mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 05:11:48 +00:00
Documentation/x86: Add AMD Secure Encrypted Virtualization (SEV) description
Update the AMD memory encryption document describing the Secure Encrypted Virtualization (SEV) feature. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: kvm@vger.kernel.org Cc: Jonathan Corbet <corbet@lwn.net> Cc: Borislav Petkov <bp@alien8.de> Link: https://lkml.kernel.org/r/20171020143059.3291-2-brijesh.singh@amd.com
This commit is contained in:
parent
e846d13958
commit
33e63acc11
@ -1,4 +1,5 @@
|
||||
Secure Memory Encryption (SME) is a feature found on AMD processors.
|
||||
Secure Memory Encryption (SME) and Secure Encrypted Virtualization (SEV) are
|
||||
features found on AMD processors.
|
||||
|
||||
SME provides the ability to mark individual pages of memory as encrypted using
|
||||
the standard x86 page tables. A page that is marked encrypted will be
|
||||
@ -6,24 +7,38 @@ automatically decrypted when read from DRAM and encrypted when written to
|
||||
DRAM. SME can therefore be used to protect the contents of DRAM from physical
|
||||
attacks on the system.
|
||||
|
||||
SEV enables running encrypted virtual machines (VMs) in which the code and data
|
||||
of the guest VM are secured so that a decrypted version is available only
|
||||
within the VM itself. SEV guest VMs have the concept of private and shared
|
||||
memory. Private memory is encrypted with the guest-specific key, while shared
|
||||
memory may be encrypted with hypervisor key. When SME is enabled, the hypervisor
|
||||
key is the same key which is used in SME.
|
||||
|
||||
A page is encrypted when a page table entry has the encryption bit set (see
|
||||
below on how to determine its position). The encryption bit can also be
|
||||
specified in the cr3 register, allowing the PGD table to be encrypted. Each
|
||||
successive level of page tables can also be encrypted by setting the encryption
|
||||
bit in the page table entry that points to the next table. This allows the full
|
||||
page table hierarchy to be encrypted. Note, this means that just because the
|
||||
encryption bit is set in cr3, doesn't imply the full hierarchy is encyrpted.
|
||||
encryption bit is set in cr3, doesn't imply the full hierarchy is encrypted.
|
||||
Each page table entry in the hierarchy needs to have the encryption bit set to
|
||||
achieve that. So, theoretically, you could have the encryption bit set in cr3
|
||||
so that the PGD is encrypted, but not set the encryption bit in the PGD entry
|
||||
for a PUD which results in the PUD pointed to by that entry to not be
|
||||
encrypted.
|
||||
|
||||
Support for SME can be determined through the CPUID instruction. The CPUID
|
||||
function 0x8000001f reports information related to SME:
|
||||
When SEV is enabled, instruction pages and guest page tables are always treated
|
||||
as private. All the DMA operations inside the guest must be performed on shared
|
||||
memory. Since the memory encryption bit is controlled by the guest OS when it
|
||||
is operating in 64-bit or 32-bit PAE mode, in all other modes the SEV hardware
|
||||
forces the memory encryption bit to 1.
|
||||
|
||||
Support for SME and SEV can be determined through the CPUID instruction. The
|
||||
CPUID function 0x8000001f reports information related to SME:
|
||||
|
||||
0x8000001f[eax]:
|
||||
Bit[0] indicates support for SME
|
||||
Bit[1] indicates support for SEV
|
||||
0x8000001f[ebx]:
|
||||
Bits[5:0] pagetable bit number used to activate memory
|
||||
encryption
|
||||
@ -39,6 +54,13 @@ determine if SME is enabled and/or to enable memory encryption:
|
||||
Bit[23] 0 = memory encryption features are disabled
|
||||
1 = memory encryption features are enabled
|
||||
|
||||
If SEV is supported, MSR 0xc0010131 (MSR_AMD64_SEV) can be used to determine if
|
||||
SEV is active:
|
||||
|
||||
0xc0010131:
|
||||
Bit[0] 0 = memory encryption is not active
|
||||
1 = memory encryption is active
|
||||
|
||||
Linux relies on BIOS to set this bit if BIOS has determined that the reduction
|
||||
in the physical address space as a result of enabling memory encryption (see
|
||||
CPUID information above) will not conflict with the address space resource
|
||||
|
Loading…
Reference in New Issue
Block a user