VFIO updates for v5.8-rc1

- Block accesses to disabled MMIO space (Alex Williamson)
 
  - VFIO device migration API (Kirti Wankhede)
 
  - type1 IOMMU dirty bitmap API and implementation (Kirti Wankhede)
 
  - PCI NULL capability masking (Alex Williamson)
 
  - Memory leak fixes (Qian Cai)
 
  - Reference leak fix (Qiushi Wu)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.14 (GNU/Linux)
 
 iQIcBAABAgAGBQJe19RZAAoJECObm247sIsiBTEP/1DsA/mL/eDR94Hkmz3y1qoX
 tkrIJuM5xo95uk6DsbXDikbjM2jpUmvDUiRilara25IceuVX/tKgTjgxNOWJd+h8
 KHBoPM0bveILp+Hp6r6ZAEfhZLQ3P6A5XBTB6ql0ebveadyt13TP9Cr0jCf4Jxr2
 2A7wZAexWN8P4YBXBqrW8X3ZF3V9rfWYOJ4eILRvEplJ/TkqsGJyKW8LKP45waUF
 wutN6yh7irnWQbbUO6hb/eTIO7usrNB2L4A5CJMSZIm8JZYYmFQOrn73Ry3bA3Pg
 U+v3xIRU5U1ed/1DeLs8lRDDxImmkSXbVga0N+e3qnKtDIBh7/i9yNT9hQjhG9Ba
 C3IQoOM0Fj03hK/UahNerN7FKYoj+JvtdSKeTSNFXwdp/JUSXjj1tLouxUBSFsgD
 P15CMPXF/U6rT3nQ7/3z3JFKft/iSf6ShjXeNJFqhwH+lKsj13kF2+py3+vgayl8
 zLOqeLdRkQwXz73UStX+hrc7MmNYZVRxJ0uf3XXq3/CZ1gwiinIQqxDF3ry+pQ6w
 vXB8j5XJqsOguoAU7trTdvkKpfoJd4yY0D6aNN9F3JN8xkEBbfm6xZ7Hzur2JI6r
 iCxUHcS4XrXA/PRlTFupg8451CefuPJa2UkAWSdk182hO2R41l458Q6b7lIMqhOQ
 oP04S8VYvvDIw5JVnPWU
 =KSAE
 -----END PGP SIGNATURE-----

Merge tag 'vfio-v5.8-rc1' of git://github.com/awilliam/linux-vfio

Pull VFIO updates from Alex Williamson:

 - Block accesses to disabled MMIO space (Alex Williamson)

 - VFIO device migration API (Kirti Wankhede)

 - type1 IOMMU dirty bitmap API and implementation (Kirti Wankhede)

 - PCI NULL capability masking (Alex Williamson)

 - Memory leak fixes (Qian Cai)

 - Reference leak fix (Qiushi Wu)

* tag 'vfio-v5.8-rc1' of git://github.com/awilliam/linux-vfio:
  vfio iommu: typecast corrections
  vfio iommu: Use shift operation for 64-bit integer division
  vfio/mdev: Fix reference count leak in add_mdev_supported_type
  vfio: Selective dirty page tracking if IOMMU backed device pins pages
  vfio iommu: Add migration capability to report supported features
  vfio iommu: Update UNMAP_DMA ioctl to get dirty bitmap before unmap
  vfio iommu: Implementation of ioctl for dirty pages tracking
  vfio iommu: Add ioctl definition for dirty pages tracking
  vfio iommu: Cache pgsize_bitmap in struct vfio_iommu
  vfio iommu: Remove atomicity of ref_count of pinned pages
  vfio: UAPI for migration interface for device state
  vfio/pci: fix memory leaks of eventfd ctx
  vfio/pci: fix memory leaks in alloc_perm_bits()
  vfio-pci: Mask cap zero
  vfio-pci: Invalidate mmaps and block MMIO access on disabled memory
  vfio-pci: Fault mmaps to enable vma tracking
  vfio/type1: Support faulting PFNMAP vmas
This commit is contained in:
Linus Torvalds 2020-06-05 13:51:49 -07:00
commit 5a36f0f3f5
10 changed files with 1303 additions and 104 deletions

View File

@ -110,7 +110,7 @@ static struct mdev_type *add_mdev_supported_type(struct mdev_parent *parent,
"%s-%s", dev_driver_string(parent->dev),
group->name);
if (ret) {
kfree(type);
kobject_put(&type->kobj);
return ERR_PTR(ret);
}

View File

@ -26,6 +26,7 @@
#include <linux/vfio.h>
#include <linux/vgaarb.h>
#include <linux/nospec.h>
#include <linux/sched/mm.h>
#include "vfio_pci_private.h"
@ -184,6 +185,7 @@ no_mmap:
static void vfio_pci_try_bus_reset(struct vfio_pci_device *vdev);
static void vfio_pci_disable(struct vfio_pci_device *vdev);
static int vfio_pci_try_zap_and_vma_lock_cb(struct pci_dev *pdev, void *data);
/*
* INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
@ -519,6 +521,10 @@ static void vfio_pci_release(void *device_data)
vfio_pci_vf_token_user_add(vdev, -1);
vfio_spapr_pci_eeh_release(vdev->pdev);
vfio_pci_disable(vdev);
if (vdev->err_trigger)
eventfd_ctx_put(vdev->err_trigger);
if (vdev->req_trigger)
eventfd_ctx_put(vdev->req_trigger);
}
mutex_unlock(&vdev->reflck->lock);
@ -736,6 +742,12 @@ int vfio_pci_register_dev_region(struct vfio_pci_device *vdev,
return 0;
}
struct vfio_devices {
struct vfio_device **devices;
int cur_index;
int max_index;
};
static long vfio_pci_ioctl(void *device_data,
unsigned int cmd, unsigned long arg)
{
@ -809,7 +821,7 @@ static long vfio_pci_ioctl(void *device_data,
{
void __iomem *io;
size_t size;
u16 orig_cmd;
u16 cmd;
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.flags = 0;
@ -829,10 +841,7 @@ static long vfio_pci_ioctl(void *device_data,
* Is it really there? Enable memory decode for
* implicit access in pci_map_rom().
*/
pci_read_config_word(pdev, PCI_COMMAND, &orig_cmd);
pci_write_config_word(pdev, PCI_COMMAND,
orig_cmd | PCI_COMMAND_MEMORY);
cmd = vfio_pci_memory_lock_and_enable(vdev);
io = pci_map_rom(pdev, &size);
if (io) {
info.flags = VFIO_REGION_INFO_FLAG_READ;
@ -840,8 +849,8 @@ static long vfio_pci_ioctl(void *device_data,
} else {
info.size = 0;
}
vfio_pci_memory_unlock_and_restore(vdev, cmd);
pci_write_config_word(pdev, PCI_COMMAND, orig_cmd);
break;
}
case VFIO_PCI_VGA_REGION_INDEX:
@ -984,8 +993,16 @@ static long vfio_pci_ioctl(void *device_data,
return ret;
} else if (cmd == VFIO_DEVICE_RESET) {
return vdev->reset_works ?
pci_try_reset_function(vdev->pdev) : -EINVAL;
int ret;
if (!vdev->reset_works)
return -EINVAL;
vfio_pci_zap_and_down_write_memory_lock(vdev);
ret = pci_try_reset_function(vdev->pdev);
up_write(&vdev->memory_lock);
return ret;
} else if (cmd == VFIO_DEVICE_GET_PCI_HOT_RESET_INFO) {
struct vfio_pci_hot_reset_info hdr;
@ -1065,8 +1082,9 @@ reset_info_exit:
int32_t *group_fds;
struct vfio_pci_group_entry *groups;
struct vfio_pci_group_info info;
struct vfio_devices devs = { .cur_index = 0 };
bool slot = false;
int i, count = 0, ret = 0;
int i, group_idx, mem_idx = 0, count = 0, ret = 0;
minsz = offsetofend(struct vfio_pci_hot_reset, count);
@ -1118,9 +1136,9 @@ reset_info_exit:
* user interface and store the group and iommu ID. This
* ensures the group is held across the reset.
*/
for (i = 0; i < hdr.count; i++) {
for (group_idx = 0; group_idx < hdr.count; group_idx++) {
struct vfio_group *group;
struct fd f = fdget(group_fds[i]);
struct fd f = fdget(group_fds[group_idx]);
if (!f.file) {
ret = -EBADF;
break;
@ -1133,8 +1151,9 @@ reset_info_exit:
break;
}
groups[i].group = group;
groups[i].id = vfio_external_user_iommu_id(group);
groups[group_idx].group = group;
groups[group_idx].id =
vfio_external_user_iommu_id(group);
}
kfree(group_fds);
@ -1153,13 +1172,63 @@ reset_info_exit:
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev,
vfio_pci_validate_devs,
&info, slot);
if (!ret)
/* User has access, do the reset */
ret = pci_reset_bus(vdev->pdev);
if (ret)
goto hot_reset_release;
devs.max_index = count;
devs.devices = kcalloc(count, sizeof(struct vfio_device *),
GFP_KERNEL);
if (!devs.devices) {
ret = -ENOMEM;
goto hot_reset_release;
}
/*
* We need to get memory_lock for each device, but devices
* can share mmap_sem, therefore we need to zap and hold
* the vma_lock for each device, and only then get each
* memory_lock.
*/
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev,
vfio_pci_try_zap_and_vma_lock_cb,
&devs, slot);
if (ret)
goto hot_reset_release;
for (; mem_idx < devs.cur_index; mem_idx++) {
struct vfio_pci_device *tmp;
tmp = vfio_device_data(devs.devices[mem_idx]);
ret = down_write_trylock(&tmp->memory_lock);
if (!ret) {
ret = -EBUSY;
goto hot_reset_release;
}
mutex_unlock(&tmp->vma_lock);
}
/* User has access, do the reset */
ret = pci_reset_bus(vdev->pdev);
hot_reset_release:
for (i--; i >= 0; i--)
vfio_group_put_external_user(groups[i].group);
for (i = 0; i < devs.cur_index; i++) {
struct vfio_device *device;
struct vfio_pci_device *tmp;
device = devs.devices[i];
tmp = vfio_device_data(device);
if (i < mem_idx)
up_write(&tmp->memory_lock);
else
mutex_unlock(&tmp->vma_lock);
vfio_device_put(device);
}
kfree(devs.devices);
for (group_idx--; group_idx >= 0; group_idx--)
vfio_group_put_external_user(groups[group_idx].group);
kfree(groups);
return ret;
@ -1299,6 +1368,202 @@ static ssize_t vfio_pci_write(void *device_data, const char __user *buf,
return vfio_pci_rw(device_data, (char __user *)buf, count, ppos, true);
}
/* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */
static int vfio_pci_zap_and_vma_lock(struct vfio_pci_device *vdev, bool try)
{
struct vfio_pci_mmap_vma *mmap_vma, *tmp;
/*
* Lock ordering:
* vma_lock is nested under mmap_sem for vm_ops callback paths.
* The memory_lock semaphore is used by both code paths calling
* into this function to zap vmas and the vm_ops.fault callback
* to protect the memory enable state of the device.
*
* When zapping vmas we need to maintain the mmap_sem => vma_lock
* ordering, which requires using vma_lock to walk vma_list to
* acquire an mm, then dropping vma_lock to get the mmap_sem and
* reacquiring vma_lock. This logic is derived from similar
* requirements in uverbs_user_mmap_disassociate().
*
* mmap_sem must always be the top-level lock when it is taken.
* Therefore we can only hold the memory_lock write lock when
* vma_list is empty, as we'd need to take mmap_sem to clear
* entries. vma_list can only be guaranteed empty when holding
* vma_lock, thus memory_lock is nested under vma_lock.
*
* This enables the vm_ops.fault callback to acquire vma_lock,
* followed by memory_lock read lock, while already holding
* mmap_sem without risk of deadlock.
*/
while (1) {
struct mm_struct *mm = NULL;
if (try) {
if (!mutex_trylock(&vdev->vma_lock))
return 0;
} else {
mutex_lock(&vdev->vma_lock);
}
while (!list_empty(&vdev->vma_list)) {
mmap_vma = list_first_entry(&vdev->vma_list,
struct vfio_pci_mmap_vma,
vma_next);
mm = mmap_vma->vma->vm_mm;
if (mmget_not_zero(mm))
break;
list_del(&mmap_vma->vma_next);
kfree(mmap_vma);
mm = NULL;
}
if (!mm)
return 1;
mutex_unlock(&vdev->vma_lock);
if (try) {
if (!down_read_trylock(&mm->mmap_sem)) {
mmput(mm);
return 0;
}
} else {
down_read(&mm->mmap_sem);
}
if (mmget_still_valid(mm)) {
if (try) {
if (!mutex_trylock(&vdev->vma_lock)) {
up_read(&mm->mmap_sem);
mmput(mm);
return 0;
}
} else {
mutex_lock(&vdev->vma_lock);
}
list_for_each_entry_safe(mmap_vma, tmp,
&vdev->vma_list, vma_next) {
struct vm_area_struct *vma = mmap_vma->vma;
if (vma->vm_mm != mm)
continue;
list_del(&mmap_vma->vma_next);
kfree(mmap_vma);
zap_vma_ptes(vma, vma->vm_start,
vma->vm_end - vma->vm_start);
}
mutex_unlock(&vdev->vma_lock);
}
up_read(&mm->mmap_sem);
mmput(mm);
}
}
void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_device *vdev)
{
vfio_pci_zap_and_vma_lock(vdev, false);
down_write(&vdev->memory_lock);
mutex_unlock(&vdev->vma_lock);
}
u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_device *vdev)
{
u16 cmd;
down_write(&vdev->memory_lock);
pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
if (!(cmd & PCI_COMMAND_MEMORY))
pci_write_config_word(vdev->pdev, PCI_COMMAND,
cmd | PCI_COMMAND_MEMORY);
return cmd;
}
void vfio_pci_memory_unlock_and_restore(struct vfio_pci_device *vdev, u16 cmd)
{
pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
up_write(&vdev->memory_lock);
}
/* Caller holds vma_lock */
static int __vfio_pci_add_vma(struct vfio_pci_device *vdev,
struct vm_area_struct *vma)
{
struct vfio_pci_mmap_vma *mmap_vma;
mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL);
if (!mmap_vma)
return -ENOMEM;
mmap_vma->vma = vma;
list_add(&mmap_vma->vma_next, &vdev->vma_list);
return 0;
}
/*
* Zap mmaps on open so that we can fault them in on access and therefore
* our vma_list only tracks mappings accessed since last zap.
*/
static void vfio_pci_mmap_open(struct vm_area_struct *vma)
{
zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
}
static void vfio_pci_mmap_close(struct vm_area_struct *vma)
{
struct vfio_pci_device *vdev = vma->vm_private_data;
struct vfio_pci_mmap_vma *mmap_vma;
mutex_lock(&vdev->vma_lock);
list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
if (mmap_vma->vma == vma) {
list_del(&mmap_vma->vma_next);
kfree(mmap_vma);
break;
}
}
mutex_unlock(&vdev->vma_lock);
}
static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct vfio_pci_device *vdev = vma->vm_private_data;
vm_fault_t ret = VM_FAULT_NOPAGE;
mutex_lock(&vdev->vma_lock);
down_read(&vdev->memory_lock);
if (!__vfio_pci_memory_enabled(vdev)) {
ret = VM_FAULT_SIGBUS;
mutex_unlock(&vdev->vma_lock);
goto up_out;
}
if (__vfio_pci_add_vma(vdev, vma)) {
ret = VM_FAULT_OOM;
mutex_unlock(&vdev->vma_lock);
goto up_out;
}
mutex_unlock(&vdev->vma_lock);
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vma->vm_end - vma->vm_start, vma->vm_page_prot))
ret = VM_FAULT_SIGBUS;
up_out:
up_read(&vdev->memory_lock);
return ret;
}
static const struct vm_operations_struct vfio_pci_mmap_ops = {
.open = vfio_pci_mmap_open,
.close = vfio_pci_mmap_close,
.fault = vfio_pci_mmap_fault,
};
static int vfio_pci_mmap(void *device_data, struct vm_area_struct *vma)
{
struct vfio_pci_device *vdev = device_data;
@ -1357,8 +1622,14 @@ static int vfio_pci_mmap(void *device_data, struct vm_area_struct *vma)
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
req_len, vma->vm_page_prot);
/*
* See remap_pfn_range(), called from vfio_pci_fault() but we can't
* change vm_flags within the fault handler. Set them now.
*/
vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
vma->vm_ops = &vfio_pci_mmap_ops;
return 0;
}
static void vfio_pci_request(void *device_data, unsigned int count)
@ -1608,6 +1879,9 @@ static int vfio_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
spin_lock_init(&vdev->irqlock);
mutex_init(&vdev->ioeventfds_lock);
INIT_LIST_HEAD(&vdev->ioeventfds_list);
mutex_init(&vdev->vma_lock);
INIT_LIST_HEAD(&vdev->vma_list);
init_rwsem(&vdev->memory_lock);
ret = vfio_add_group_dev(&pdev->dev, &vfio_pci_ops, vdev);
if (ret)
@ -1861,12 +2135,6 @@ static void vfio_pci_reflck_put(struct vfio_pci_reflck *reflck)
kref_put_mutex(&reflck->kref, vfio_pci_reflck_release, &reflck_lock);
}
struct vfio_devices {
struct vfio_device **devices;
int cur_index;
int max_index;
};
static int vfio_pci_get_unused_devs(struct pci_dev *pdev, void *data)
{
struct vfio_devices *devs = data;
@ -1897,6 +2165,39 @@ static int vfio_pci_get_unused_devs(struct pci_dev *pdev, void *data)
return 0;
}
static int vfio_pci_try_zap_and_vma_lock_cb(struct pci_dev *pdev, void *data)
{
struct vfio_devices *devs = data;
struct vfio_device *device;
struct vfio_pci_device *vdev;
if (devs->cur_index == devs->max_index)
return -ENOSPC;
device = vfio_device_get_from_dev(&pdev->dev);
if (!device)
return -EINVAL;
if (pci_dev_driver(pdev) != &vfio_pci_driver) {
vfio_device_put(device);
return -EBUSY;
}
vdev = vfio_device_data(device);
/*
* Locking multiple devices is prone to deadlock, runaway and
* unwind if we hit contention.
*/
if (!vfio_pci_zap_and_vma_lock(vdev, true)) {
vfio_device_put(device);
return -EBUSY;
}
devs->devices[devs->cur_index++] = device;
return 0;
}
/*
* If a bus or slot reset is available for the provided device and:
* - All of the devices affected by that bus or slot reset are unused

View File

@ -395,6 +395,14 @@ static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
}
/* Caller should hold memory_lock semaphore */
bool __vfio_pci_memory_enabled(struct vfio_pci_device *vdev)
{
u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
return cmd & PCI_COMMAND_MEMORY;
}
/*
* Restore the *real* BARs after we detect a FLR or backdoor reset.
* (backdoor = some device specific technique that we didn't catch)
@ -556,13 +564,18 @@ static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
new_cmd = le32_to_cpu(val);
phys_io = !!(phys_cmd & PCI_COMMAND_IO);
virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
new_io = !!(new_cmd & PCI_COMMAND_IO);
phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
phys_io = !!(phys_cmd & PCI_COMMAND_IO);
virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
new_io = !!(new_cmd & PCI_COMMAND_IO);
if (!new_mem)
vfio_pci_zap_and_down_write_memory_lock(vdev);
else
down_write(&vdev->memory_lock);
/*
* If the user is writing mem/io enable (new_mem/io) and we
@ -579,8 +592,11 @@ static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
}
count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
if (count < 0)
if (count < 0) {
if (offset == PCI_COMMAND)
up_write(&vdev->memory_lock);
return count;
}
/*
* Save current memory/io enable bits in vconfig to allow for
@ -591,6 +607,8 @@ static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
*virt_cmd &= cpu_to_le16(~mask);
*virt_cmd |= cpu_to_le16(new_cmd & mask);
up_write(&vdev->memory_lock);
}
/* Emulate INTx disable */
@ -828,8 +846,11 @@ static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
pos - offset + PCI_EXP_DEVCAP,
&cap);
if (!ret && (cap & PCI_EXP_DEVCAP_FLR))
if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
vfio_pci_zap_and_down_write_memory_lock(vdev);
pci_try_reset_function(vdev->pdev);
up_write(&vdev->memory_lock);
}
}
/*
@ -907,8 +928,11 @@ static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
pos - offset + PCI_AF_CAP,
&cap);
if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP))
if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
vfio_pci_zap_and_down_write_memory_lock(vdev);
pci_try_reset_function(vdev->pdev);
up_write(&vdev->memory_lock);
}
}
return count;
@ -1462,7 +1486,12 @@ static int vfio_cap_init(struct vfio_pci_device *vdev)
if (ret)
return ret;
if (cap <= PCI_CAP_ID_MAX) {
/*
* ID 0 is a NULL capability, conflicting with our fake
* PCI_CAP_ID_BASIC. As it has no content, consider it
* hidden for now.
*/
if (cap && cap <= PCI_CAP_ID_MAX) {
len = pci_cap_length[cap];
if (len == 0xFF) { /* Variable length */
len = vfio_cap_len(vdev, cap, pos);
@ -1728,8 +1757,11 @@ void vfio_config_free(struct vfio_pci_device *vdev)
vdev->vconfig = NULL;
kfree(vdev->pci_config_map);
vdev->pci_config_map = NULL;
kfree(vdev->msi_perm);
vdev->msi_perm = NULL;
if (vdev->msi_perm) {
free_perm_bits(vdev->msi_perm);
kfree(vdev->msi_perm);
vdev->msi_perm = NULL;
}
}
/*

View File

@ -249,6 +249,7 @@ static int vfio_msi_enable(struct vfio_pci_device *vdev, int nvec, bool msix)
struct pci_dev *pdev = vdev->pdev;
unsigned int flag = msix ? PCI_IRQ_MSIX : PCI_IRQ_MSI;
int ret;
u16 cmd;
if (!is_irq_none(vdev))
return -EINVAL;
@ -258,13 +259,16 @@ static int vfio_msi_enable(struct vfio_pci_device *vdev, int nvec, bool msix)
return -ENOMEM;
/* return the number of supported vectors if we can't get all: */
cmd = vfio_pci_memory_lock_and_enable(vdev);
ret = pci_alloc_irq_vectors(pdev, 1, nvec, flag);
if (ret < nvec) {
if (ret > 0)
pci_free_irq_vectors(pdev);
vfio_pci_memory_unlock_and_restore(vdev, cmd);
kfree(vdev->ctx);
return ret;
}
vfio_pci_memory_unlock_and_restore(vdev, cmd);
vdev->num_ctx = nvec;
vdev->irq_type = msix ? VFIO_PCI_MSIX_IRQ_INDEX :
@ -287,6 +291,7 @@ static int vfio_msi_set_vector_signal(struct vfio_pci_device *vdev,
struct pci_dev *pdev = vdev->pdev;
struct eventfd_ctx *trigger;
int irq, ret;
u16 cmd;
if (vector < 0 || vector >= vdev->num_ctx)
return -EINVAL;
@ -295,7 +300,11 @@ static int vfio_msi_set_vector_signal(struct vfio_pci_device *vdev,
if (vdev->ctx[vector].trigger) {
irq_bypass_unregister_producer(&vdev->ctx[vector].producer);
cmd = vfio_pci_memory_lock_and_enable(vdev);
free_irq(irq, vdev->ctx[vector].trigger);
vfio_pci_memory_unlock_and_restore(vdev, cmd);
kfree(vdev->ctx[vector].name);
eventfd_ctx_put(vdev->ctx[vector].trigger);
vdev->ctx[vector].trigger = NULL;
@ -323,6 +332,7 @@ static int vfio_msi_set_vector_signal(struct vfio_pci_device *vdev,
* such a reset it would be unsuccessful. To avoid this, restore the
* cached value of the message prior to enabling.
*/
cmd = vfio_pci_memory_lock_and_enable(vdev);
if (msix) {
struct msi_msg msg;
@ -332,6 +342,7 @@ static int vfio_msi_set_vector_signal(struct vfio_pci_device *vdev,
ret = request_irq(irq, vfio_msihandler, 0,
vdev->ctx[vector].name, trigger);
vfio_pci_memory_unlock_and_restore(vdev, cmd);
if (ret) {
kfree(vdev->ctx[vector].name);
eventfd_ctx_put(trigger);
@ -376,6 +387,7 @@ static void vfio_msi_disable(struct vfio_pci_device *vdev, bool msix)
{
struct pci_dev *pdev = vdev->pdev;
int i;
u16 cmd;
for (i = 0; i < vdev->num_ctx; i++) {
vfio_virqfd_disable(&vdev->ctx[i].unmask);
@ -384,7 +396,9 @@ static void vfio_msi_disable(struct vfio_pci_device *vdev, bool msix)
vfio_msi_set_block(vdev, 0, vdev->num_ctx, NULL, msix);
cmd = vfio_pci_memory_lock_and_enable(vdev);
pci_free_irq_vectors(pdev);
vfio_pci_memory_unlock_and_restore(vdev, cmd);
/*
* Both disable paths above use pci_intx_for_msi() to clear DisINTx

View File

@ -92,6 +92,11 @@ struct vfio_pci_vf_token {
int users;
};
struct vfio_pci_mmap_vma {
struct vm_area_struct *vma;
struct list_head vma_next;
};
struct vfio_pci_device {
struct pci_dev *pdev;
void __iomem *barmap[PCI_STD_NUM_BARS];
@ -132,6 +137,9 @@ struct vfio_pci_device {
struct list_head ioeventfds_list;
struct vfio_pci_vf_token *vf_token;
struct notifier_block nb;
struct mutex vma_lock;
struct list_head vma_list;
struct rw_semaphore memory_lock;
};
#define is_intx(vdev) (vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX)
@ -174,6 +182,13 @@ extern int vfio_pci_register_dev_region(struct vfio_pci_device *vdev,
extern int vfio_pci_set_power_state(struct vfio_pci_device *vdev,
pci_power_t state);
extern bool __vfio_pci_memory_enabled(struct vfio_pci_device *vdev);
extern void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_device
*vdev);
extern u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_device *vdev);
extern void vfio_pci_memory_unlock_and_restore(struct vfio_pci_device *vdev,
u16 cmd);
#ifdef CONFIG_VFIO_PCI_IGD
extern int vfio_pci_igd_init(struct vfio_pci_device *vdev);
#else

View File

@ -162,6 +162,7 @@ ssize_t vfio_pci_bar_rw(struct vfio_pci_device *vdev, char __user *buf,
size_t x_start = 0, x_end = 0;
resource_size_t end;
void __iomem *io;
struct resource *res = &vdev->pdev->resource[bar];
ssize_t done;
if (pci_resource_start(pdev, bar))
@ -177,6 +178,14 @@ ssize_t vfio_pci_bar_rw(struct vfio_pci_device *vdev, char __user *buf,
count = min(count, (size_t)(end - pos));
if (res->flags & IORESOURCE_MEM) {
down_read(&vdev->memory_lock);
if (!__vfio_pci_memory_enabled(vdev)) {
up_read(&vdev->memory_lock);
return -EIO;
}
}
if (bar == PCI_ROM_RESOURCE) {
/*
* The ROM can fill less space than the BAR, so we start the
@ -184,13 +193,17 @@ ssize_t vfio_pci_bar_rw(struct vfio_pci_device *vdev, char __user *buf,
* filling large ROM BARs much faster.
*/
io = pci_map_rom(pdev, &x_start);
if (!io)
return -ENOMEM;
if (!io) {
done = -ENOMEM;
goto out;
}
x_end = end;
} else {
int ret = vfio_pci_setup_barmap(vdev, bar);
if (ret)
return ret;
if (ret) {
done = ret;
goto out;
}
io = vdev->barmap[bar];
}
@ -207,6 +220,9 @@ ssize_t vfio_pci_bar_rw(struct vfio_pci_device *vdev, char __user *buf,
if (bar == PCI_ROM_RESOURCE)
pci_unmap_rom(pdev, io);
out:
if (res->flags & IORESOURCE_MEM)
up_read(&vdev->memory_lock);
return done;
}

View File

@ -85,6 +85,7 @@ struct vfio_group {
atomic_t opened;
wait_queue_head_t container_q;
bool noiommu;
unsigned int dev_counter;
struct kvm *kvm;
struct blocking_notifier_head notifier;
};
@ -555,6 +556,7 @@ struct vfio_device *vfio_group_create_device(struct vfio_group *group,
mutex_lock(&group->device_lock);
list_add(&device->group_next, &group->device_list);
group->dev_counter++;
mutex_unlock(&group->device_lock);
return device;
@ -567,6 +569,7 @@ static void vfio_device_release(struct kref *kref)
struct vfio_group *group = device->group;
list_del(&device->group_next);
group->dev_counter--;
mutex_unlock(&group->device_lock);
dev_set_drvdata(device->dev, NULL);
@ -1945,6 +1948,9 @@ int vfio_pin_pages(struct device *dev, unsigned long *user_pfn, int npage,
if (!group)
return -ENODEV;
if (group->dev_counter > 1)
return -EINVAL;
ret = vfio_group_add_container_user(group);
if (ret)
goto err_pin_pages;
@ -1952,7 +1958,8 @@ int vfio_pin_pages(struct device *dev, unsigned long *user_pfn, int npage,
container = group->container;
driver = container->iommu_driver;
if (likely(driver && driver->ops->pin_pages))
ret = driver->ops->pin_pages(container->iommu_data, user_pfn,
ret = driver->ops->pin_pages(container->iommu_data,
group->iommu_group, user_pfn,
npage, prot, phys_pfn);
else
ret = -ENOTTY;
@ -2050,8 +2057,8 @@ int vfio_group_pin_pages(struct vfio_group *group,
driver = container->iommu_driver;
if (likely(driver && driver->ops->pin_pages))
ret = driver->ops->pin_pages(container->iommu_data,
user_iova_pfn, npage,
prot, phys_pfn);
group->iommu_group, user_iova_pfn,
npage, prot, phys_pfn);
else
ret = -ENOTTY;

View File

@ -69,8 +69,11 @@ struct vfio_iommu {
struct rb_root dma_list;
struct blocking_notifier_head notifier;
unsigned int dma_avail;
uint64_t pgsize_bitmap;
bool v2;
bool nesting;
bool dirty_page_tracking;
bool pinned_page_dirty_scope;
};
struct vfio_domain {
@ -91,12 +94,14 @@ struct vfio_dma {
bool lock_cap; /* capable(CAP_IPC_LOCK) */
struct task_struct *task;
struct rb_root pfn_list; /* Ex-user pinned pfn list */
unsigned long *bitmap;
};
struct vfio_group {
struct iommu_group *iommu_group;
struct list_head next;
bool mdev_group; /* An mdev group */
bool pinned_page_dirty_scope;
};
struct vfio_iova {
@ -112,7 +117,7 @@ struct vfio_pfn {
struct rb_node node;
dma_addr_t iova; /* Device address */
unsigned long pfn; /* Host pfn */
atomic_t ref_count;
unsigned int ref_count;
};
struct vfio_regions {
@ -125,8 +130,25 @@ struct vfio_regions {
#define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu) \
(!list_empty(&iommu->domain_list))
#define DIRTY_BITMAP_BYTES(n) (ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
/*
* Input argument of number of bits to bitmap_set() is unsigned integer, which
* further casts to signed integer for unaligned multi-bit operation,
* __bitmap_set().
* Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
* that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
* system.
*/
#define DIRTY_BITMAP_PAGES_MAX ((u64)INT_MAX)
#define DIRTY_BITMAP_SIZE_MAX DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
static int put_pfn(unsigned long pfn, int prot);
static struct vfio_group *vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
struct iommu_group *iommu_group);
static void update_pinned_page_dirty_scope(struct vfio_iommu *iommu);
/*
* This code handles mapping and unmapping of user data buffers
* into DMA'ble space using the IOMMU
@ -175,6 +197,81 @@ static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
rb_erase(&old->node, &iommu->dma_list);
}
static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
{
uint64_t npages = dma->size / pgsize;
if (npages > DIRTY_BITMAP_PAGES_MAX)
return -EINVAL;
/*
* Allocate extra 64 bits that are used to calculate shift required for
* bitmap_shift_left() to manipulate and club unaligned number of pages
* in adjacent vfio_dma ranges.
*/
dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
GFP_KERNEL);
if (!dma->bitmap)
return -ENOMEM;
return 0;
}
static void vfio_dma_bitmap_free(struct vfio_dma *dma)
{
kfree(dma->bitmap);
dma->bitmap = NULL;
}
static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
{
struct rb_node *p;
unsigned long pgshift = __ffs(pgsize);
for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
}
}
static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
{
struct rb_node *n;
for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
int ret;
ret = vfio_dma_bitmap_alloc(dma, pgsize);
if (ret) {
struct rb_node *p;
for (p = rb_prev(n); p; p = rb_prev(p)) {
struct vfio_dma *dma = rb_entry(n,
struct vfio_dma, node);
vfio_dma_bitmap_free(dma);
}
return ret;
}
vfio_dma_populate_bitmap(dma, pgsize);
}
return 0;
}
static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
{
struct rb_node *n;
for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
vfio_dma_bitmap_free(dma);
}
}
/*
* Helper Functions for host iova-pfn list
*/
@ -233,7 +330,7 @@ static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
vpfn->iova = iova;
vpfn->pfn = pfn;
atomic_set(&vpfn->ref_count, 1);
vpfn->ref_count = 1;
vfio_link_pfn(dma, vpfn);
return 0;
}
@ -251,7 +348,7 @@ static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
if (vpfn)
atomic_inc(&vpfn->ref_count);
vpfn->ref_count++;
return vpfn;
}
@ -259,7 +356,8 @@ static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
{
int ret = 0;
if (atomic_dec_and_test(&vpfn->ref_count)) {
vpfn->ref_count--;
if (!vpfn->ref_count) {
ret = put_pfn(vpfn->pfn, dma->prot);
vfio_remove_from_pfn_list(dma, vpfn);
}
@ -317,6 +415,32 @@ static int put_pfn(unsigned long pfn, int prot)
return 0;
}
static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
unsigned long vaddr, unsigned long *pfn,
bool write_fault)
{
int ret;
ret = follow_pfn(vma, vaddr, pfn);
if (ret) {
bool unlocked = false;
ret = fixup_user_fault(NULL, mm, vaddr,
FAULT_FLAG_REMOTE |
(write_fault ? FAULT_FLAG_WRITE : 0),
&unlocked);
if (unlocked)
return -EAGAIN;
if (ret)
return ret;
ret = follow_pfn(vma, vaddr, pfn);
}
return ret;
}
static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
int prot, unsigned long *pfn)
{
@ -339,12 +463,16 @@ static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
vaddr = untagged_addr(vaddr);
retry:
vma = find_vma_intersection(mm, vaddr, vaddr + 1);
if (vma && vma->vm_flags & VM_PFNMAP) {
if (!follow_pfn(vma, vaddr, pfn) &&
is_invalid_reserved_pfn(*pfn))
ret = 0;
ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
if (ret == -EAGAIN)
goto retry;
if (!ret && !is_invalid_reserved_pfn(*pfn))
ret = -EFAULT;
}
done:
up_read(&mm->mmap_sem);
@ -501,11 +629,13 @@ static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
}
static int vfio_iommu_type1_pin_pages(void *iommu_data,
struct iommu_group *iommu_group,
unsigned long *user_pfn,
int npage, int prot,
unsigned long *phys_pfn)
{
struct vfio_iommu *iommu = iommu_data;
struct vfio_group *group;
int i, j, ret;
unsigned long remote_vaddr;
struct vfio_dma *dma;
@ -566,9 +696,26 @@ static int vfio_iommu_type1_pin_pages(void *iommu_data,
vfio_unpin_page_external(dma, iova, do_accounting);
goto pin_unwind;
}
if (iommu->dirty_page_tracking) {
unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
/*
* Bitmap populated with the smallest supported page
* size
*/
bitmap_set(dma->bitmap,
(iova - dma->iova) >> pgshift, 1);
}
}
ret = i;
group = vfio_iommu_find_iommu_group(iommu, iommu_group);
if (!group->pinned_page_dirty_scope) {
group->pinned_page_dirty_scope = true;
update_pinned_page_dirty_scope(iommu);
}
ret = i;
goto pin_done;
pin_unwind:
@ -800,19 +947,19 @@ static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
vfio_unmap_unpin(iommu, dma, true);
vfio_unlink_dma(iommu, dma);
put_task_struct(dma->task);
vfio_dma_bitmap_free(dma);
kfree(dma);
iommu->dma_avail++;
}
static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
{
struct vfio_domain *domain;
unsigned long bitmap = ULONG_MAX;
mutex_lock(&iommu->lock);
iommu->pgsize_bitmap = ULONG_MAX;
list_for_each_entry(domain, &iommu->domain_list, next)
bitmap &= domain->domain->pgsize_bitmap;
mutex_unlock(&iommu->lock);
iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
/*
* In case the IOMMU supports page sizes smaller than PAGE_SIZE
@ -822,36 +969,143 @@ static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
* granularity while iommu driver can use the sub-PAGE_SIZE size
* to map the buffer.
*/
if (bitmap & ~PAGE_MASK) {
bitmap &= PAGE_MASK;
bitmap |= PAGE_SIZE;
if (iommu->pgsize_bitmap & ~PAGE_MASK) {
iommu->pgsize_bitmap &= PAGE_MASK;
iommu->pgsize_bitmap |= PAGE_SIZE;
}
}
static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
struct vfio_dma *dma, dma_addr_t base_iova,
size_t pgsize)
{
unsigned long pgshift = __ffs(pgsize);
unsigned long nbits = dma->size >> pgshift;
unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
unsigned long copy_offset = bit_offset / BITS_PER_LONG;
unsigned long shift = bit_offset % BITS_PER_LONG;
unsigned long leftover;
/*
* mark all pages dirty if any IOMMU capable device is not able
* to report dirty pages and all pages are pinned and mapped.
*/
if (!iommu->pinned_page_dirty_scope && dma->iommu_mapped)
bitmap_set(dma->bitmap, 0, nbits);
if (shift) {
bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
nbits + shift);
if (copy_from_user(&leftover,
(void __user *)(bitmap + copy_offset),
sizeof(leftover)))
return -EFAULT;
bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
}
return bitmap;
if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
DIRTY_BITMAP_BYTES(nbits + shift)))
return -EFAULT;
return 0;
}
static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
dma_addr_t iova, size_t size, size_t pgsize)
{
struct vfio_dma *dma;
struct rb_node *n;
unsigned long pgshift = __ffs(pgsize);
int ret;
/*
* GET_BITMAP request must fully cover vfio_dma mappings. Multiple
* vfio_dma mappings may be clubbed by specifying large ranges, but
* there must not be any previous mappings bisected by the range.
* An error will be returned if these conditions are not met.
*/
dma = vfio_find_dma(iommu, iova, 1);
if (dma && dma->iova != iova)
return -EINVAL;
dma = vfio_find_dma(iommu, iova + size - 1, 0);
if (dma && dma->iova + dma->size != iova + size)
return -EINVAL;
for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
if (dma->iova < iova)
continue;
if (dma->iova > iova + size - 1)
break;
ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
if (ret)
return ret;
/*
* Re-populate bitmap to include all pinned pages which are
* considered as dirty but exclude pages which are unpinned and
* pages which are marked dirty by vfio_dma_rw()
*/
bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
vfio_dma_populate_bitmap(dma, pgsize);
}
return 0;
}
static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
{
if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
(bitmap_size < DIRTY_BITMAP_BYTES(npages)))
return -EINVAL;
return 0;
}
static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
struct vfio_iommu_type1_dma_unmap *unmap)
struct vfio_iommu_type1_dma_unmap *unmap,
struct vfio_bitmap *bitmap)
{
uint64_t mask;
struct vfio_dma *dma, *dma_last = NULL;
size_t unmapped = 0;
size_t unmapped = 0, pgsize;
int ret = 0, retries = 0;
unsigned long pgshift;
mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
if (unmap->iova & mask)
return -EINVAL;
if (!unmap->size || unmap->size & mask)
return -EINVAL;
if (unmap->iova + unmap->size - 1 < unmap->iova ||
unmap->size > SIZE_MAX)
return -EINVAL;
WARN_ON(mask & PAGE_MASK);
again:
mutex_lock(&iommu->lock);
pgshift = __ffs(iommu->pgsize_bitmap);
pgsize = (size_t)1 << pgshift;
if (unmap->iova & (pgsize - 1)) {
ret = -EINVAL;
goto unlock;
}
if (!unmap->size || unmap->size & (pgsize - 1)) {
ret = -EINVAL;
goto unlock;
}
if (unmap->iova + unmap->size - 1 < unmap->iova ||
unmap->size > SIZE_MAX) {
ret = -EINVAL;
goto unlock;
}
/* When dirty tracking is enabled, allow only min supported pgsize */
if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
(!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
ret = -EINVAL;
goto unlock;
}
WARN_ON((pgsize - 1) & PAGE_MASK);
again:
/*
* vfio-iommu-type1 (v1) - User mappings were coalesced together to
* avoid tracking individual mappings. This means that the granularity
@ -929,8 +1183,17 @@ again:
blocking_notifier_call_chain(&iommu->notifier,
VFIO_IOMMU_NOTIFY_DMA_UNMAP,
&nb_unmap);
mutex_lock(&iommu->lock);
goto again;
}
if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
ret = update_user_bitmap(bitmap->data, iommu, dma,
unmap->iova, pgsize);
if (ret)
break;
}
unmapped += dma->size;
vfio_remove_dma(iommu, dma);
}
@ -1037,31 +1300,35 @@ static int vfio_dma_do_map(struct vfio_iommu *iommu,
unsigned long vaddr = map->vaddr;
size_t size = map->size;
int ret = 0, prot = 0;
uint64_t mask;
size_t pgsize;
struct vfio_dma *dma;
/* Verify that none of our __u64 fields overflow */
if (map->size != size || map->vaddr != vaddr || map->iova != iova)
return -EINVAL;
mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
WARN_ON(mask & PAGE_MASK);
/* READ/WRITE from device perspective */
if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
prot |= IOMMU_WRITE;
if (map->flags & VFIO_DMA_MAP_FLAG_READ)
prot |= IOMMU_READ;
if (!prot || !size || (size | iova | vaddr) & mask)
return -EINVAL;
mutex_lock(&iommu->lock);
pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
WARN_ON((pgsize - 1) & PAGE_MASK);
if (!prot || !size || (size | iova | vaddr) & (pgsize - 1)) {
ret = -EINVAL;
goto out_unlock;
}
/* Don't allow IOVA or virtual address wrap */
if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
return -EINVAL;
mutex_lock(&iommu->lock);
if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
ret = -EINVAL;
goto out_unlock;
}
if (vfio_find_dma(iommu, iova, size)) {
ret = -EEXIST;
@ -1129,6 +1396,12 @@ static int vfio_dma_do_map(struct vfio_iommu *iommu,
else
ret = vfio_pin_map_dma(iommu, dma, size);
if (!ret && iommu->dirty_page_tracking) {
ret = vfio_dma_bitmap_alloc(dma, pgsize);
if (ret)
vfio_remove_dma(iommu, dma);
}
out_unlock:
mutex_unlock(&iommu->lock);
return ret;
@ -1267,6 +1540,51 @@ static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
return NULL;
}
static struct vfio_group *vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
struct iommu_group *iommu_group)
{
struct vfio_domain *domain;
struct vfio_group *group = NULL;
list_for_each_entry(domain, &iommu->domain_list, next) {
group = find_iommu_group(domain, iommu_group);
if (group)
return group;
}
if (iommu->external_domain)
group = find_iommu_group(iommu->external_domain, iommu_group);
return group;
}
static void update_pinned_page_dirty_scope(struct vfio_iommu *iommu)
{
struct vfio_domain *domain;
struct vfio_group *group;
list_for_each_entry(domain, &iommu->domain_list, next) {
list_for_each_entry(group, &domain->group_list, next) {
if (!group->pinned_page_dirty_scope) {
iommu->pinned_page_dirty_scope = false;
return;
}
}
}
if (iommu->external_domain) {
domain = iommu->external_domain;
list_for_each_entry(group, &domain->group_list, next) {
if (!group->pinned_page_dirty_scope) {
iommu->pinned_page_dirty_scope = false;
return;
}
}
}
iommu->pinned_page_dirty_scope = true;
}
static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
phys_addr_t *base)
{
@ -1667,12 +1985,23 @@ static int vfio_iommu_type1_attach_group(void *iommu_data,
if (!iommu->external_domain) {
INIT_LIST_HEAD(&domain->group_list);
iommu->external_domain = domain;
vfio_update_pgsize_bitmap(iommu);
} else {
kfree(domain);
}
list_add(&group->next,
&iommu->external_domain->group_list);
/*
* Non-iommu backed group cannot dirty memory directly,
* it can only use interfaces that provide dirty
* tracking.
* The iommu scope can only be promoted with the
* addition of a dirty tracking group.
*/
group->pinned_page_dirty_scope = true;
if (!iommu->pinned_page_dirty_scope)
update_pinned_page_dirty_scope(iommu);
mutex_unlock(&iommu->lock);
return 0;
@ -1792,9 +2121,17 @@ static int vfio_iommu_type1_attach_group(void *iommu_data,
}
list_add(&domain->next, &iommu->domain_list);
vfio_update_pgsize_bitmap(iommu);
done:
/* Delete the old one and insert new iova list */
vfio_iommu_iova_insert_copy(iommu, &iova_copy);
/*
* An iommu backed group can dirty memory directly and therefore
* demotes the iommu scope until it declares itself dirty tracking
* capable via the page pinning interface.
*/
iommu->pinned_page_dirty_scope = false;
mutex_unlock(&iommu->lock);
vfio_iommu_resv_free(&group_resv_regions);
@ -1947,6 +2284,7 @@ static void vfio_iommu_type1_detach_group(void *iommu_data,
struct vfio_iommu *iommu = iommu_data;
struct vfio_domain *domain;
struct vfio_group *group;
bool update_dirty_scope = false;
LIST_HEAD(iova_copy);
mutex_lock(&iommu->lock);
@ -1954,6 +2292,7 @@ static void vfio_iommu_type1_detach_group(void *iommu_data,
if (iommu->external_domain) {
group = find_iommu_group(iommu->external_domain, iommu_group);
if (group) {
update_dirty_scope = !group->pinned_page_dirty_scope;
list_del(&group->next);
kfree(group);
@ -1983,6 +2322,7 @@ static void vfio_iommu_type1_detach_group(void *iommu_data,
continue;
vfio_iommu_detach_group(domain, group);
update_dirty_scope = !group->pinned_page_dirty_scope;
list_del(&group->next);
kfree(group);
/*
@ -2003,6 +2343,7 @@ static void vfio_iommu_type1_detach_group(void *iommu_data,
list_del(&domain->next);
kfree(domain);
vfio_iommu_aper_expand(iommu, &iova_copy);
vfio_update_pgsize_bitmap(iommu);
}
break;
}
@ -2013,6 +2354,12 @@ static void vfio_iommu_type1_detach_group(void *iommu_data,
vfio_iommu_iova_free(&iova_copy);
detach_group_done:
/*
* Removal of a group without dirty tracking may allow the iommu scope
* to be promoted.
*/
if (update_dirty_scope)
update_pinned_page_dirty_scope(iommu);
mutex_unlock(&iommu->lock);
}
@ -2135,8 +2482,6 @@ static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
size_t size;
int iovas = 0, i = 0, ret;
mutex_lock(&iommu->lock);
list_for_each_entry(iova, &iommu->iova_list, list)
iovas++;
@ -2145,17 +2490,14 @@ static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
* Return 0 as a container with a single mdev device
* will have an empty list
*/
ret = 0;
goto out_unlock;
return 0;
}
size = sizeof(*cap_iovas) + (iovas * sizeof(*cap_iovas->iova_ranges));
cap_iovas = kzalloc(size, GFP_KERNEL);
if (!cap_iovas) {
ret = -ENOMEM;
goto out_unlock;
}
if (!cap_iovas)
return -ENOMEM;
cap_iovas->nr_iovas = iovas;
@ -2168,11 +2510,25 @@ static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
kfree(cap_iovas);
out_unlock:
mutex_unlock(&iommu->lock);
return ret;
}
static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
struct vfio_info_cap *caps)
{
struct vfio_iommu_type1_info_cap_migration cap_mig;
cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
cap_mig.header.version = 1;
cap_mig.flags = 0;
/* support minimum pgsize */
cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
}
static long vfio_iommu_type1_ioctl(void *iommu_data,
unsigned int cmd, unsigned long arg)
{
@ -2214,11 +2570,18 @@ static long vfio_iommu_type1_ioctl(void *iommu_data,
info.cap_offset = 0; /* output, no-recopy necessary */
}
mutex_lock(&iommu->lock);
info.flags = VFIO_IOMMU_INFO_PGSIZES;
info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
info.iova_pgsizes = iommu->pgsize_bitmap;
ret = vfio_iommu_migration_build_caps(iommu, &caps);
if (!ret)
ret = vfio_iommu_iova_build_caps(iommu, &caps);
mutex_unlock(&iommu->lock);
ret = vfio_iommu_iova_build_caps(iommu, &caps);
if (ret)
return ret;
@ -2261,22 +2624,143 @@ static long vfio_iommu_type1_ioctl(void *iommu_data,
} else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
struct vfio_iommu_type1_dma_unmap unmap;
long ret;
struct vfio_bitmap bitmap = { 0 };
int ret;
minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
if (copy_from_user(&unmap, (void __user *)arg, minsz))
return -EFAULT;
if (unmap.argsz < minsz || unmap.flags)
if (unmap.argsz < minsz ||
unmap.flags & ~VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP)
return -EINVAL;
ret = vfio_dma_do_unmap(iommu, &unmap);
if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
unsigned long pgshift;
if (unmap.argsz < (minsz + sizeof(bitmap)))
return -EINVAL;
if (copy_from_user(&bitmap,
(void __user *)(arg + minsz),
sizeof(bitmap)))
return -EFAULT;
if (!access_ok((void __user *)bitmap.data, bitmap.size))
return -EINVAL;
pgshift = __ffs(bitmap.pgsize);
ret = verify_bitmap_size(unmap.size >> pgshift,
bitmap.size);
if (ret)
return ret;
}
ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
if (ret)
return ret;
return copy_to_user((void __user *)arg, &unmap, minsz) ?
-EFAULT : 0;
} else if (cmd == VFIO_IOMMU_DIRTY_PAGES) {
struct vfio_iommu_type1_dirty_bitmap dirty;
uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
int ret = 0;
if (!iommu->v2)
return -EACCES;
minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap,
flags);
if (copy_from_user(&dirty, (void __user *)arg, minsz))
return -EFAULT;
if (dirty.argsz < minsz || dirty.flags & ~mask)
return -EINVAL;
/* only one flag should be set at a time */
if (__ffs(dirty.flags) != __fls(dirty.flags))
return -EINVAL;
if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
size_t pgsize;
mutex_lock(&iommu->lock);
pgsize = 1 << __ffs(iommu->pgsize_bitmap);
if (!iommu->dirty_page_tracking) {
ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
if (!ret)
iommu->dirty_page_tracking = true;
}
mutex_unlock(&iommu->lock);
return ret;
} else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
mutex_lock(&iommu->lock);
if (iommu->dirty_page_tracking) {
iommu->dirty_page_tracking = false;
vfio_dma_bitmap_free_all(iommu);
}
mutex_unlock(&iommu->lock);
return 0;
} else if (dirty.flags &
VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
struct vfio_iommu_type1_dirty_bitmap_get range;
unsigned long pgshift;
size_t data_size = dirty.argsz - minsz;
size_t iommu_pgsize;
if (!data_size || data_size < sizeof(range))
return -EINVAL;
if (copy_from_user(&range, (void __user *)(arg + minsz),
sizeof(range)))
return -EFAULT;
if (range.iova + range.size < range.iova)
return -EINVAL;
if (!access_ok((void __user *)range.bitmap.data,
range.bitmap.size))
return -EINVAL;
pgshift = __ffs(range.bitmap.pgsize);
ret = verify_bitmap_size(range.size >> pgshift,
range.bitmap.size);
if (ret)
return ret;
mutex_lock(&iommu->lock);
iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
/* allow only smallest supported pgsize */
if (range.bitmap.pgsize != iommu_pgsize) {
ret = -EINVAL;
goto out_unlock;
}
if (range.iova & (iommu_pgsize - 1)) {
ret = -EINVAL;
goto out_unlock;
}
if (!range.size || range.size & (iommu_pgsize - 1)) {
ret = -EINVAL;
goto out_unlock;
}
if (iommu->dirty_page_tracking)
ret = vfio_iova_dirty_bitmap(range.bitmap.data,
iommu, range.iova, range.size,
range.bitmap.pgsize);
else
ret = -EINVAL;
out_unlock:
mutex_unlock(&iommu->lock);
return ret;
}
}
return -ENOTTY;
@ -2344,10 +2828,19 @@ static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
vaddr = dma->vaddr + offset;
if (write)
if (write) {
*copied = copy_to_user((void __user *)vaddr, data,
count) ? 0 : count;
else
if (*copied && iommu->dirty_page_tracking) {
unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
/*
* Bitmap populated with the smallest supported page
* size
*/
bitmap_set(dma->bitmap, offset >> pgshift,
*copied >> pgshift);
}
} else
*copied = copy_from_user(data, (void __user *)vaddr,
count) ? 0 : count;
if (kthread)

View File

@ -76,7 +76,9 @@ struct vfio_iommu_driver_ops {
struct iommu_group *group);
void (*detach_group)(void *iommu_data,
struct iommu_group *group);
int (*pin_pages)(void *iommu_data, unsigned long *user_pfn,
int (*pin_pages)(void *iommu_data,
struct iommu_group *group,
unsigned long *user_pfn,
int npage, int prot,
unsigned long *phys_pfn);
int (*unpin_pages)(void *iommu_data,

View File

@ -305,6 +305,7 @@ struct vfio_region_info_cap_type {
#define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff)
#define VFIO_REGION_TYPE_GFX (1)
#define VFIO_REGION_TYPE_CCW (2)
#define VFIO_REGION_TYPE_MIGRATION (3)
/* sub-types for VFIO_REGION_TYPE_PCI_* */
@ -379,6 +380,233 @@ struct vfio_region_gfx_edid {
/* sub-types for VFIO_REGION_TYPE_CCW */
#define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1)
/* sub-types for VFIO_REGION_TYPE_MIGRATION */
#define VFIO_REGION_SUBTYPE_MIGRATION (1)
/*
* The structure vfio_device_migration_info is placed at the 0th offset of
* the VFIO_REGION_SUBTYPE_MIGRATION region to get and set VFIO device related
* migration information. Field accesses from this structure are only supported
* at their native width and alignment. Otherwise, the result is undefined and
* vendor drivers should return an error.
*
* device_state: (read/write)
* - The user application writes to this field to inform the vendor driver
* about the device state to be transitioned to.
* - The vendor driver should take the necessary actions to change the
* device state. After successful transition to a given state, the
* vendor driver should return success on write(device_state, state)
* system call. If the device state transition fails, the vendor driver
* should return an appropriate -errno for the fault condition.
* - On the user application side, if the device state transition fails,
* that is, if write(device_state, state) returns an error, read
* device_state again to determine the current state of the device from
* the vendor driver.
* - The vendor driver should return previous state of the device unless
* the vendor driver has encountered an internal error, in which case
* the vendor driver may report the device_state VFIO_DEVICE_STATE_ERROR.
* - The user application must use the device reset ioctl to recover the
* device from VFIO_DEVICE_STATE_ERROR state. If the device is
* indicated to be in a valid device state by reading device_state, the
* user application may attempt to transition the device to any valid
* state reachable from the current state or terminate itself.
*
* device_state consists of 3 bits:
* - If bit 0 is set, it indicates the _RUNNING state. If bit 0 is clear,
* it indicates the _STOP state. When the device state is changed to
* _STOP, driver should stop the device before write() returns.
* - If bit 1 is set, it indicates the _SAVING state, which means that the
* driver should start gathering device state information that will be
* provided to the VFIO user application to save the device's state.
* - If bit 2 is set, it indicates the _RESUMING state, which means that
* the driver should prepare to resume the device. Data provided through
* the migration region should be used to resume the device.
* Bits 3 - 31 are reserved for future use. To preserve them, the user
* application should perform a read-modify-write operation on this
* field when modifying the specified bits.
*
* +------- _RESUMING
* |+------ _SAVING
* ||+----- _RUNNING
* |||
* 000b => Device Stopped, not saving or resuming
* 001b => Device running, which is the default state
* 010b => Stop the device & save the device state, stop-and-copy state
* 011b => Device running and save the device state, pre-copy state
* 100b => Device stopped and the device state is resuming
* 101b => Invalid state
* 110b => Error state
* 111b => Invalid state
*
* State transitions:
*
* _RESUMING _RUNNING Pre-copy Stop-and-copy _STOP
* (100b) (001b) (011b) (010b) (000b)
* 0. Running or default state
* |
*
* 1. Normal Shutdown (optional)
* |------------------------------------->|
*
* 2. Save the state or suspend
* |------------------------->|---------->|
*
* 3. Save the state during live migration
* |----------->|------------>|---------->|
*
* 4. Resuming
* |<---------|
*
* 5. Resumed
* |--------->|
*
* 0. Default state of VFIO device is _RUNNNG when the user application starts.
* 1. During normal shutdown of the user application, the user application may
* optionally change the VFIO device state from _RUNNING to _STOP. This
* transition is optional. The vendor driver must support this transition but
* must not require it.
* 2. When the user application saves state or suspends the application, the
* device state transitions from _RUNNING to stop-and-copy and then to _STOP.
* On state transition from _RUNNING to stop-and-copy, driver must stop the
* device, save the device state and send it to the application through the
* migration region. The sequence to be followed for such transition is given
* below.
* 3. In live migration of user application, the state transitions from _RUNNING
* to pre-copy, to stop-and-copy, and to _STOP.
* On state transition from _RUNNING to pre-copy, the driver should start
* gathering the device state while the application is still running and send
* the device state data to application through the migration region.
* On state transition from pre-copy to stop-and-copy, the driver must stop
* the device, save the device state and send it to the user application
* through the migration region.
* Vendor drivers must support the pre-copy state even for implementations
* where no data is provided to the user before the stop-and-copy state. The
* user must not be required to consume all migration data before the device
* transitions to a new state, including the stop-and-copy state.
* The sequence to be followed for above two transitions is given below.
* 4. To start the resuming phase, the device state should be transitioned from
* the _RUNNING to the _RESUMING state.
* In the _RESUMING state, the driver should use the device state data
* received through the migration region to resume the device.
* 5. After providing saved device data to the driver, the application should
* change the state from _RESUMING to _RUNNING.
*
* reserved:
* Reads on this field return zero and writes are ignored.
*
* pending_bytes: (read only)
* The number of pending bytes still to be migrated from the vendor driver.
*
* data_offset: (read only)
* The user application should read data_offset field from the migration
* region. The user application should read the device data from this
* offset within the migration region during the _SAVING state or write
* the device data during the _RESUMING state. See below for details of
* sequence to be followed.
*
* data_size: (read/write)
* The user application should read data_size to get the size in bytes of
* the data copied in the migration region during the _SAVING state and
* write the size in bytes of the data copied in the migration region
* during the _RESUMING state.
*
* The format of the migration region is as follows:
* ------------------------------------------------------------------
* |vfio_device_migration_info| data section |
* | | /////////////////////////////// |
* ------------------------------------------------------------------
* ^ ^
* offset 0-trapped part data_offset
*
* The structure vfio_device_migration_info is always followed by the data
* section in the region, so data_offset will always be nonzero. The offset
* from where the data is copied is decided by the kernel driver. The data
* section can be trapped, mmapped, or partitioned, depending on how the kernel
* driver defines the data section. The data section partition can be defined
* as mapped by the sparse mmap capability. If mmapped, data_offset must be
* page aligned, whereas initial section which contains the
* vfio_device_migration_info structure, might not end at the offset, which is
* page aligned. The user is not required to access through mmap regardless
* of the capabilities of the region mmap.
* The vendor driver should determine whether and how to partition the data
* section. The vendor driver should return data_offset accordingly.
*
* The sequence to be followed while in pre-copy state and stop-and-copy state
* is as follows:
* a. Read pending_bytes, indicating the start of a new iteration to get device
* data. Repeated read on pending_bytes at this stage should have no side
* effects.
* If pending_bytes == 0, the user application should not iterate to get data
* for that device.
* If pending_bytes > 0, perform the following steps.
* b. Read data_offset, indicating that the vendor driver should make data
* available through the data section. The vendor driver should return this
* read operation only after data is available from (region + data_offset)
* to (region + data_offset + data_size).
* c. Read data_size, which is the amount of data in bytes available through
* the migration region.
* Read on data_offset and data_size should return the offset and size of
* the current buffer if the user application reads data_offset and
* data_size more than once here.
* d. Read data_size bytes of data from (region + data_offset) from the
* migration region.
* e. Process the data.
* f. Read pending_bytes, which indicates that the data from the previous
* iteration has been read. If pending_bytes > 0, go to step b.
*
* The user application can transition from the _SAVING|_RUNNING
* (pre-copy state) to the _SAVING (stop-and-copy) state regardless of the
* number of pending bytes. The user application should iterate in _SAVING
* (stop-and-copy) until pending_bytes is 0.
*
* The sequence to be followed while _RESUMING device state is as follows:
* While data for this device is available, repeat the following steps:
* a. Read data_offset from where the user application should write data.
* b. Write migration data starting at the migration region + data_offset for
* the length determined by data_size from the migration source.
* c. Write data_size, which indicates to the vendor driver that data is
* written in the migration region. Vendor driver must return this write
* operations on consuming data. Vendor driver should apply the
* user-provided migration region data to the device resume state.
*
* If an error occurs during the above sequences, the vendor driver can return
* an error code for next read() or write() operation, which will terminate the
* loop. The user application should then take the next necessary action, for
* example, failing migration or terminating the user application.
*
* For the user application, data is opaque. The user application should write
* data in the same order as the data is received and the data should be of
* same transaction size at the source.
*/
struct vfio_device_migration_info {
__u32 device_state; /* VFIO device state */
#define VFIO_DEVICE_STATE_STOP (0)
#define VFIO_DEVICE_STATE_RUNNING (1 << 0)
#define VFIO_DEVICE_STATE_SAVING (1 << 1)
#define VFIO_DEVICE_STATE_RESUMING (1 << 2)
#define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_RUNNING | \
VFIO_DEVICE_STATE_SAVING | \
VFIO_DEVICE_STATE_RESUMING)
#define VFIO_DEVICE_STATE_VALID(state) \
(state & VFIO_DEVICE_STATE_RESUMING ? \
(state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_RESUMING : 1)
#define VFIO_DEVICE_STATE_IS_ERROR(state) \
((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_SAVING | \
VFIO_DEVICE_STATE_RESUMING))
#define VFIO_DEVICE_STATE_SET_ERROR(state) \
((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_SATE_SAVING | \
VFIO_DEVICE_STATE_RESUMING)
__u32 reserved;
__u64 pending_bytes;
__u64 data_offset;
__u64 data_size;
};
/*
* The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
* which allows direct access to non-MSIX registers which happened to be within
@ -785,6 +1013,29 @@ struct vfio_iommu_type1_info_cap_iova_range {
struct vfio_iova_range iova_ranges[];
};
/*
* The migration capability allows to report supported features for migration.
*
* The structures below define version 1 of this capability.
*
* The existence of this capability indicates that IOMMU kernel driver supports
* dirty page logging.
*
* pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
* page logging.
* max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
* size in bytes that can be used by user applications when getting the dirty
* bitmap.
*/
#define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 1
struct vfio_iommu_type1_info_cap_migration {
struct vfio_info_cap_header header;
__u32 flags;
__u64 pgsize_bitmap;
__u64 max_dirty_bitmap_size; /* in bytes */
};
#define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
/**
@ -805,6 +1056,12 @@ struct vfio_iommu_type1_dma_map {
#define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
struct vfio_bitmap {
__u64 pgsize; /* page size for bitmap in bytes */
__u64 size; /* in bytes */
__u64 __user *data; /* one bit per page */
};
/**
* VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
* struct vfio_dma_unmap)
@ -814,12 +1071,23 @@ struct vfio_iommu_type1_dma_map {
* field. No guarantee is made to the user that arbitrary unmaps of iova
* or size different from those used in the original mapping call will
* succeed.
* VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
* before unmapping IO virtual addresses. When this flag is set, the user must
* provide a struct vfio_bitmap in data[]. User must provide zero-allocated
* memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
* A bit in the bitmap represents one page, of user provided page size in
* vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
* indicates that the page at that offset from iova is dirty. A Bitmap of the
* pages in the range of unmapped size is returned in the user-provided
* vfio_bitmap.data.
*/
struct vfio_iommu_type1_dma_unmap {
__u32 argsz;
__u32 flags;
#define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
__u64 iova; /* IO virtual address */
__u64 size; /* Size of mapping (bytes) */
__u8 data[];
};
#define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
@ -831,6 +1099,57 @@ struct vfio_iommu_type1_dma_unmap {
#define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15)
#define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16)
/**
* VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
* struct vfio_iommu_type1_dirty_bitmap)
* IOCTL is used for dirty pages logging.
* Caller should set flag depending on which operation to perform, details as
* below:
*
* Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
* the IOMMU driver to log pages that are dirtied or potentially dirtied by
* the device; designed to be used when a migration is in progress. Dirty pages
* are logged until logging is disabled by user application by calling the IOCTL
* with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
*
* Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
* the IOMMU driver to stop logging dirtied pages.
*
* Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
* returns the dirty pages bitmap for IOMMU container for a given IOVA range.
* The user must specify the IOVA range and the pgsize through the structure
* vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
* supports getting a bitmap of the smallest supported pgsize only and can be
* modified in future to get a bitmap of any specified supported pgsize. The
* user must provide a zeroed memory area for the bitmap memory and specify its
* size in bitmap.size. One bit is used to represent one page consecutively
* starting from iova offset. The user should provide page size in bitmap.pgsize
* field. A bit set in the bitmap indicates that the page at that offset from
* iova is dirty. The caller must set argsz to a value including the size of
* structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
* actual bitmap. If dirty pages logging is not enabled, an error will be
* returned.
*
* Only one of the flags _START, _STOP and _GET may be specified at a time.
*
*/
struct vfio_iommu_type1_dirty_bitmap {
__u32 argsz;
__u32 flags;
#define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0)
#define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1)
#define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2)
__u8 data[];
};
struct vfio_iommu_type1_dirty_bitmap_get {
__u64 iova; /* IO virtual address */
__u64 size; /* Size of iova range */
struct vfio_bitmap bitmap;
};
#define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17)
/* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
/*