KVM: arm64: nv: Implement nested Stage-2 page table walk logic

Based on the pseudo-code in the ARM ARM, implement a stage 2 software
page table walker.

Co-developed-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240614144552.2773592-3-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
This commit is contained in:
Christoffer Dall 2024-06-14 15:45:38 +01:00 committed by Oliver Upton
parent 4f128f8e1a
commit 61e30b9eef
3 changed files with 278 additions and 0 deletions

View File

@ -152,6 +152,7 @@
#define ESR_ELx_Xs_MASK (GENMASK_ULL(4, 0))
/* ISS field definitions for exceptions taken in to Hyp */
#define ESR_ELx_FSC_ADDRSZ (0x00)
#define ESR_ELx_CV (UL(1) << 24)
#define ESR_ELx_COND_SHIFT (20)
#define ESR_ELx_COND_MASK (UL(0xF) << ESR_ELx_COND_SHIFT)

View File

@ -68,6 +68,19 @@ extern struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu);
extern void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu);
extern void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu);
struct kvm_s2_trans {
phys_addr_t output;
unsigned long block_size;
bool writable;
bool readable;
int level;
u32 esr;
u64 upper_attr;
};
extern int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
struct kvm_s2_trans *result);
int kvm_init_nv_sysregs(struct kvm *kvm);
#ifdef CONFIG_ARM64_PTR_AUTH

View File

@ -91,6 +91,270 @@ int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
return 0;
}
struct s2_walk_info {
int (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
void *data;
u64 baddr;
unsigned int max_oa_bits;
unsigned int pgshift;
unsigned int sl;
unsigned int t0sz;
bool be;
};
static unsigned int ps_to_output_size(unsigned int ps)
{
switch (ps) {
case 0: return 32;
case 1: return 36;
case 2: return 40;
case 3: return 42;
case 4: return 44;
case 5:
default:
return 48;
}
}
static u32 compute_fsc(int level, u32 fsc)
{
return fsc | (level & 0x3);
}
static int get_ia_size(struct s2_walk_info *wi)
{
return 64 - wi->t0sz;
}
static int check_base_s2_limits(struct s2_walk_info *wi,
int level, int input_size, int stride)
{
int start_size, ia_size;
ia_size = get_ia_size(wi);
/* Check translation limits */
switch (BIT(wi->pgshift)) {
case SZ_64K:
if (level == 0 || (level == 1 && ia_size <= 42))
return -EFAULT;
break;
case SZ_16K:
if (level == 0 || (level == 1 && ia_size <= 40))
return -EFAULT;
break;
case SZ_4K:
if (level < 0 || (level == 0 && ia_size <= 42))
return -EFAULT;
break;
}
/* Check input size limits */
if (input_size > ia_size)
return -EFAULT;
/* Check number of entries in starting level table */
start_size = input_size - ((3 - level) * stride + wi->pgshift);
if (start_size < 1 || start_size > stride + 4)
return -EFAULT;
return 0;
}
/* Check if output is within boundaries */
static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
{
unsigned int output_size = wi->max_oa_bits;
if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
return -1;
return 0;
}
/*
* This is essentially a C-version of the pseudo code from the ARM ARM
* AArch64.TranslationTableWalk function. I strongly recommend looking at
* that pseudocode in trying to understand this.
*
* Must be called with the kvm->srcu read lock held
*/
static int walk_nested_s2_pgd(phys_addr_t ipa,
struct s2_walk_info *wi, struct kvm_s2_trans *out)
{
int first_block_level, level, stride, input_size, base_lower_bound;
phys_addr_t base_addr;
unsigned int addr_top, addr_bottom;
u64 desc; /* page table entry */
int ret;
phys_addr_t paddr;
switch (BIT(wi->pgshift)) {
default:
case SZ_64K:
case SZ_16K:
level = 3 - wi->sl;
first_block_level = 2;
break;
case SZ_4K:
level = 2 - wi->sl;
first_block_level = 1;
break;
}
stride = wi->pgshift - 3;
input_size = get_ia_size(wi);
if (input_size > 48 || input_size < 25)
return -EFAULT;
ret = check_base_s2_limits(wi, level, input_size, stride);
if (WARN_ON(ret))
return ret;
base_lower_bound = 3 + input_size - ((3 - level) * stride +
wi->pgshift);
base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
if (check_output_size(wi, base_addr)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
return 1;
}
addr_top = input_size - 1;
while (1) {
phys_addr_t index;
addr_bottom = (3 - level) * stride + wi->pgshift;
index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
>> (addr_bottom - 3);
paddr = base_addr | index;
ret = wi->read_desc(paddr, &desc, wi->data);
if (ret < 0)
return ret;
/*
* Handle reversedescriptors if endianness differs between the
* host and the guest hypervisor.
*/
if (wi->be)
desc = be64_to_cpu((__force __be64)desc);
else
desc = le64_to_cpu((__force __le64)desc);
/* Check for valid descriptor at this point */
if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
out->upper_attr = desc;
return 1;
}
/* We're at the final level or block translation level */
if ((desc & 3) == 1 || level == 3)
break;
if (check_output_size(wi, desc)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
out->upper_attr = desc;
return 1;
}
base_addr = desc & GENMASK_ULL(47, wi->pgshift);
level += 1;
addr_top = addr_bottom - 1;
}
if (level < first_block_level) {
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
out->upper_attr = desc;
return 1;
}
/*
* We don't use the contiguous bit in the stage-2 ptes, so skip check
* for misprogramming of the contiguous bit.
*/
if (check_output_size(wi, desc)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
out->upper_attr = desc;
return 1;
}
if (!(desc & BIT(10))) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
out->upper_attr = desc;
return 1;
}
/* Calculate and return the result */
paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
(ipa & GENMASK_ULL(addr_bottom - 1, 0));
out->output = paddr;
out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
out->readable = desc & (0b01 << 6);
out->writable = desc & (0b10 << 6);
out->level = level;
out->upper_attr = desc & GENMASK_ULL(63, 52);
return 0;
}
static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
{
struct kvm_vcpu *vcpu = data;
return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
}
static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
{
wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
switch (vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
wi->pgshift = 12; break;
case VTCR_EL2_TG0_16K:
wi->pgshift = 14; break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
wi->pgshift = 16; break;
}
wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
/* Global limit for now, should eventually be per-VM */
wi->max_oa_bits = min(get_kvm_ipa_limit(),
ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
}
int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
struct kvm_s2_trans *result)
{
u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
struct s2_walk_info wi;
int ret;
result->esr = 0;
if (!vcpu_has_nv(vcpu))
return 0;
wi.read_desc = read_guest_s2_desc;
wi.data = vcpu;
wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
vtcr_to_walk_info(vtcr, &wi);
wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
ret = walk_nested_s2_pgd(gipa, &wi, result);
if (ret)
result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
return ret;
}
struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;