[PATCH] sched: clean up fallout of recent changes

Clean up some of the impact of recent (and not so recent) scheduler
changes:

 - turning macros into nice inline functions
 - sanitizing and unifying variable definitions
 - whitespace, style consistency, 80-lines, comment correctness, spelling
   and curly braces police

Due to the macro hell and variable placement simplifications there's even 26
bytes of .text saved:

   text    data     bss     dec     hex filename
  25510    4153     192   29855    749f sched.o.before
  25484    4153     192   29829    7485 sched.o.after

[akpm@osdl.org: build fix]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
Ingo Molnar 2006-07-03 00:25:40 -07:00 committed by Linus Torvalds
parent 829035fd70
commit 48f24c4da1

View File

@ -184,9 +184,6 @@ static inline unsigned int task_timeslice(task_t *p)
return static_prio_timeslice(p->static_prio); return static_prio_timeslice(p->static_prio);
} }
#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
< (long long) (sd)->cache_hot_time)
/* /*
* These are the runqueue data structures: * These are the runqueue data structures:
*/ */
@ -278,8 +275,8 @@ static DEFINE_PER_CPU(struct runqueue, runqueues);
* The domain tree of any CPU may only be accessed from within * The domain tree of any CPU may only be accessed from within
* preempt-disabled sections. * preempt-disabled sections.
*/ */
#define for_each_domain(cpu, domain) \ #define for_each_domain(cpu, __sd) \
for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent) for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
#define this_rq() (&__get_cpu_var(runqueues)) #define this_rq() (&__get_cpu_var(runqueues))
@ -1039,6 +1036,7 @@ static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
req->task = p; req->task = p;
req->dest_cpu = dest_cpu; req->dest_cpu = dest_cpu;
list_add(&req->list, &rq->migration_queue); list_add(&req->list, &rq->migration_queue);
return 1; return 1;
} }
@ -1135,7 +1133,7 @@ static inline unsigned long cpu_avg_load_per_task(int cpu)
runqueue_t *rq = cpu_rq(cpu); runqueue_t *rq = cpu_rq(cpu);
unsigned long n = rq->nr_running; unsigned long n = rq->nr_running;
return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE; return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
} }
/* /*
@ -1494,7 +1492,6 @@ int fastcall wake_up_process(task_t *p)
return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED | return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0); TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
} }
EXPORT_SYMBOL(wake_up_process); EXPORT_SYMBOL(wake_up_process);
int fastcall wake_up_state(task_t *p, unsigned int state) int fastcall wake_up_state(task_t *p, unsigned int state)
@ -1866,6 +1863,15 @@ unsigned long nr_active(void)
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
/*
* Is this task likely cache-hot:
*/
static inline int
task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
{
return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
}
/* /*
* double_rq_lock - safely lock two runqueues * double_rq_lock - safely lock two runqueues
* *
@ -2029,6 +2035,7 @@ int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
} }
#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio) #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
/* /*
* move_tasks tries to move up to max_nr_move tasks and max_load_move weighted * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
* load from busiest to this_rq, as part of a balancing operation within * load from busiest to this_rq, as part of a balancing operation within
@ -2041,11 +2048,10 @@ static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
struct sched_domain *sd, enum idle_type idle, struct sched_domain *sd, enum idle_type idle,
int *all_pinned) int *all_pinned)
{ {
int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
best_prio_seen, skip_for_load;
prio_array_t *array, *dst_array; prio_array_t *array, *dst_array;
struct list_head *head, *curr; struct list_head *head, *curr;
int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio;
int busiest_best_prio_seen;
int skip_for_load; /* skip the task based on weighted load issues */
long rem_load_move; long rem_load_move;
task_t *tmp; task_t *tmp;
@ -2055,15 +2061,15 @@ static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
rem_load_move = max_load_move; rem_load_move = max_load_move;
pinned = 1; pinned = 1;
this_best_prio = rq_best_prio(this_rq); this_best_prio = rq_best_prio(this_rq);
busiest_best_prio = rq_best_prio(busiest); best_prio = rq_best_prio(busiest);
/* /*
* Enable handling of the case where there is more than one task * Enable handling of the case where there is more than one task
* with the best priority. If the current running task is one * with the best priority. If the current running task is one
* of those with prio==busiest_best_prio we know it won't be moved * of those with prio==best_prio we know it won't be moved
* and therefore it's safe to override the skip (based on load) of * and therefore it's safe to override the skip (based on load) of
* any task we find with that prio. * any task we find with that prio.
*/ */
busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio; best_prio_seen = best_prio == busiest->curr->prio;
/* /*
* We first consider expired tasks. Those will likely not be * We first consider expired tasks. Those will likely not be
@ -2110,10 +2116,11 @@ skip_queue:
*/ */
skip_for_load = tmp->load_weight > rem_load_move; skip_for_load = tmp->load_weight > rem_load_move;
if (skip_for_load && idx < this_best_prio) if (skip_for_load && idx < this_best_prio)
skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio; skip_for_load = !best_prio_seen && idx == best_prio;
if (skip_for_load || if (skip_for_load ||
!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) { !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
busiest_best_prio_seen |= idx == busiest_best_prio;
best_prio_seen |= idx == best_prio;
if (curr != head) if (curr != head)
goto skip_queue; goto skip_queue;
idx++; idx++;
@ -2156,8 +2163,8 @@ out:
/* /*
* find_busiest_group finds and returns the busiest CPU group within the * find_busiest_group finds and returns the busiest CPU group within the
* domain. It calculates and returns the amount of weighted load which should be * domain. It calculates and returns the amount of weighted load which
* moved to restore balance via the imbalance parameter. * should be moved to restore balance via the imbalance parameter.
*/ */
static struct sched_group * static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu, find_busiest_group(struct sched_domain *sd, int this_cpu,
@ -2279,7 +2286,7 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
* capacity but still has some space to pick up some load * capacity but still has some space to pick up some load
* from other group and save more power * from other group and save more power
*/ */
if (sum_nr_running <= group_capacity - 1) if (sum_nr_running <= group_capacity - 1) {
if (sum_nr_running > leader_nr_running || if (sum_nr_running > leader_nr_running ||
(sum_nr_running == leader_nr_running && (sum_nr_running == leader_nr_running &&
first_cpu(group->cpumask) > first_cpu(group->cpumask) >
@ -2287,7 +2294,7 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
group_leader = group; group_leader = group;
leader_nr_running = sum_nr_running; leader_nr_running = sum_nr_running;
} }
}
group_next: group_next:
#endif #endif
group = group->next; group = group->next;
@ -2342,8 +2349,7 @@ group_next:
* moved * moved
*/ */
if (*imbalance < busiest_load_per_task) { if (*imbalance < busiest_load_per_task) {
unsigned long pwr_now, pwr_move; unsigned long tmp, pwr_now, pwr_move;
unsigned long tmp;
unsigned int imbn; unsigned int imbn;
small_imbalance: small_imbalance:
@ -2415,22 +2421,23 @@ ret:
/* /*
* find_busiest_queue - find the busiest runqueue among the cpus in group. * find_busiest_queue - find the busiest runqueue among the cpus in group.
*/ */
static runqueue_t *find_busiest_queue(struct sched_group *group, static runqueue_t *
enum idle_type idle, unsigned long imbalance) find_busiest_queue(struct sched_group *group, enum idle_type idle,
unsigned long imbalance)
{ {
runqueue_t *busiest = NULL, *rq;
unsigned long max_load = 0; unsigned long max_load = 0;
runqueue_t *busiest = NULL, *rqi;
int i; int i;
for_each_cpu_mask(i, group->cpumask) { for_each_cpu_mask(i, group->cpumask) {
rqi = cpu_rq(i); rq = cpu_rq(i);
if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance) if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
continue; continue;
if (rqi->raw_weighted_load > max_load) { if (rq->raw_weighted_load > max_load) {
max_load = rqi->raw_weighted_load; max_load = rq->raw_weighted_load;
busiest = rqi; busiest = rq;
} }
} }
@ -2443,7 +2450,11 @@ static runqueue_t *find_busiest_queue(struct sched_group *group,
*/ */
#define MAX_PINNED_INTERVAL 512 #define MAX_PINNED_INTERVAL 512
#define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0) static inline unsigned long minus_1_or_zero(unsigned long n)
{
return n > 0 ? n - 1 : 0;
}
/* /*
* Check this_cpu to ensure it is balanced within domain. Attempt to move * Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance. * tasks if there is an imbalance.
@ -2453,12 +2464,10 @@ static runqueue_t *find_busiest_queue(struct sched_group *group,
static int load_balance(int this_cpu, runqueue_t *this_rq, static int load_balance(int this_cpu, runqueue_t *this_rq,
struct sched_domain *sd, enum idle_type idle) struct sched_domain *sd, enum idle_type idle)
{ {
int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
struct sched_group *group; struct sched_group *group;
runqueue_t *busiest;
unsigned long imbalance; unsigned long imbalance;
int nr_moved, all_pinned = 0; runqueue_t *busiest;
int active_balance = 0;
int sd_idle = 0;
if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
!sched_smt_power_savings) !sched_smt_power_savings)
@ -2492,8 +2501,8 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,
*/ */
double_rq_lock(this_rq, busiest); double_rq_lock(this_rq, busiest);
nr_moved = move_tasks(this_rq, this_cpu, busiest, nr_moved = move_tasks(this_rq, this_cpu, busiest,
minus_1_or_zero(busiest->nr_running), minus_1_or_zero(busiest->nr_running),
imbalance, sd, idle, &all_pinned); imbalance, sd, idle, &all_pinned);
double_rq_unlock(this_rq, busiest); double_rq_unlock(this_rq, busiest);
/* All tasks on this runqueue were pinned by CPU affinity */ /* All tasks on this runqueue were pinned by CPU affinity */
@ -2566,7 +2575,8 @@ out_one_pinned:
(sd->balance_interval < sd->max_interval)) (sd->balance_interval < sd->max_interval))
sd->balance_interval *= 2; sd->balance_interval *= 2;
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings) if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!sched_smt_power_savings)
return -1; return -1;
return 0; return 0;
} }
@ -2578,8 +2588,8 @@ out_one_pinned:
* Called from schedule when this_rq is about to become idle (NEWLY_IDLE). * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
* this_rq is locked. * this_rq is locked.
*/ */
static int load_balance_newidle(int this_cpu, runqueue_t *this_rq, static int
struct sched_domain *sd) load_balance_newidle(int this_cpu, runqueue_t *this_rq, struct sched_domain *sd)
{ {
struct sched_group *group; struct sched_group *group;
runqueue_t *busiest = NULL; runqueue_t *busiest = NULL;
@ -2628,9 +2638,11 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
out_balanced: out_balanced:
schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings) if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!sched_smt_power_savings)
return -1; return -1;
sd->nr_balance_failed = 0; sd->nr_balance_failed = 0;
return 0; return 0;
} }
@ -2644,10 +2656,9 @@ static void idle_balance(int this_cpu, runqueue_t *this_rq)
for_each_domain(this_cpu, sd) { for_each_domain(this_cpu, sd) {
if (sd->flags & SD_BALANCE_NEWIDLE) { if (sd->flags & SD_BALANCE_NEWIDLE) {
if (load_balance_newidle(this_cpu, this_rq, sd)) { /* If we've pulled tasks over stop searching: */
/* We've pulled tasks over so stop searching */ if (load_balance_newidle(this_cpu, this_rq, sd))
break; break;
}
} }
} }
} }
@ -2666,8 +2677,8 @@ static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
runqueue_t *target_rq; runqueue_t *target_rq;
int target_cpu = busiest_rq->push_cpu; int target_cpu = busiest_rq->push_cpu;
/* Is there any task to move? */
if (busiest_rq->nr_running <= 1) if (busiest_rq->nr_running <= 1)
/* no task to move */
return; return;
target_rq = cpu_rq(target_cpu); target_rq = cpu_rq(target_cpu);
@ -2685,21 +2696,20 @@ static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
/* Search for an sd spanning us and the target CPU. */ /* Search for an sd spanning us and the target CPU. */
for_each_domain(target_cpu, sd) { for_each_domain(target_cpu, sd) {
if ((sd->flags & SD_LOAD_BALANCE) && if ((sd->flags & SD_LOAD_BALANCE) &&
cpu_isset(busiest_cpu, sd->span)) cpu_isset(busiest_cpu, sd->span))
break; break;
} }
if (unlikely(sd == NULL)) if (likely(sd)) {
goto out; schedstat_inc(sd, alb_cnt);
schedstat_inc(sd, alb_cnt); if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
if (move_tasks(target_rq, target_cpu, busiest_rq, 1, NULL))
RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL)) schedstat_inc(sd, alb_pushed);
schedstat_inc(sd, alb_pushed); else
else schedstat_inc(sd, alb_failed);
schedstat_inc(sd, alb_failed); }
out:
spin_unlock(&target_rq->lock); spin_unlock(&target_rq->lock);
} }
@ -2712,23 +2722,27 @@ out:
* Balancing parameters are set up in arch_init_sched_domains. * Balancing parameters are set up in arch_init_sched_domains.
*/ */
/* Don't have all balancing operations going off at once */ /* Don't have all balancing operations going off at once: */
#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS) static inline unsigned long cpu_offset(int cpu)
static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
enum idle_type idle)
{ {
unsigned long old_load, this_load; return jiffies + cpu * HZ / NR_CPUS;
unsigned long j = jiffies + CPU_OFFSET(this_cpu); }
static void
rebalance_tick(int this_cpu, runqueue_t *this_rq, enum idle_type idle)
{
unsigned long this_load, interval, j = cpu_offset(this_cpu);
struct sched_domain *sd; struct sched_domain *sd;
int i; int i, scale;
this_load = this_rq->raw_weighted_load; this_load = this_rq->raw_weighted_load;
/* Update our load */
for (i = 0; i < 3; i++) { /* Update our load: */
unsigned long new_load = this_load; for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
int scale = 1 << i; unsigned long old_load, new_load;
old_load = this_rq->cpu_load[i]; old_load = this_rq->cpu_load[i];
new_load = this_load;
/* /*
* Round up the averaging division if load is increasing. This * Round up the averaging division if load is increasing. This
* prevents us from getting stuck on 9 if the load is 10, for * prevents us from getting stuck on 9 if the load is 10, for
@ -2740,8 +2754,6 @@ static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
} }
for_each_domain(this_cpu, sd) { for_each_domain(this_cpu, sd) {
unsigned long interval;
if (!(sd->flags & SD_LOAD_BALANCE)) if (!(sd->flags & SD_LOAD_BALANCE))
continue; continue;
@ -2782,6 +2794,7 @@ static inline void idle_balance(int cpu, runqueue_t *rq)
static inline int wake_priority_sleeper(runqueue_t *rq) static inline int wake_priority_sleeper(runqueue_t *rq)
{ {
int ret = 0; int ret = 0;
#ifdef CONFIG_SCHED_SMT #ifdef CONFIG_SCHED_SMT
spin_lock(&rq->lock); spin_lock(&rq->lock);
/* /*
@ -2805,25 +2818,26 @@ EXPORT_PER_CPU_SYMBOL(kstat);
* This is called on clock ticks and on context switches. * This is called on clock ticks and on context switches.
* Bank in p->sched_time the ns elapsed since the last tick or switch. * Bank in p->sched_time the ns elapsed since the last tick or switch.
*/ */
static inline void update_cpu_clock(task_t *p, runqueue_t *rq, static inline void
unsigned long long now) update_cpu_clock(task_t *p, runqueue_t *rq, unsigned long long now)
{ {
unsigned long long last = max(p->timestamp, rq->timestamp_last_tick); p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
p->sched_time += now - last;
} }
/* /*
* Return current->sched_time plus any more ns on the sched_clock * Return current->sched_time plus any more ns on the sched_clock
* that have not yet been banked. * that have not yet been banked.
*/ */
unsigned long long current_sched_time(const task_t *tsk) unsigned long long current_sched_time(const task_t *p)
{ {
unsigned long long ns; unsigned long long ns;
unsigned long flags; unsigned long flags;
local_irq_save(flags); local_irq_save(flags);
ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick); ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
ns = tsk->sched_time + (sched_clock() - ns); ns = p->sched_time + sched_clock() - ns;
local_irq_restore(flags); local_irq_restore(flags);
return ns; return ns;
} }
@ -2837,11 +2851,16 @@ unsigned long long current_sched_time(const task_t *tsk)
* increasing number of running tasks. We also ignore the interactivity * increasing number of running tasks. We also ignore the interactivity
* if a better static_prio task has expired: * if a better static_prio task has expired:
*/ */
#define EXPIRED_STARVING(rq) \ static inline int expired_starving(runqueue_t *rq)
((STARVATION_LIMIT && ((rq)->expired_timestamp && \ {
(jiffies - (rq)->expired_timestamp >= \ if (rq->curr->static_prio > rq->best_expired_prio)
STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \ return 1;
((rq)->curr->static_prio > (rq)->best_expired_prio)) if (!STARVATION_LIMIT || !rq->expired_timestamp)
return 0;
if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
return 1;
return 0;
}
/* /*
* Account user cpu time to a process. * Account user cpu time to a process.
@ -2925,10 +2944,10 @@ void account_steal_time(struct task_struct *p, cputime_t steal)
*/ */
void scheduler_tick(void) void scheduler_tick(void)
{ {
unsigned long long now = sched_clock();
int cpu = smp_processor_id(); int cpu = smp_processor_id();
runqueue_t *rq = this_rq(); runqueue_t *rq = this_rq();
task_t *p = current; task_t *p = current;
unsigned long long now = sched_clock();
update_cpu_clock(p, rq, now); update_cpu_clock(p, rq, now);
@ -2978,7 +2997,7 @@ void scheduler_tick(void)
if (!rq->expired_timestamp) if (!rq->expired_timestamp)
rq->expired_timestamp = jiffies; rq->expired_timestamp = jiffies;
if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) { if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
enqueue_task(p, rq->expired); enqueue_task(p, rq->expired);
if (p->static_prio < rq->best_expired_prio) if (p->static_prio < rq->best_expired_prio)
rq->best_expired_prio = p->static_prio; rq->best_expired_prio = p->static_prio;
@ -3137,9 +3156,8 @@ unlock:
static inline void wake_sleeping_dependent(int this_cpu) static inline void wake_sleeping_dependent(int this_cpu)
{ {
} }
static inline int
static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq, dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
task_t *p)
{ {
return 0; return 0;
} }
@ -3193,14 +3211,14 @@ static inline int interactive_sleep(enum sleep_type sleep_type)
*/ */
asmlinkage void __sched schedule(void) asmlinkage void __sched schedule(void)
{ {
long *switch_count;
task_t *prev, *next;
runqueue_t *rq;
prio_array_t *array;
struct list_head *queue; struct list_head *queue;
unsigned long long now; unsigned long long now;
unsigned long run_time; unsigned long run_time;
int cpu, idx, new_prio; int cpu, idx, new_prio;
task_t *prev, *next;
prio_array_t *array;
long *switch_count;
runqueue_t *rq;
/* /*
* Test if we are atomic. Since do_exit() needs to call into * Test if we are atomic. Since do_exit() needs to call into
@ -3353,7 +3371,6 @@ switch_tasks:
if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
goto need_resched; goto need_resched;
} }
EXPORT_SYMBOL(schedule); EXPORT_SYMBOL(schedule);
#ifdef CONFIG_PREEMPT #ifdef CONFIG_PREEMPT
@ -3398,7 +3415,6 @@ need_resched:
if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
goto need_resched; goto need_resched;
} }
EXPORT_SYMBOL(preempt_schedule); EXPORT_SYMBOL(preempt_schedule);
/* /*
@ -3447,10 +3463,8 @@ need_resched:
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
void *key) void *key)
{ {
task_t *p = curr->private; return try_to_wake_up(curr->private, mode, sync);
return try_to_wake_up(p, mode, sync);
} }
EXPORT_SYMBOL(default_wake_function); EXPORT_SYMBOL(default_wake_function);
/* /*
@ -3468,13 +3482,11 @@ static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
struct list_head *tmp, *next; struct list_head *tmp, *next;
list_for_each_safe(tmp, next, &q->task_list) { list_for_each_safe(tmp, next, &q->task_list) {
wait_queue_t *curr; wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
unsigned flags; unsigned flags = curr->flags;
curr = list_entry(tmp, wait_queue_t, task_list);
flags = curr->flags;
if (curr->func(curr, mode, sync, key) && if (curr->func(curr, mode, sync, key) &&
(flags & WQ_FLAG_EXCLUSIVE) && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
!--nr_exclusive)
break; break;
} }
} }
@ -3495,7 +3507,6 @@ void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
__wake_up_common(q, mode, nr_exclusive, 0, key); __wake_up_common(q, mode, nr_exclusive, 0, key);
spin_unlock_irqrestore(&q->lock, flags); spin_unlock_irqrestore(&q->lock, flags);
} }
EXPORT_SYMBOL(__wake_up); EXPORT_SYMBOL(__wake_up);
/* /*
@ -3564,6 +3575,7 @@ EXPORT_SYMBOL(complete_all);
void fastcall __sched wait_for_completion(struct completion *x) void fastcall __sched wait_for_completion(struct completion *x)
{ {
might_sleep(); might_sleep();
spin_lock_irq(&x->wait.lock); spin_lock_irq(&x->wait.lock);
if (!x->done) { if (!x->done) {
DECLARE_WAITQUEUE(wait, current); DECLARE_WAITQUEUE(wait, current);
@ -3708,7 +3720,6 @@ void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
schedule(); schedule();
SLEEP_ON_TAIL SLEEP_ON_TAIL
} }
EXPORT_SYMBOL(interruptible_sleep_on); EXPORT_SYMBOL(interruptible_sleep_on);
long fastcall __sched long fastcall __sched
@ -3724,7 +3735,6 @@ interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
return timeout; return timeout;
} }
EXPORT_SYMBOL(interruptible_sleep_on_timeout); EXPORT_SYMBOL(interruptible_sleep_on_timeout);
void fastcall __sched sleep_on(wait_queue_head_t *q) void fastcall __sched sleep_on(wait_queue_head_t *q)
@ -3737,7 +3747,6 @@ void fastcall __sched sleep_on(wait_queue_head_t *q)
schedule(); schedule();
SLEEP_ON_TAIL SLEEP_ON_TAIL
} }
EXPORT_SYMBOL(sleep_on); EXPORT_SYMBOL(sleep_on);
long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
@ -3810,10 +3819,10 @@ void rt_mutex_setprio(task_t *p, int prio)
void set_user_nice(task_t *p, long nice) void set_user_nice(task_t *p, long nice)
{ {
int old_prio, delta;
unsigned long flags; unsigned long flags;
prio_array_t *array; prio_array_t *array;
runqueue_t *rq; runqueue_t *rq;
int old_prio, delta;
if (TASK_NICE(p) == nice || nice < -20 || nice > 19) if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
return; return;
@ -3868,6 +3877,7 @@ int can_nice(const task_t *p, const int nice)
{ {
/* convert nice value [19,-20] to rlimit style value [1,40] */ /* convert nice value [19,-20] to rlimit style value [1,40] */
int nice_rlim = 20 - nice; int nice_rlim = 20 - nice;
return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
capable(CAP_SYS_NICE)); capable(CAP_SYS_NICE));
} }
@ -3883,8 +3893,7 @@ int can_nice(const task_t *p, const int nice)
*/ */
asmlinkage long sys_nice(int increment) asmlinkage long sys_nice(int increment)
{ {
int retval; long nice, retval;
long nice;
/* /*
* Setpriority might change our priority at the same moment. * Setpriority might change our priority at the same moment.
@ -3969,6 +3978,7 @@ static inline task_t *find_process_by_pid(pid_t pid)
static void __setscheduler(struct task_struct *p, int policy, int prio) static void __setscheduler(struct task_struct *p, int policy, int prio)
{ {
BUG_ON(p->array); BUG_ON(p->array);
p->policy = policy; p->policy = policy;
p->rt_priority = prio; p->rt_priority = prio;
p->normal_prio = normal_prio(p); p->normal_prio = normal_prio(p);
@ -3992,8 +4002,7 @@ static void __setscheduler(struct task_struct *p, int policy, int prio)
int sched_setscheduler(struct task_struct *p, int policy, int sched_setscheduler(struct task_struct *p, int policy,
struct sched_param *param) struct sched_param *param)
{ {
int retval; int retval, oldprio, oldpolicy = -1;
int oldprio, oldpolicy = -1;
prio_array_t *array; prio_array_t *array;
unsigned long flags; unsigned long flags;
runqueue_t *rq; runqueue_t *rq;
@ -4495,7 +4504,6 @@ void __sched yield(void)
set_current_state(TASK_RUNNING); set_current_state(TASK_RUNNING);
sys_sched_yield(); sys_sched_yield();
} }
EXPORT_SYMBOL(yield); EXPORT_SYMBOL(yield);
/* /*
@ -4513,7 +4521,6 @@ void __sched io_schedule(void)
schedule(); schedule();
atomic_dec(&rq->nr_iowait); atomic_dec(&rq->nr_iowait);
} }
EXPORT_SYMBOL(io_schedule); EXPORT_SYMBOL(io_schedule);
long __sched io_schedule_timeout(long timeout) long __sched io_schedule_timeout(long timeout)
@ -4615,19 +4622,22 @@ out_unlock:
static inline struct task_struct *eldest_child(struct task_struct *p) static inline struct task_struct *eldest_child(struct task_struct *p)
{ {
if (list_empty(&p->children)) return NULL; if (list_empty(&p->children))
return NULL;
return list_entry(p->children.next,struct task_struct,sibling); return list_entry(p->children.next,struct task_struct,sibling);
} }
static inline struct task_struct *older_sibling(struct task_struct *p) static inline struct task_struct *older_sibling(struct task_struct *p)
{ {
if (p->sibling.prev==&p->parent->children) return NULL; if (p->sibling.prev==&p->parent->children)
return NULL;
return list_entry(p->sibling.prev,struct task_struct,sibling); return list_entry(p->sibling.prev,struct task_struct,sibling);
} }
static inline struct task_struct *younger_sibling(struct task_struct *p) static inline struct task_struct *younger_sibling(struct task_struct *p)
{ {
if (p->sibling.next==&p->parent->children) return NULL; if (p->sibling.next==&p->parent->children)
return NULL;
return list_entry(p->sibling.next,struct task_struct,sibling); return list_entry(p->sibling.next,struct task_struct,sibling);
} }
@ -4786,9 +4796,9 @@ cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
int set_cpus_allowed(task_t *p, cpumask_t new_mask) int set_cpus_allowed(task_t *p, cpumask_t new_mask)
{ {
unsigned long flags; unsigned long flags;
int ret = 0;
migration_req_t req; migration_req_t req;
runqueue_t *rq; runqueue_t *rq;
int ret = 0;
rq = task_rq_lock(p, &flags); rq = task_rq_lock(p, &flags);
if (!cpus_intersects(new_mask, cpu_online_map)) { if (!cpus_intersects(new_mask, cpu_online_map)) {
@ -4811,9 +4821,9 @@ int set_cpus_allowed(task_t *p, cpumask_t new_mask)
} }
out: out:
task_rq_unlock(rq, &flags); task_rq_unlock(rq, &flags);
return ret; return ret;
} }
EXPORT_SYMBOL_GPL(set_cpus_allowed); EXPORT_SYMBOL_GPL(set_cpus_allowed);
/* /*
@ -4874,8 +4884,8 @@ out:
*/ */
static int migration_thread(void *data) static int migration_thread(void *data)
{ {
runqueue_t *rq;
int cpu = (long)data; int cpu = (long)data;
runqueue_t *rq;
rq = cpu_rq(cpu); rq = cpu_rq(cpu);
BUG_ON(rq->migration_thread != current); BUG_ON(rq->migration_thread != current);
@ -4932,7 +4942,7 @@ wait_to_die:
#ifdef CONFIG_HOTPLUG_CPU #ifdef CONFIG_HOTPLUG_CPU
/* Figure out where task on dead CPU should go, use force if neccessary. */ /* Figure out where task on dead CPU should go, use force if neccessary. */
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk) static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
{ {
runqueue_t *rq; runqueue_t *rq;
unsigned long flags; unsigned long flags;
@ -4942,18 +4952,18 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
restart: restart:
/* On same node? */ /* On same node? */
mask = node_to_cpumask(cpu_to_node(dead_cpu)); mask = node_to_cpumask(cpu_to_node(dead_cpu));
cpus_and(mask, mask, tsk->cpus_allowed); cpus_and(mask, mask, p->cpus_allowed);
dest_cpu = any_online_cpu(mask); dest_cpu = any_online_cpu(mask);
/* On any allowed CPU? */ /* On any allowed CPU? */
if (dest_cpu == NR_CPUS) if (dest_cpu == NR_CPUS)
dest_cpu = any_online_cpu(tsk->cpus_allowed); dest_cpu = any_online_cpu(p->cpus_allowed);
/* No more Mr. Nice Guy. */ /* No more Mr. Nice Guy. */
if (dest_cpu == NR_CPUS) { if (dest_cpu == NR_CPUS) {
rq = task_rq_lock(tsk, &flags); rq = task_rq_lock(p, &flags);
cpus_setall(tsk->cpus_allowed); cpus_setall(p->cpus_allowed);
dest_cpu = any_online_cpu(tsk->cpus_allowed); dest_cpu = any_online_cpu(p->cpus_allowed);
task_rq_unlock(rq, &flags); task_rq_unlock(rq, &flags);
/* /*
@ -4961,12 +4971,12 @@ restart:
* kernel threads (both mm NULL), since they never * kernel threads (both mm NULL), since they never
* leave kernel. * leave kernel.
*/ */
if (tsk->mm && printk_ratelimit()) if (p->mm && printk_ratelimit())
printk(KERN_INFO "process %d (%s) no " printk(KERN_INFO "process %d (%s) no "
"longer affine to cpu%d\n", "longer affine to cpu%d\n",
tsk->pid, tsk->comm, dead_cpu); p->pid, p->comm, dead_cpu);
} }
if (!__migrate_task(tsk, dead_cpu, dest_cpu)) if (!__migrate_task(p, dead_cpu, dest_cpu))
goto restart; goto restart;
} }
@ -4993,48 +5003,51 @@ static void migrate_nr_uninterruptible(runqueue_t *rq_src)
/* Run through task list and migrate tasks from the dead cpu. */ /* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu) static void migrate_live_tasks(int src_cpu)
{ {
struct task_struct *tsk, *t; struct task_struct *p, *t;
write_lock_irq(&tasklist_lock); write_lock_irq(&tasklist_lock);
do_each_thread(t, tsk) { do_each_thread(t, p) {
if (tsk == current) if (p == current)
continue; continue;
if (task_cpu(tsk) == src_cpu) if (task_cpu(p) == src_cpu)
move_task_off_dead_cpu(src_cpu, tsk); move_task_off_dead_cpu(src_cpu, p);
} while_each_thread(t, tsk); } while_each_thread(t, p);
write_unlock_irq(&tasklist_lock); write_unlock_irq(&tasklist_lock);
} }
/* Schedules idle task to be the next runnable task on current CPU. /* Schedules idle task to be the next runnable task on current CPU.
* It does so by boosting its priority to highest possible and adding it to * It does so by boosting its priority to highest possible and adding it to
* the _front_ of runqueue. Used by CPU offline code. * the _front_ of the runqueue. Used by CPU offline code.
*/ */
void sched_idle_next(void) void sched_idle_next(void)
{ {
int cpu = smp_processor_id(); int this_cpu = smp_processor_id();
runqueue_t *rq = this_rq(); runqueue_t *rq = cpu_rq(this_cpu);
struct task_struct *p = rq->idle; struct task_struct *p = rq->idle;
unsigned long flags; unsigned long flags;
/* cpu has to be offline */ /* cpu has to be offline */
BUG_ON(cpu_online(cpu)); BUG_ON(cpu_online(this_cpu));
/* Strictly not necessary since rest of the CPUs are stopped by now /*
* and interrupts disabled on current cpu. * Strictly not necessary since rest of the CPUs are stopped by now
* and interrupts disabled on the current cpu.
*/ */
spin_lock_irqsave(&rq->lock, flags); spin_lock_irqsave(&rq->lock, flags);
__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
/* Add idle task to _front_ of it's priority queue */
/* Add idle task to the _front_ of its priority queue: */
__activate_idle_task(p, rq); __activate_idle_task(p, rq);
spin_unlock_irqrestore(&rq->lock, flags); spin_unlock_irqrestore(&rq->lock, flags);
} }
/* Ensures that the idle task is using init_mm right before its cpu goes /*
* Ensures that the idle task is using init_mm right before its cpu goes
* offline. * offline.
*/ */
void idle_task_exit(void) void idle_task_exit(void)
@ -5048,17 +5061,17 @@ void idle_task_exit(void)
mmdrop(mm); mmdrop(mm);
} }
static void migrate_dead(unsigned int dead_cpu, task_t *tsk) static void migrate_dead(unsigned int dead_cpu, task_t *p)
{ {
struct runqueue *rq = cpu_rq(dead_cpu); struct runqueue *rq = cpu_rq(dead_cpu);
/* Must be exiting, otherwise would be on tasklist. */ /* Must be exiting, otherwise would be on tasklist. */
BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD); BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
/* Cannot have done final schedule yet: would have vanished. */ /* Cannot have done final schedule yet: would have vanished. */
BUG_ON(tsk->flags & PF_DEAD); BUG_ON(p->flags & PF_DEAD);
get_task_struct(tsk); get_task_struct(p);
/* /*
* Drop lock around migration; if someone else moves it, * Drop lock around migration; if someone else moves it,
@ -5066,21 +5079,22 @@ static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
* fine. * fine.
*/ */
spin_unlock_irq(&rq->lock); spin_unlock_irq(&rq->lock);
move_task_off_dead_cpu(dead_cpu, tsk); move_task_off_dead_cpu(dead_cpu, p);
spin_lock_irq(&rq->lock); spin_lock_irq(&rq->lock);
put_task_struct(tsk); put_task_struct(p);
} }
/* release_task() removes task from tasklist, so we won't find dead tasks. */ /* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu) static void migrate_dead_tasks(unsigned int dead_cpu)
{ {
unsigned arr, i;
struct runqueue *rq = cpu_rq(dead_cpu); struct runqueue *rq = cpu_rq(dead_cpu);
unsigned int arr, i;
for (arr = 0; arr < 2; arr++) { for (arr = 0; arr < 2; arr++) {
for (i = 0; i < MAX_PRIO; i++) { for (i = 0; i < MAX_PRIO; i++) {
struct list_head *list = &rq->arrays[arr].queue[i]; struct list_head *list = &rq->arrays[arr].queue[i];
while (!list_empty(list)) while (!list_empty(list))
migrate_dead(dead_cpu, migrate_dead(dead_cpu,
list_entry(list->next, task_t, list_entry(list->next, task_t,
@ -5094,12 +5108,11 @@ static void migrate_dead_tasks(unsigned int dead_cpu)
* migration_call - callback that gets triggered when a CPU is added. * migration_call - callback that gets triggered when a CPU is added.
* Here we can start up the necessary migration thread for the new CPU. * Here we can start up the necessary migration thread for the new CPU.
*/ */
static int __cpuinit migration_call(struct notifier_block *nfb, static int __cpuinit
unsigned long action, migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
void *hcpu)
{ {
int cpu = (long)hcpu;
struct task_struct *p; struct task_struct *p;
int cpu = (long)hcpu;
struct runqueue *rq; struct runqueue *rq;
unsigned long flags; unsigned long flags;
@ -5116,10 +5129,12 @@ static int __cpuinit migration_call(struct notifier_block *nfb,
task_rq_unlock(rq, &flags); task_rq_unlock(rq, &flags);
cpu_rq(cpu)->migration_thread = p; cpu_rq(cpu)->migration_thread = p;
break; break;
case CPU_ONLINE: case CPU_ONLINE:
/* Strictly unneccessary, as first user will wake it. */ /* Strictly unneccessary, as first user will wake it. */
wake_up_process(cpu_rq(cpu)->migration_thread); wake_up_process(cpu_rq(cpu)->migration_thread);
break; break;
#ifdef CONFIG_HOTPLUG_CPU #ifdef CONFIG_HOTPLUG_CPU
case CPU_UP_CANCELED: case CPU_UP_CANCELED:
if (!cpu_rq(cpu)->migration_thread) if (!cpu_rq(cpu)->migration_thread)
@ -5130,6 +5145,7 @@ static int __cpuinit migration_call(struct notifier_block *nfb,
kthread_stop(cpu_rq(cpu)->migration_thread); kthread_stop(cpu_rq(cpu)->migration_thread);
cpu_rq(cpu)->migration_thread = NULL; cpu_rq(cpu)->migration_thread = NULL;
break; break;
case CPU_DEAD: case CPU_DEAD:
migrate_live_tasks(cpu); migrate_live_tasks(cpu);
rq = cpu_rq(cpu); rq = cpu_rq(cpu);
@ -5174,10 +5190,12 @@ static struct notifier_block __cpuinitdata migration_notifier = {
int __init migration_init(void) int __init migration_init(void)
{ {
void *cpu = (void *)(long)smp_processor_id(); void *cpu = (void *)(long)smp_processor_id();
/* Start one for boot CPU. */
/* Start one for the boot CPU: */
migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
migration_call(&migration_notifier, CPU_ONLINE, cpu); migration_call(&migration_notifier, CPU_ONLINE, cpu);
register_cpu_notifier(&migration_notifier); register_cpu_notifier(&migration_notifier);
return 0; return 0;
} }
#endif #endif
@ -5273,7 +5291,7 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
} while (sd); } while (sd);
} }
#else #else
#define sched_domain_debug(sd, cpu) {} # define sched_domain_debug(sd, cpu) do { } while (0)
#endif #endif
static int sd_degenerate(struct sched_domain *sd) static int sd_degenerate(struct sched_domain *sd)
@ -5299,8 +5317,8 @@ static int sd_degenerate(struct sched_domain *sd)
return 1; return 1;
} }
static int sd_parent_degenerate(struct sched_domain *sd, static int
struct sched_domain *parent) sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
{ {
unsigned long cflags = sd->flags, pflags = parent->flags; unsigned long cflags = sd->flags, pflags = parent->flags;
@ -5595,8 +5613,8 @@ static void touch_cache(void *__cache, unsigned long __size)
/* /*
* Measure the cache-cost of one task migration. Returns in units of nsec. * Measure the cache-cost of one task migration. Returns in units of nsec.
*/ */
static unsigned long long measure_one(void *cache, unsigned long size, static unsigned long long
int source, int target) measure_one(void *cache, unsigned long size, int source, int target)
{ {
cpumask_t mask, saved_mask; cpumask_t mask, saved_mask;
unsigned long long t0, t1, t2, t3, cost; unsigned long long t0, t1, t2, t3, cost;
@ -5946,9 +5964,9 @@ static int find_next_best_node(int node, unsigned long *used_nodes)
*/ */
static cpumask_t sched_domain_node_span(int node) static cpumask_t sched_domain_node_span(int node)
{ {
int i;
cpumask_t span, nodemask;
DECLARE_BITMAP(used_nodes, MAX_NUMNODES); DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
cpumask_t span, nodemask;
int i;
cpus_clear(span); cpus_clear(span);
bitmap_zero(used_nodes, MAX_NUMNODES); bitmap_zero(used_nodes, MAX_NUMNODES);
@ -5959,6 +5977,7 @@ static cpumask_t sched_domain_node_span(int node)
for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
int next_node = find_next_best_node(node, used_nodes); int next_node = find_next_best_node(node, used_nodes);
nodemask = node_to_cpumask(next_node); nodemask = node_to_cpumask(next_node);
cpus_or(span, span, nodemask); cpus_or(span, span, nodemask);
} }
@ -5968,19 +5987,23 @@ static cpumask_t sched_domain_node_span(int node)
#endif #endif
int sched_smt_power_savings = 0, sched_mc_power_savings = 0; int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
/* /*
* At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we * SMT sched-domains:
* can switch it on easily if needed.
*/ */
#ifdef CONFIG_SCHED_SMT #ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains); static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
static struct sched_group sched_group_cpus[NR_CPUS]; static struct sched_group sched_group_cpus[NR_CPUS];
static int cpu_to_cpu_group(int cpu) static int cpu_to_cpu_group(int cpu)
{ {
return cpu; return cpu;
} }
#endif #endif
/*
* multi-core sched-domains:
*/
#ifdef CONFIG_SCHED_MC #ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains); static DEFINE_PER_CPU(struct sched_domain, core_domains);
static struct sched_group *sched_group_core_bycpu[NR_CPUS]; static struct sched_group *sched_group_core_bycpu[NR_CPUS];
@ -6000,9 +6023,10 @@ static int cpu_to_core_group(int cpu)
static DEFINE_PER_CPU(struct sched_domain, phys_domains); static DEFINE_PER_CPU(struct sched_domain, phys_domains);
static struct sched_group *sched_group_phys_bycpu[NR_CPUS]; static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
static int cpu_to_phys_group(int cpu) static int cpu_to_phys_group(int cpu)
{ {
#if defined(CONFIG_SCHED_MC) #ifdef CONFIG_SCHED_MC
cpumask_t mask = cpu_coregroup_map(cpu); cpumask_t mask = cpu_coregroup_map(cpu);
return first_cpu(mask); return first_cpu(mask);
#elif defined(CONFIG_SCHED_SMT) #elif defined(CONFIG_SCHED_SMT)
@ -6548,6 +6572,7 @@ static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{ {
int err = 0; int err = 0;
#ifdef CONFIG_SCHED_SMT #ifdef CONFIG_SCHED_SMT
if (smt_capable()) if (smt_capable())
err = sysfs_create_file(&cls->kset.kobj, err = sysfs_create_file(&cls->kset.kobj,
@ -6567,7 +6592,8 @@ static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{ {
return sprintf(page, "%u\n", sched_mc_power_savings); return sprintf(page, "%u\n", sched_mc_power_savings);
} }
static ssize_t sched_mc_power_savings_store(struct sys_device *dev, const char *buf, size_t count) static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
const char *buf, size_t count)
{ {
return sched_power_savings_store(buf, count, 0); return sched_power_savings_store(buf, count, 0);
} }
@ -6580,7 +6606,8 @@ static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{ {
return sprintf(page, "%u\n", sched_smt_power_savings); return sprintf(page, "%u\n", sched_smt_power_savings);
} }
static ssize_t sched_smt_power_savings_store(struct sys_device *dev, const char *buf, size_t count) static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
const char *buf, size_t count)
{ {
return sched_power_savings_store(buf, count, 1); return sched_power_savings_store(buf, count, 1);
} }
@ -6642,6 +6669,7 @@ int in_sched_functions(unsigned long addr)
{ {
/* Linker adds these: start and end of __sched functions */ /* Linker adds these: start and end of __sched functions */
extern char __sched_text_start[], __sched_text_end[]; extern char __sched_text_start[], __sched_text_end[];
return in_lock_functions(addr) || return in_lock_functions(addr) ||
(addr >= (unsigned long)__sched_text_start (addr >= (unsigned long)__sched_text_start
&& addr < (unsigned long)__sched_text_end); && addr < (unsigned long)__sched_text_end);
@ -6649,11 +6677,11 @@ int in_sched_functions(unsigned long addr)
void __init sched_init(void) void __init sched_init(void)
{ {
runqueue_t *rq;
int i, j, k; int i, j, k;
for_each_possible_cpu(i) { for_each_possible_cpu(i) {
prio_array_t *array; prio_array_t *array;
runqueue_t *rq;
rq = cpu_rq(i); rq = cpu_rq(i);
spin_lock_init(&rq->lock); spin_lock_init(&rq->lock);
@ -6704,7 +6732,7 @@ void __init sched_init(void)
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line) void __might_sleep(char *file, int line)
{ {
#if defined(in_atomic) #ifdef in_atomic
static unsigned long prev_jiffy; /* ratelimiting */ static unsigned long prev_jiffy; /* ratelimiting */
if ((in_atomic() || irqs_disabled()) && if ((in_atomic() || irqs_disabled()) &&