``amd_pstate`` CPPC has 3 operation modes: autonomous (active) mode,
non-autonomous (passive) mode and guided autonomous (guided) mode.
Active/passive/guided mode can be chosen by different kernel parameters.
- In autonomous mode, platform ignores the desired performance level request
and takes into account only the values set to the minimum, maximum and energy
performance preference registers.
- In non-autonomous mode, platform gets desired performance level
from OS directly through Desired Performance Register.
- In guided-autonomous mode, platform sets operating performance level
autonomously according to the current workload and within the limits set by
OS through min and max performance registers.
Active Mode
------------
@ -338,6 +343,15 @@ to the Performance Reduction Tolerance register. Above the nominal performance l
processor must provide at least nominal performance requested and go higher if current
operating conditions allow.
Guided Mode
-----------
``amd_pstate=guided``
If ``amd_pstate=guided`` is passed to kernel command line option then this mode
is activated. In this mode, driver requests minimum and maximum performance
level and the platform autonomously selects a performance level in this range
and appropriate to the current workload.
User Space Interface in ``sysfs`` - General
===========================================
@ -358,6 +372,9 @@ control its functionality at the system level. They are located in the
"passive"
The driver is functional and in the ``passive mode``
"guided"
The driver is functional and in the ``guided mode``
"disable"
The driver is unregistered and not functional now.

View File

@ -1433,6 +1433,102 @@ int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
}
EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
/**
* cppc_get_auto_sel_caps - Read autonomous selection register.
* @cpunum : CPU from which to read register.
* @perf_caps : struct where autonomous selection register value is updated.
*/
int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
struct cpc_register_resource *auto_sel_reg;
u64 auto_sel;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
return -ENODEV;
}
auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
if (!CPC_SUPPORTED(auto_sel_reg))
pr_warn_once("Autonomous mode is not unsupported!\n");
if (CPC_IN_PCC(auto_sel_reg)) {
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = 0;
if (pcc_ss_id < 0)
return -ENODEV;
pcc_ss_data = pcc_data[pcc_ss_id];
down_write(&pcc_ss_data->pcc_lock);
if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
cpc_read(cpunum, auto_sel_reg, &auto_sel);
perf_caps->auto_sel = (bool)auto_sel;
} else {
ret = -EIO;
}
up_write(&pcc_ss_data->pcc_lock);
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
/**
* cppc_set_auto_sel - Write autonomous selection register.
* @cpu : CPU to which to write register.
* @enable : the desired value of autonomous selection resiter to be updated.
*/
int cppc_set_auto_sel(int cpu, bool enable)
{
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cpc_register_resource *auto_sel_reg;
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = -EINVAL;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
return -ENODEV;
}
auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
if (CPC_IN_PCC(auto_sel_reg)) {
if (pcc_ss_id < 0) {
pr_debug("Invalid pcc_ss_id\n");
return -ENODEV;
}
if (CPC_SUPPORTED(auto_sel_reg)) {
ret = cpc_write(cpu, auto_sel_reg, enable);
if (ret)
return ret;
}
pcc_ss_data = pcc_data[pcc_ss_id];
down_write(&pcc_ss_data->pcc_lock);
/* after writing CPC, transfer the ownership of PCC to platform */
ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
up_write(&pcc_ss_data->pcc_lock);
} else {
ret = -ENOTSUPP;
pr_debug("_CPC in PCC is not supported\n");
}
return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
/**
* cppc_set_enable - Set to enable CPPC on the processor by writing the
* Continuous Performance Control package EnableRegister field.
@ -1488,7 +1584,7 @@ EXPORT_SYMBOL_GPL(cppc_set_enable);
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
struct cpc_register_resource *desired_reg;
struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = 0;
@ -1499,6 +1595,8 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
}
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
/*
* This is Phase-I where we want to write to CPC registers
@ -1507,7 +1605,7 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
* Since read_lock can be acquired by multiple CPUs simultaneously we
* achieve that goal here
*/
if (CPC_IN_PCC(desired_reg)) {
if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
if (pcc_ss_id < 0) {
pr_debug("Invalid pcc_ss_id\n");
return -ENODEV;
@ -1530,13 +1628,19 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
cpc_desc->write_cmd_status = 0;
}
/*
* Skip writing MIN/MAX until Linux knows how to come up with
* useful values.
*/
cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
if (CPC_IN_PCC(desired_reg))
/*
* Only write if min_perf and max_perf not zero. Some drivers pass zero
* value to min and max perf, but they don't mean to set the zero value,
* they just don't want to write to those registers.
*/
if (perf_ctrls->min_perf)
cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
if (perf_ctrls->max_perf)
cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
/*
* This is Phase-II where we transfer the ownership of PCC to Platform
@ -1584,7 +1688,7 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
* case during a CMD_READ and if there are pending writes it delivers
* the write command before servicing the read command
*/
if (CPC_IN_PCC(desired_reg)) {
if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
/* Update only if there are pending write commands */
if (pcc_ss_data->pending_pcc_write_cmd)

View File

@ -95,7 +95,7 @@ config ARM_BRCMSTB_AVS_CPUFREQ
help
Some Broadcom STB SoCs use a co-processor running proprietary firmware
("AVS") to handle voltage and frequency scaling. This driver provides
a standard CPUfreq interface to to the firmware.
a standard CPUfreq interface to the firmware.
Say Y, if you have a Broadcom SoC with AVS support for DFS or DVFS.

View File

@ -106,6 +106,8 @@ static unsigned int epp_values[] = {
[EPP_INDEX_POWERSAVE] = AMD_CPPC_EPP_POWERSAVE,
};
typedef int (*cppc_mode_transition_fn)(int);
static inline int get_mode_idx_from_str(const char *str, size_t size)
{
int i;
@ -308,7 +310,22 @@ static int cppc_init_perf(struct amd_cpudata *cpudata)
cppc_perf.lowest_nonlinear_perf);
WRITE_ONCE(cpudata->lowest_perf, cppc_perf.lowest_perf);
return 0;
if (cppc_state == AMD_PSTATE_ACTIVE)
return 0;
ret = cppc_get_auto_sel_caps(cpudata->cpu, &cppc_perf);
if (ret) {
pr_warn("failed to get auto_sel, ret: %d\n", ret);
return 0;
}
ret = cppc_set_auto_sel(cpudata->cpu,
(cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1);
if (ret)
pr_warn("failed to set auto_sel, ret: %d\n", ret);
return ret;
}
DEFINE_STATIC_CALL(amd_pstate_init_perf, pstate_init_perf);
@ -385,12 +402,18 @@ static inline bool amd_pstate_sample(struct amd_cpudata *cpudata)
}
static void amd_pstate_update(struct amd_cpudata *cpudata, u32 min_perf,
u32 des_perf, u32 max_perf, bool fast_switch)
u32 des_perf, u32 max_perf, bool fast_switch, int gov_flags)
{
u64 prev = READ_ONCE(cpudata->cppc_req_cached);
u64 value = prev;
des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);
if ((cppc_state == AMD_PSTATE_GUIDED) && (gov_flags & CPUFREQ_GOV_DYNAMIC_SWITCHING)) {
min_perf = des_perf;
des_perf = 0;
}
value &= ~AMD_CPPC_MIN_PERF(~0L);
value |= AMD_CPPC_MIN_PERF(min_perf);
@ -445,7 +468,7 @@ static int amd_pstate_target(struct cpufreq_policy *policy,
cpufreq_freq_transition_begin(policy, &freqs);
amd_pstate_update(cpudata, min_perf, des_perf,
max_perf, false);
max_perf, false, policy->governor->flags);
cpufreq_freq_transition_end(policy, &freqs, false);
return 0;
@ -479,7 +502,8 @@ static void amd_pstate_adjust_perf(unsigned int cpu,
if (max_perf < min_perf)
max_perf = min_perf;
amd_pstate_update(cpudata, min_perf, des_perf, max_perf, true);
amd_pstate_update(cpudata, min_perf, des_perf, max_perf, true,
policy->governor->flags);
cpufreq_cpu_put(policy);
}
@ -816,6 +840,98 @@ static ssize_t show_energy_performance_preference(
return sysfs_emit(buf, "%s\n", energy_perf_strings[preference]);
}
static void amd_pstate_driver_cleanup(void)
{
amd_pstate_enable(false);
cppc_state = AMD_PSTATE_DISABLE;
current_pstate_driver = NULL;
}
static int amd_pstate_register_driver(int mode)
{
int ret;
if (mode == AMD_PSTATE_PASSIVE || mode == AMD_PSTATE_GUIDED)
current_pstate_driver = &amd_pstate_driver;
else if (mode == AMD_PSTATE_ACTIVE)
current_pstate_driver = &amd_pstate_epp_driver;
else
return -EINVAL;
cppc_state = mode;
ret = cpufreq_register_driver(current_pstate_driver);
if (ret) {
amd_pstate_driver_cleanup();
return ret;
}
return 0;
}
static int amd_pstate_unregister_driver(int dummy)
{
cpufreq_unregister_driver(current_pstate_driver);
amd_pstate_driver_cleanup();
return 0;
}
static int amd_pstate_change_mode_without_dvr_change(int mode)
{
int cpu = 0;
cppc_state = mode;
if (boot_cpu_has(X86_FEATURE_CPPC) || cppc_state == AMD_PSTATE_ACTIVE)
return 0;
for_each_present_cpu(cpu) {
cppc_set_auto_sel(cpu, (cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1);
}
return 0;
}
static int amd_pstate_change_driver_mode(int mode)
{
int ret;
ret = amd_pstate_unregister_driver(0);
if (ret)
return ret;
ret = amd_pstate_register_driver(mode);
if (ret)
return ret;
return 0;
}
static cppc_mode_transition_fn mode_state_machine[AMD_PSTATE_MAX][AMD_PSTATE_MAX] = {
[AMD_PSTATE_DISABLE] = {
[AMD_PSTATE_DISABLE] = NULL,
[AMD_PSTATE_PASSIVE] = amd_pstate_register_driver,
[AMD_PSTATE_ACTIVE] = amd_pstate_register_driver,
[AMD_PSTATE_GUIDED] = amd_pstate_register_driver,
},
[AMD_PSTATE_PASSIVE] = {
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
[AMD_PSTATE_PASSIVE] = NULL,
[AMD_PSTATE_ACTIVE] = amd_pstate_change_driver_mode,
[AMD_PSTATE_GUIDED] = amd_pstate_change_mode_without_dvr_change,
},
[AMD_PSTATE_ACTIVE] = {
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
[AMD_PSTATE_PASSIVE] = amd_pstate_change_driver_mode,
[AMD_PSTATE_ACTIVE] = NULL,
[AMD_PSTATE_GUIDED] = amd_pstate_change_driver_mode,
},
[AMD_PSTATE_GUIDED] = {
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
[AMD_PSTATE_PASSIVE] = amd_pstate_change_mode_without_dvr_change,
[AMD_PSTATE_ACTIVE] = amd_pstate_change_driver_mode,
[AMD_PSTATE_GUIDED] = NULL,
},
};
static ssize_t amd_pstate_show_status(char *buf)
{
if (!current_pstate_driver)
@ -824,55 +940,22 @@ static ssize_t amd_pstate_show_status(char *buf)
return sysfs_emit(buf, "%s\n", amd_pstate_mode_string[cppc_state]);
}
static void amd_pstate_driver_cleanup(void)
{
current_pstate_driver = NULL;
}
static int amd_pstate_update_status(const char *buf, size_t size)
{
int ret = 0;
int mode_idx;
if (size > 7 || size < 6)
if (size > strlen("passive") || size < strlen("active"))
return -EINVAL;
mode_idx = get_mode_idx_from_str(buf, size);
switch(mode_idx) {
case AMD_PSTATE_DISABLE:
if (current_pstate_driver) {
cpufreq_unregister_driver(current_pstate_driver);
amd_pstate_driver_cleanup();
}
break;
case AMD_PSTATE_PASSIVE:
if (current_pstate_driver) {
if (current_pstate_driver == &amd_pstate_driver)
return 0;
cpufreq_unregister_driver(current_pstate_driver);
}
if (mode_idx < 0 || mode_idx >= AMD_PSTATE_MAX)
return -EINVAL;
current_pstate_driver = &amd_pstate_driver;
cppc_state = AMD_PSTATE_PASSIVE;
ret = cpufreq_register_driver(current_pstate_driver);
break;
case AMD_PSTATE_ACTIVE:
if (current_pstate_driver) {
if (current_pstate_driver == &amd_pstate_epp_driver)
return 0;
cpufreq_unregister_driver(current_pstate_driver);
}
if (mode_state_machine[cppc_state][mode_idx])
return mode_state_machine[cppc_state][mode_idx](mode_idx);
current_pstate_driver = &amd_pstate_epp_driver;
cppc_state = AMD_PSTATE_ACTIVE;
ret = cpufreq_register_driver(current_pstate_driver);
break;
default:
ret = -EINVAL;
break;
}
return ret;
return 0;
}
static ssize_t show_status(struct kobject *kobj,
@ -1277,7 +1360,7 @@ static int __init amd_pstate_init(void)
/* capability check */
if (boot_cpu_has(X86_FEATURE_CPPC)) {
pr_debug("AMD CPPC MSR based functionality is supported\n");
if (cppc_state == AMD_PSTATE_PASSIVE)
if (cppc_state != AMD_PSTATE_ACTIVE)
current_pstate_driver->adjust_perf = amd_pstate_adjust_perf;
} else {
pr_debug("AMD CPPC shared memory based functionality is supported\n");
@ -1339,7 +1422,7 @@ static int __init amd_pstate_param(char *str)
if (cppc_state == AMD_PSTATE_ACTIVE)
current_pstate_driver = &amd_pstate_epp_driver;
if (cppc_state == AMD_PSTATE_PASSIVE)
if (cppc_state == AMD_PSTATE_PASSIVE || cppc_state == AMD_PSTATE_GUIDED)
current_pstate_driver = &amd_pstate_driver;
return 0;

View File

@ -73,6 +73,11 @@ static inline bool has_target(void)
return cpufreq_driver->target_index || cpufreq_driver->target;
}
bool has_target_index(void)
{
return !!cpufreq_driver->target_index;
}
/* internal prototypes */
static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
static int cpufreq_init_governor(struct cpufreq_policy *policy);
@ -725,9 +730,9 @@ static ssize_t store_##file_name \
unsigned long val; \
int ret; \
\
ret = sscanf(buf, "%lu", &val); \
if (ret != 1) \
return -EINVAL; \
ret = kstrtoul(buf, 0, &val); \
if (ret) \
return ret; \
\
ret = freq_qos_update_request(policy->object##_freq_req, val);\
return ret >= 0 ? count : ret; \

View File

@ -355,8 +355,13 @@ int cpufreq_table_validate_and_sort(struct cpufreq_policy *policy)
{
int ret;
if (!policy->freq_table)
if (!policy->freq_table) {
/* Freq table must be passed by drivers with target_index() */
if (has_target_index())
return -EINVAL;
return 0;
}
ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
if (ret)

View File

@ -2384,12 +2384,6 @@ static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
{}
};
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
X86_MATCH(SKYLAKE_X, core_funcs),
X86_MATCH(SKYLAKE, core_funcs),
{}
};
static int intel_pstate_init_cpu(unsigned int cpunum)
{
struct cpudata *cpu;
@ -2408,12 +2402,9 @@ static int intel_pstate_init_cpu(unsigned int cpunum)
cpu->epp_default = -EINVAL;
if (hwp_active) {
const struct x86_cpu_id *id;
intel_pstate_hwp_enable(cpu);
id = x86_match_cpu(intel_pstate_hwp_boost_ids);
if (id && intel_pstate_acpi_pm_profile_server())
if (intel_pstate_acpi_pm_profile_server())
hwp_boost = true;
}
} else if (hwp_active) {

View File

@ -546,7 +546,7 @@ static int pmac_cpufreq_init_7447A(struct device_node *cpunode)
{
struct device_node *volt_gpio_np;
if (of_get_property(cpunode, "dynamic-power-step", NULL) == NULL)
if (!of_property_read_bool(cpunode, "dynamic-power-step"))
return 1;
volt_gpio_np = of_find_node_by_name(NULL, "cpu-vcore-select");
@ -576,7 +576,7 @@ static int pmac_cpufreq_init_750FX(struct device_node *cpunode)
u32 pvr;
const u32 *value;
if (of_get_property(cpunode, "dynamic-power-step", NULL) == NULL)
if (!of_property_read_bool(cpunode, "dynamic-power-step"))
return 1;
hi_freq = cur_freq;
@ -632,7 +632,7 @@ static int __init pmac_cpufreq_setup(void)
/* Check for 7447A based MacRISC3 */
if (of_machine_is_compatible("MacRISC3") &&
of_get_property(cpunode, "dynamic-power-step", NULL) &&
of_property_read_bool(cpunode, "dynamic-power-step") &&
PVR_VER(mfspr(SPRN_PVR)) == 0x8003) {
pmac_cpufreq_init_7447A(cpunode);

View File

@ -109,6 +109,7 @@ struct cppc_perf_caps {
u32 lowest_freq;
u32 nominal_freq;
u32 energy_perf;
bool auto_sel;
};
struct cppc_perf_ctrls {
@ -153,6 +154,8 @@ extern int cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val);
extern int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val);
extern int cppc_get_epp_perf(int cpunum, u64 *epp_perf);
extern int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable);
extern int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps);
extern int cppc_set_auto_sel(int cpu, bool enable);
#else /* !CONFIG_ACPI_CPPC_LIB */
static inline int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
{
@ -214,6 +217,14 @@ static inline int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
{
return -ENOTSUPP;
}
static inline int cppc_set_auto_sel(int cpu, bool enable)
{
return -ENOTSUPP;
}
static inline int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
{
return -ENOTSUPP;
}
#endif /* !CONFIG_ACPI_CPPC_LIB */
#endif /* _CPPC_ACPI_H*/

View File

@ -97,6 +97,7 @@ enum amd_pstate_mode {
AMD_PSTATE_DISABLE = 0,
AMD_PSTATE_PASSIVE,
AMD_PSTATE_ACTIVE,
AMD_PSTATE_GUIDED,
AMD_PSTATE_MAX,
};
@ -104,6 +105,7 @@ static const char * const amd_pstate_mode_string[] = {
[AMD_PSTATE_DISABLE] = "disable",
[AMD_PSTATE_PASSIVE] = "passive",
[AMD_PSTATE_ACTIVE] = "active",
[AMD_PSTATE_GUIDED] = "guided",
NULL,
};
#endif /* _LINUX_AMD_PSTATE_H */

View File

@ -237,6 +237,7 @@ bool cpufreq_supports_freq_invariance(void);
struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy);
void cpufreq_enable_fast_switch(struct cpufreq_policy *policy);
void cpufreq_disable_fast_switch(struct cpufreq_policy *policy);
bool has_target_index(void);
#else
static inline unsigned int cpufreq_get(unsigned int cpu)
{