vfs: Provide documentation for new mount API

Provide documentation for the new mount API.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This commit is contained in:
David Howells 2018-11-01 23:07:26 +00:00 committed by Al Viro
parent d911b4585e
commit 5fe1890d0e

View File

@ -0,0 +1,709 @@
====================
FILESYSTEM MOUNT API
====================
CONTENTS
(1) Overview.
(2) The filesystem context.
(3) The filesystem context operations.
(4) Filesystem context security.
(5) VFS filesystem context operations.
(6) Parameter description.
(7) Parameter helper functions.
========
OVERVIEW
========
The creation of new mounts is now to be done in a multistep process:
(1) Create a filesystem context.
(2) Parse the parameters and attach them to the context. Parameters are
expected to be passed individually from userspace, though legacy binary
parameters can also be handled.
(3) Validate and pre-process the context.
(4) Get or create a superblock and mountable root.
(5) Perform the mount.
(6) Return an error message attached to the context.
(7) Destroy the context.
To support this, the file_system_type struct gains a new field:
int (*init_fs_context)(struct fs_context *fc);
which is invoked to set up the filesystem-specific parts of a filesystem
context, including the additional space.
Note that security initialisation is done *after* the filesystem is called so
that the namespaces may be adjusted first.
======================
THE FILESYSTEM CONTEXT
======================
The creation and reconfiguration of a superblock is governed by a filesystem
context. This is represented by the fs_context structure:
struct fs_context {
const struct fs_context_operations *ops;
struct file_system_type *fs_type;
void *fs_private;
struct dentry *root;
struct user_namespace *user_ns;
struct net *net_ns;
const struct cred *cred;
char *source;
char *subtype;
void *security;
void *s_fs_info;
unsigned int sb_flags;
unsigned int sb_flags_mask;
enum fs_context_purpose purpose:8;
bool sloppy:1;
bool silent:1;
...
};
The fs_context fields are as follows:
(*) const struct fs_context_operations *ops
These are operations that can be done on a filesystem context (see
below). This must be set by the ->init_fs_context() file_system_type
operation.
(*) struct file_system_type *fs_type
A pointer to the file_system_type of the filesystem that is being
constructed or reconfigured. This retains a reference on the type owner.
(*) void *fs_private
A pointer to the file system's private data. This is where the filesystem
will need to store any options it parses.
(*) struct dentry *root
A pointer to the root of the mountable tree (and indirectly, the
superblock thereof). This is filled in by the ->get_tree() op. If this
is set, an active reference on root->d_sb must also be held.
(*) struct user_namespace *user_ns
(*) struct net *net_ns
There are a subset of the namespaces in use by the invoking process. They
retain references on each namespace. The subscribed namespaces may be
replaced by the filesystem to reflect other sources, such as the parent
mount superblock on an automount.
(*) const struct cred *cred
The mounter's credentials. This retains a reference on the credentials.
(*) char *source
This specifies the source. It may be a block device (e.g. /dev/sda1) or
something more exotic, such as the "host:/path" that NFS desires.
(*) char *subtype
This is a string to be added to the type displayed in /proc/mounts to
qualify it (used by FUSE). This is available for the filesystem to set if
desired.
(*) void *security
A place for the LSMs to hang their security data for the superblock. The
relevant security operations are described below.
(*) void *s_fs_info
The proposed s_fs_info for a new superblock, set in the superblock by
sget_fc(). This can be used to distinguish superblocks.
(*) unsigned int sb_flags
(*) unsigned int sb_flags_mask
Which bits SB_* flags are to be set/cleared in super_block::s_flags.
(*) enum fs_context_purpose
This indicates the purpose for which the context is intended. The
available values are:
FS_CONTEXT_FOR_MOUNT, -- New superblock for explicit mount
FS_CONTEXT_FOR_SUBMOUNT -- New automatic submount of extant mount
FS_CONTEXT_FOR_RECONFIGURE -- Change an existing mount
(*) bool sloppy
(*) bool silent
These are set if the sloppy or silent mount options are given.
[NOTE] sloppy is probably unnecessary when userspace passes over one
option at a time since the error can just be ignored if userspace deems it
to be unimportant.
[NOTE] silent is probably redundant with sb_flags & SB_SILENT.
The mount context is created by calling vfs_new_fs_context() or
vfs_dup_fs_context() and is destroyed with put_fs_context(). Note that the
structure is not refcounted.
VFS, security and filesystem mount options are set individually with
vfs_parse_mount_option(). Options provided by the old mount(2) system call as
a page of data can be parsed with generic_parse_monolithic().
When mounting, the filesystem is allowed to take data from any of the pointers
and attach it to the superblock (or whatever), provided it clears the pointer
in the mount context.
The filesystem is also allowed to allocate resources and pin them with the
mount context. For instance, NFS might pin the appropriate protocol version
module.
=================================
THE FILESYSTEM CONTEXT OPERATIONS
=================================
The filesystem context points to a table of operations:
struct fs_context_operations {
void (*free)(struct fs_context *fc);
int (*dup)(struct fs_context *fc, struct fs_context *src_fc);
int (*parse_param)(struct fs_context *fc,
struct struct fs_parameter *param);
int (*parse_monolithic)(struct fs_context *fc, void *data);
int (*get_tree)(struct fs_context *fc);
int (*reconfigure)(struct fs_context *fc);
};
These operations are invoked by the various stages of the mount procedure to
manage the filesystem context. They are as follows:
(*) void (*free)(struct fs_context *fc);
Called to clean up the filesystem-specific part of the filesystem context
when the context is destroyed. It should be aware that parts of the
context may have been removed and NULL'd out by ->get_tree().
(*) int (*dup)(struct fs_context *fc, struct fs_context *src_fc);
Called when a filesystem context has been duplicated to duplicate the
filesystem-private data. An error may be returned to indicate failure to
do this.
[!] Note that even if this fails, put_fs_context() will be called
immediately thereafter, so ->dup() *must* make the
filesystem-private data safe for ->free().
(*) int (*parse_param)(struct fs_context *fc,
struct struct fs_parameter *param);
Called when a parameter is being added to the filesystem context. param
points to the key name and maybe a value object. VFS-specific options
will have been weeded out and fc->sb_flags updated in the context.
Security options will also have been weeded out and fc->security updated.
The parameter can be parsed with fs_parse() and fs_lookup_param(). Note
that the source(s) are presented as parameters named "source".
If successful, 0 should be returned or a negative error code otherwise.
(*) int (*parse_monolithic)(struct fs_context *fc, void *data);
Called when the mount(2) system call is invoked to pass the entire data
page in one go. If this is expected to be just a list of "key[=val]"
items separated by commas, then this may be set to NULL.
The return value is as for ->parse_param().
If the filesystem (e.g. NFS) needs to examine the data first and then
finds it's the standard key-val list then it may pass it off to
generic_parse_monolithic().
(*) int (*get_tree)(struct fs_context *fc);
Called to get or create the mountable root and superblock, using the
information stored in the filesystem context (reconfiguration goes via a
different vector). It may detach any resources it desires from the
filesystem context and transfer them to the superblock it creates.
On success it should set fc->root to the mountable root and return 0. In
the case of an error, it should return a negative error code.
The phase on a userspace-driven context will be set to only allow this to
be called once on any particular context.
(*) int (*reconfigure)(struct fs_context *fc);
Called to effect reconfiguration of a superblock using information stored
in the filesystem context. It may detach any resources it desires from
the filesystem context and transfer them to the superblock. The
superblock can be found from fc->root->d_sb.
On success it should return 0. In the case of an error, it should return
a negative error code.
[NOTE] reconfigure is intended as a replacement for remount_fs.
===========================
FILESYSTEM CONTEXT SECURITY
===========================
The filesystem context contains a security pointer that the LSMs can use for
building up a security context for the superblock to be mounted. There are a
number of operations used by the new mount code for this purpose:
(*) int security_fs_context_alloc(struct fs_context *fc,
struct dentry *reference);
Called to initialise fc->security (which is preset to NULL) and allocate
any resources needed. It should return 0 on success or a negative error
code on failure.
reference will be non-NULL if the context is being created for superblock
reconfiguration (FS_CONTEXT_FOR_RECONFIGURE) in which case it indicates
the root dentry of the superblock to be reconfigured. It will also be
non-NULL in the case of a submount (FS_CONTEXT_FOR_SUBMOUNT) in which case
it indicates the automount point.
(*) int security_fs_context_dup(struct fs_context *fc,
struct fs_context *src_fc);
Called to initialise fc->security (which is preset to NULL) and allocate
any resources needed. The original filesystem context is pointed to by
src_fc and may be used for reference. It should return 0 on success or a
negative error code on failure.
(*) void security_fs_context_free(struct fs_context *fc);
Called to clean up anything attached to fc->security. Note that the
contents may have been transferred to a superblock and the pointer cleared
during get_tree.
(*) int security_fs_context_parse_param(struct fs_context *fc,
struct fs_parameter *param);
Called for each mount parameter, including the source. The arguments are
as for the ->parse_param() method. It should return 0 to indicate that
the parameter should be passed on to the filesystem, 1 to indicate that
the parameter should be discarded or an error to indicate that the
parameter should be rejected.
The value pointed to by param may be modified (if a string) or stolen
(provided the value pointer is NULL'd out). If it is stolen, 1 must be
returned to prevent it being passed to the filesystem.
(*) int security_fs_context_validate(struct fs_context *fc);
Called after all the options have been parsed to validate the collection
as a whole and to do any necessary allocation so that
security_sb_get_tree() and security_sb_reconfigure() are less likely to
fail. It should return 0 or a negative error code.
In the case of reconfiguration, the target superblock will be accessible
via fc->root.
(*) int security_sb_get_tree(struct fs_context *fc);
Called during the mount procedure to verify that the specified superblock
is allowed to be mounted and to transfer the security data there. It
should return 0 or a negative error code.
(*) void security_sb_reconfigure(struct fs_context *fc);
Called to apply any reconfiguration to an LSM's context. It must not
fail. Error checking and resource allocation must be done in advance by
the parameter parsing and validation hooks.
(*) int security_sb_mountpoint(struct fs_context *fc, struct path *mountpoint,
unsigned int mnt_flags);
Called during the mount procedure to verify that the root dentry attached
to the context is permitted to be attached to the specified mountpoint.
It should return 0 on success or a negative error code on failure.
=================================
VFS FILESYSTEM CONTEXT OPERATIONS
=================================
There are four operations for creating a filesystem context and
one for destroying a context:
(*) struct fs_context *vfs_new_fs_context(struct file_system_type *fs_type,
struct dentry *reference,
unsigned int sb_flags,
unsigned int sb_flags_mask,
enum fs_context_purpose purpose);
Create a filesystem context for a given filesystem type and purpose. This
allocates the filesystem context, sets the superblock flags, initialises
the security and calls fs_type->init_fs_context() to initialise the
filesystem private data.
reference can be NULL or it may indicate the root dentry of a superblock
that is going to be reconfigured (FS_CONTEXT_FOR_RECONFIGURE) or
the automount point that triggered a submount (FS_CONTEXT_FOR_SUBMOUNT).
This is provided as a source of namespace information.
(*) struct fs_context *vfs_dup_fs_context(struct fs_context *src_fc);
Duplicate a filesystem context, copying any options noted and duplicating
or additionally referencing any resources held therein. This is available
for use where a filesystem has to get a mount within a mount, such as NFS4
does by internally mounting the root of the target server and then doing a
private pathwalk to the target directory.
The purpose in the new context is inherited from the old one.
(*) void put_fs_context(struct fs_context *fc);
Destroy a filesystem context, releasing any resources it holds. This
calls the ->free() operation. This is intended to be called by anyone who
created a filesystem context.
[!] filesystem contexts are not refcounted, so this causes unconditional
destruction.
In all the above operations, apart from the put op, the return is a mount
context pointer or a negative error code.
For the remaining operations, if an error occurs, a negative error code will be
returned.
(*) int vfs_get_tree(struct fs_context *fc);
Get or create the mountable root and superblock, using the parameters in
the filesystem context to select/configure the superblock. This invokes
the ->validate() op and then the ->get_tree() op.
[NOTE] ->validate() could perhaps be rolled into ->get_tree() and
->reconfigure().
(*) struct vfsmount *vfs_create_mount(struct fs_context *fc);
Create a mount given the parameters in the specified filesystem context.
Note that this does not attach the mount to anything.
(*) int vfs_parse_fs_param(struct fs_context *fc,
struct fs_parameter *param);
Supply a single mount parameter to the filesystem context. This include
the specification of the source/device which is specified as the "source"
parameter (which may be specified multiple times if the filesystem
supports that).
param specifies the parameter key name and the value. The parameter is
first checked to see if it corresponds to a standard mount flag (in which
case it is used to set an SB_xxx flag and consumed) or a security option
(in which case the LSM consumes it) before it is passed on to the
filesystem.
The parameter value is typed and can be one of:
fs_value_is_flag, Parameter not given a value.
fs_value_is_string, Value is a string
fs_value_is_blob, Value is a binary blob
fs_value_is_filename, Value is a filename* + dirfd
fs_value_is_filename_empty, Value is a filename* + dirfd + AT_EMPTY_PATH
fs_value_is_file, Value is an open file (file*)
If there is a value, that value is stored in a union in the struct in one
of param->{string,blob,name,file}. Note that the function may steal and
clear the pointer, but then becomes responsible for disposing of the
object.
(*) int vfs_parse_fs_string(struct fs_context *fc, char *key,
const char *value, size_t v_size);
A wrapper around vfs_parse_fs_param() that just passes a constant string.
(*) int generic_parse_monolithic(struct fs_context *fc, void *data);
Parse a sys_mount() data page, assuming the form to be a text list
consisting of key[=val] options separated by commas. Each item in the
list is passed to vfs_mount_option(). This is the default when the
->parse_monolithic() operation is NULL.
=====================
PARAMETER DESCRIPTION
=====================
Parameters are described using structures defined in linux/fs_parser.h.
There's a core description struct that links everything together:
struct fs_parameter_description {
const char name[16];
u8 nr_params;
u8 nr_alt_keys;
u8 nr_enums;
bool ignore_unknown;
bool no_source;
const char *const *keys;
const struct constant_table *alt_keys;
const struct fs_parameter_spec *specs;
const struct fs_parameter_enum *enums;
};
For example:
enum afs_param {
Opt_autocell,
Opt_bar,
Opt_dyn,
Opt_foo,
Opt_source,
nr__afs_params
};
static const struct fs_parameter_description afs_fs_parameters = {
.name = "kAFS",
.nr_params = nr__afs_params,
.nr_alt_keys = ARRAY_SIZE(afs_param_alt_keys),
.nr_enums = ARRAY_SIZE(afs_param_enums),
.keys = afs_param_keys,
.alt_keys = afs_param_alt_keys,
.specs = afs_param_specs,
.enums = afs_param_enums,
};
The members are as follows:
(1) const char name[16];
The name to be used in error messages generated by the parse helper
functions.
(2) u8 nr_params;
The number of discrete parameter identifiers. This indicates the number
of elements in the ->types[] array and also limits the values that may be
used in the values that the ->keys[] array maps to.
It is expected that, for example, two parameters that are related, say
"acl" and "noacl" with have the same ID, but will be flagged to indicate
that one is the inverse of the other. The value can then be picked out
from the parse result.
(3) const struct fs_parameter_specification *specs;
Table of parameter specifications, where the entries are of type:
struct fs_parameter_type {
enum fs_parameter_spec type:8;
u8 flags;
};
and the parameter identifier is the index to the array. 'type' indicates
the desired value type and must be one of:
TYPE NAME EXPECTED VALUE RESULT IN
======================= ======================= =====================
fs_param_is_flag No value n/a
fs_param_is_bool Boolean value result->boolean
fs_param_is_u32 32-bit unsigned int result->uint_32
fs_param_is_u32_octal 32-bit octal int result->uint_32
fs_param_is_u32_hex 32-bit hex int result->uint_32
fs_param_is_s32 32-bit signed int result->int_32
fs_param_is_enum Enum value name result->uint_32
fs_param_is_string Arbitrary string param->string
fs_param_is_blob Binary blob param->blob
fs_param_is_blockdev Blockdev path * Needs lookup
fs_param_is_path Path * Needs lookup
fs_param_is_fd File descriptor param->file
And each parameter can be qualified with 'flags':
fs_param_v_optional The value is optional
fs_param_neg_with_no If key name is prefixed with "no", it is false
fs_param_neg_with_empty If value is "", it is false
fs_param_deprecated The parameter is deprecated.
For example:
static const struct fs_parameter_spec afs_param_specs[nr__afs_params] = {
[Opt_autocell] = { fs_param_is flag },
[Opt_bar] = { fs_param_is_enum },
[Opt_dyn] = { fs_param_is flag },
[Opt_foo] = { fs_param_is_bool, fs_param_neg_with_no },
[Opt_source] = { fs_param_is_string },
};
Note that if the value is of fs_param_is_bool type, fs_parse() will try
to match any string value against "0", "1", "no", "yes", "false", "true".
[!] NOTE that the table must be sorted according to primary key name so
that ->keys[] is also sorted.
(4) const char *const *keys;
Table of primary key names for the parameters. There must be one entry
per defined parameter. The table is optional if ->nr_params is 0. The
table is just an array of names e.g.:
static const char *const afs_param_keys[nr__afs_params] = {
[Opt_autocell] = "autocell",
[Opt_bar] = "bar",
[Opt_dyn] = "dyn",
[Opt_foo] = "foo",
[Opt_source] = "source",
};
[!] NOTE that the table must be sorted such that the table can be searched
with bsearch() using strcmp(). This means that the Opt_* values must
correspond to the entries in this table.
(5) const struct constant_table *alt_keys;
u8 nr_alt_keys;
Table of additional key names and their mappings to parameter ID plus the
number of elements in the table. This is optional. The table is just an
array of { name, integer } pairs, e.g.:
static const struct constant_table afs_param_keys[] = {
{ "baz", Opt_bar },
{ "dynamic", Opt_dyn },
};
[!] NOTE that the table must be sorted such that strcmp() can be used with
bsearch() to search the entries.
The parameter ID can also be fs_param_key_removed to indicate that a
deprecated parameter has been removed and that an error will be given.
This differs from fs_param_deprecated where the parameter may still have
an effect.
Further, the behaviour of the parameter may differ when an alternate name
is used (for instance with NFS, "v3", "v4.2", etc. are alternate names).
(6) const struct fs_parameter_enum *enums;
u8 nr_enums;
Table of enum value names to integer mappings and the number of elements
stored therein. This is of type:
struct fs_parameter_enum {
u8 param_id;
char name[14];
u8 value;
};
Where the array is an unsorted list of { parameter ID, name }-keyed
elements that indicate the value to map to, e.g.:
static const struct fs_parameter_enum afs_param_enums[] = {
{ Opt_bar, "x", 1},
{ Opt_bar, "y", 23},
{ Opt_bar, "z", 42},
};
If a parameter of type fs_param_is_enum is encountered, fs_parse() will
try to look the value up in the enum table and the result will be stored
in the parse result.
(7) bool no_source;
If this is set, fs_parse() will ignore any "source" parameter and not
pass it to the filesystem.
The parser should be pointed to by the parser pointer in the file_system_type
struct as this will provide validation on registration (if
CONFIG_VALIDATE_FS_PARSER=y) and will allow the description to be queried from
userspace using the fsinfo() syscall.
==========================
PARAMETER HELPER FUNCTIONS
==========================
A number of helper functions are provided to help a filesystem or an LSM
process the parameters it is given.
(*) int lookup_constant(const struct constant_table tbl[],
const char *name, int not_found);
Look up a constant by name in a table of name -> integer mappings. The
table is an array of elements of the following type:
struct constant_table {
const char *name;
int value;
};
and it must be sorted such that it can be searched using bsearch() using
strcmp(). If a match is found, the corresponding value is returned. If a
match isn't found, the not_found value is returned instead.
(*) bool validate_constant_table(const struct constant_table *tbl,
size_t tbl_size,
int low, int high, int special);
Validate a constant table. Checks that all the elements are appropriately
ordered, that there are no duplicates and that the values are between low
and high inclusive, though provision is made for one allowable special
value outside of that range. If no special value is required, special
should just be set to lie inside the low-to-high range.
If all is good, true is returned. If the table is invalid, errors are
logged to dmesg, the stack is dumped and false is returned.
(*) int fs_parse(struct fs_context *fc,
const struct fs_param_parser *parser,
struct fs_parameter *param,
struct fs_param_parse_result *result);
This is the main interpreter of parameters. It uses the parameter
description (parser) to look up the name of the parameter to use and to
convert that to a parameter ID (stored in result->key).
If successful, and if the parameter type indicates the result is a
boolean, integer or enum type, the value is converted by this function and
the result stored in result->{boolean,int_32,uint_32}.
If a match isn't initially made, the key is prefixed with "no" and no
value is present then an attempt will be made to look up the key with the
prefix removed. If this matches a parameter for which the type has flag
fs_param_neg_with_no set, then a match will be made and the value will be
set to false/0/NULL.
If the parameter is successfully matched and, optionally, parsed
correctly, 1 is returned. If the parameter isn't matched and
parser->ignore_unknown is set, then 0 is returned. Otherwise -EINVAL is
returned.
(*) bool fs_validate_description(const struct fs_parameter_description *desc);
This is validates the parameter description. It returns true if the
description is good and false if it is not.
(*) int fs_lookup_param(struct fs_context *fc,
struct fs_parameter *value,
bool want_bdev,
struct path *_path);
This takes a parameter that carries a string or filename type and attempts
to do a path lookup on it. If the parameter expects a blockdev, a check
is made that the inode actually represents one.
Returns 0 if successful and *_path will be set; returns a negative error
code if not.