csky: Add kprobes supported

This patch enable kprobes, kretprobes, ftrace interface. It utilized
software breakpoint and single step debug exceptions, instructions
simulation on csky.

We use USR_BKPT replace origin instruction, and the kprobe handler
prepares an excutable memory slot for out-of-line execution with a
copy of the original instruction being probed. Most of instructions
could be executed by single-step, but some instructions need origin
pc value to execute and we need software simulate these instructions.

Signed-off-by: Guo Ren <guoren@linux.alibaba.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
This commit is contained in:
Guo Ren 2020-04-01 09:17:02 +08:00
parent 000591f1ca
commit 33e53ae1ce
16 changed files with 1197 additions and 2 deletions

View File

@ -46,6 +46,9 @@ config CSKY
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_LZO
select HAVE_KERNEL_LZMA
select HAVE_KPROBES if !CPU_CK610
select HAVE_KPROBES_ON_FTRACE if !CPU_CK610
select HAVE_KRETPROBES if !CPU_CK610
select HAVE_PERF_EVENTS
select HAVE_PERF_REGS
select HAVE_PERF_USER_STACK_DUMP

View File

@ -20,7 +20,6 @@ generic-y += irq_regs.h
generic-y += irq_work.h
generic-y += kdebug.h
generic-y += kmap_types.h
generic-y += kprobes.h
generic-y += kvm_para.h
generic-y += linkage.h
generic-y += local.h

View File

@ -0,0 +1,48 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef __ASM_CSKY_KPROBES_H
#define __ASM_CSKY_KPROBES_H
#include <asm-generic/kprobes.h>
#ifdef CONFIG_KPROBES
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/percpu.h>
#define __ARCH_WANT_KPROBES_INSN_SLOT
#define MAX_INSN_SIZE 1
#define flush_insn_slot(p) do { } while (0)
#define kretprobe_blacklist_size 0
#include <asm/probes.h>
struct prev_kprobe {
struct kprobe *kp;
unsigned int status;
};
/* Single step context for kprobe */
struct kprobe_step_ctx {
unsigned long ss_pending;
unsigned long match_addr;
};
/* per-cpu kprobe control block */
struct kprobe_ctlblk {
unsigned int kprobe_status;
unsigned long saved_sr;
struct prev_kprobe prev_kprobe;
struct kprobe_step_ctx ss_ctx;
};
void arch_remove_kprobe(struct kprobe *p);
int kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr);
int kprobe_breakpoint_handler(struct pt_regs *regs);
int kprobe_single_step_handler(struct pt_regs *regs);
void kretprobe_trampoline(void);
void __kprobes *trampoline_probe_handler(struct pt_regs *regs);
#endif /* CONFIG_KPROBES */
#endif /* __ASM_CSKY_KPROBES_H */

View File

@ -0,0 +1,24 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __ASM_CSKY_PROBES_H
#define __ASM_CSKY_PROBES_H
typedef u32 probe_opcode_t;
typedef void (probes_handler_t) (u32 opcode, long addr, struct pt_regs *);
/* architecture specific copy of original instruction */
struct arch_probe_insn {
probe_opcode_t *insn;
probes_handler_t *handler;
/* restore address after simulation */
unsigned long restore;
};
#ifdef CONFIG_KPROBES
typedef u32 kprobe_opcode_t;
struct arch_specific_insn {
struct arch_probe_insn api;
};
#endif
#endif /* __ASM_CSKY_PROBES_H */

View File

@ -13,6 +13,8 @@
#define PS_S 0x80000000 /* Supervisor Mode */
#define USR_BKPT 0x1464
#define arch_has_single_step() (1)
#define current_pt_regs() \
({ (struct pt_regs *)((char *)current_thread_info() + THREAD_SIZE) - 1; })

View File

@ -4,6 +4,7 @@ extra-y := head.o vmlinux.lds
obj-y += entry.o atomic.o signal.o traps.o irq.o time.o vdso.o
obj-y += power.o syscall.o syscall_table.o setup.o
obj-y += process.o cpu-probe.o ptrace.o dumpstack.o
obj-y += probes/
obj-$(CONFIG_MODULES) += module.o
obj-$(CONFIG_SMP) += smp.o

View File

@ -0,0 +1,6 @@
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_KPROBES) += kprobes.o decode-insn.o simulate-insn.o
obj-$(CONFIG_KPROBES) += kprobes_trampoline.o
obj-$(CONFIG_KPROBES_ON_FTRACE) += ftrace.o
CFLAGS_REMOVE_simulate-insn.o = $(CC_FLAGS_FTRACE)

View File

@ -0,0 +1,49 @@
// SPDX-License-Identifier: GPL-2.0+
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <asm/sections.h>
#include "decode-insn.h"
#include "simulate-insn.h"
/* Return:
* INSN_REJECTED If instruction is one not allowed to kprobe,
* INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot.
*/
enum probe_insn __kprobes
csky_probe_decode_insn(probe_opcode_t *addr, struct arch_probe_insn *api)
{
probe_opcode_t insn = le32_to_cpu(*addr);
CSKY_INSN_SET_SIMULATE(br16, insn);
CSKY_INSN_SET_SIMULATE(bt16, insn);
CSKY_INSN_SET_SIMULATE(bf16, insn);
CSKY_INSN_SET_SIMULATE(jmp16, insn);
CSKY_INSN_SET_SIMULATE(jsr16, insn);
CSKY_INSN_SET_SIMULATE(lrw16, insn);
CSKY_INSN_SET_SIMULATE(pop16, insn);
CSKY_INSN_SET_SIMULATE(br32, insn);
CSKY_INSN_SET_SIMULATE(bt32, insn);
CSKY_INSN_SET_SIMULATE(bf32, insn);
CSKY_INSN_SET_SIMULATE(jmp32, insn);
CSKY_INSN_SET_SIMULATE(jsr32, insn);
CSKY_INSN_SET_SIMULATE(lrw32, insn);
CSKY_INSN_SET_SIMULATE(pop32, insn);
CSKY_INSN_SET_SIMULATE(bez32, insn);
CSKY_INSN_SET_SIMULATE(bnez32, insn);
CSKY_INSN_SET_SIMULATE(bnezad32, insn);
CSKY_INSN_SET_SIMULATE(bhsz32, insn);
CSKY_INSN_SET_SIMULATE(bhz32, insn);
CSKY_INSN_SET_SIMULATE(blsz32, insn);
CSKY_INSN_SET_SIMULATE(blz32, insn);
CSKY_INSN_SET_SIMULATE(bsr32, insn);
CSKY_INSN_SET_SIMULATE(jmpi32, insn);
CSKY_INSN_SET_SIMULATE(jsri32, insn);
return INSN_GOOD;
}

View File

@ -0,0 +1,20 @@
/* SPDX-License-Identifier: GPL-2.0+ */
#ifndef __CSKY_KERNEL_KPROBES_DECODE_INSN_H
#define __CSKY_KERNEL_KPROBES_DECODE_INSN_H
#include <asm/sections.h>
#include <asm/kprobes.h>
enum probe_insn {
INSN_REJECTED,
INSN_GOOD_NO_SLOT,
INSN_GOOD,
};
#define is_insn32(insn) ((insn & 0xc000) == 0xc000)
enum probe_insn __kprobes
csky_probe_decode_insn(probe_opcode_t *addr, struct arch_probe_insn *asi);
#endif /* __CSKY_KERNEL_KPROBES_DECODE_INSN_H */

View File

@ -0,0 +1,66 @@
// SPDX-License-Identifier: GPL-2.0
#include <linux/kprobes.h>
int arch_check_ftrace_location(struct kprobe *p)
{
if (ftrace_location((unsigned long)p->addr))
p->flags |= KPROBE_FLAG_FTRACE;
return 0;
}
/* Ftrace callback handler for kprobes -- called under preepmt disabed */
void kprobe_ftrace_handler(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *ops, struct pt_regs *regs)
{
bool lr_saver = false;
struct kprobe *p;
struct kprobe_ctlblk *kcb;
/* Preempt is disabled by ftrace */
p = get_kprobe((kprobe_opcode_t *)ip);
if (!p) {
p = get_kprobe((kprobe_opcode_t *)(ip - MCOUNT_INSN_SIZE));
if (unlikely(!p) || kprobe_disabled(p))
return;
lr_saver = true;
}
kcb = get_kprobe_ctlblk();
if (kprobe_running()) {
kprobes_inc_nmissed_count(p);
} else {
unsigned long orig_ip = instruction_pointer(regs);
if (lr_saver)
ip -= MCOUNT_INSN_SIZE;
instruction_pointer_set(regs, ip);
__this_cpu_write(current_kprobe, p);
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
if (!p->pre_handler || !p->pre_handler(p, regs)) {
/*
* Emulate singlestep (and also recover regs->pc)
* as if there is a nop
*/
instruction_pointer_set(regs,
(unsigned long)p->addr + MCOUNT_INSN_SIZE);
if (unlikely(p->post_handler)) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
p->post_handler(p, regs, 0);
}
instruction_pointer_set(regs, orig_ip);
}
/*
* If pre_handler returns !0, it changes regs->pc. We have to
* skip emulating post_handler.
*/
__this_cpu_write(current_kprobe, NULL);
}
}
NOKPROBE_SYMBOL(kprobe_ftrace_handler);
int arch_prepare_kprobe_ftrace(struct kprobe *p)
{
p->ainsn.api.insn = NULL;
return 0;
}

View File

@ -0,0 +1,499 @@
// SPDX-License-Identifier: GPL-2.0+
#include <linux/kprobes.h>
#include <linux/extable.h>
#include <linux/slab.h>
#include <linux/stop_machine.h>
#include <asm/ptrace.h>
#include <linux/uaccess.h>
#include <asm/sections.h>
#include <asm/cacheflush.h>
#include "decode-insn.h"
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
static void __kprobes
post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
struct csky_insn_patch {
kprobe_opcode_t *addr;
u32 opcode;
atomic_t cpu_count;
};
static int __kprobes patch_text_cb(void *priv)
{
struct csky_insn_patch *param = priv;
unsigned int addr = (unsigned int)param->addr;
if (atomic_inc_return(&param->cpu_count) == 1) {
*(u16 *) addr = cpu_to_le16(param->opcode);
dcache_wb_range(addr, addr + 2);
atomic_inc(&param->cpu_count);
} else {
while (atomic_read(&param->cpu_count) <= num_online_cpus())
cpu_relax();
}
icache_inv_range(addr, addr + 2);
return 0;
}
static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
{
struct csky_insn_patch param = { addr, opcode, ATOMIC_INIT(0) };
return stop_machine_cpuslocked(patch_text_cb, &param, cpu_online_mask);
}
static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
{
unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
p->ainsn.api.restore = (unsigned long)p->addr + offset;
patch_text(p->ainsn.api.insn, p->opcode);
}
static void __kprobes arch_prepare_simulate(struct kprobe *p)
{
p->ainsn.api.restore = 0;
}
static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (p->ainsn.api.handler)
p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
post_kprobe_handler(kcb, regs);
}
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
unsigned long probe_addr = (unsigned long)p->addr;
if (probe_addr & 0x1) {
pr_warn("Address not aligned.\n");
return -EINVAL;
}
/* copy instruction */
p->opcode = le32_to_cpu(*p->addr);
/* decode instruction */
switch (csky_probe_decode_insn(p->addr, &p->ainsn.api)) {
case INSN_REJECTED: /* insn not supported */
return -EINVAL;
case INSN_GOOD_NO_SLOT: /* insn need simulation */
p->ainsn.api.insn = NULL;
break;
case INSN_GOOD: /* instruction uses slot */
p->ainsn.api.insn = get_insn_slot();
if (!p->ainsn.api.insn)
return -ENOMEM;
break;
}
/* prepare the instruction */
if (p->ainsn.api.insn)
arch_prepare_ss_slot(p);
else
arch_prepare_simulate(p);
return 0;
}
/* install breakpoint in text */
void __kprobes arch_arm_kprobe(struct kprobe *p)
{
patch_text(p->addr, USR_BKPT);
}
/* remove breakpoint from text */
void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
patch_text(p->addr, p->opcode);
}
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
}
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
}
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
kcb->kprobe_status = kcb->prev_kprobe.status;
}
static void __kprobes set_current_kprobe(struct kprobe *p)
{
__this_cpu_write(current_kprobe, p);
}
/*
* Interrupts need to be disabled before single-step mode is set, and not
* reenabled until after single-step mode ends.
* Without disabling interrupt on local CPU, there is a chance of
* interrupt occurrence in the period of exception return and start of
* out-of-line single-step, that result in wrongly single stepping
* into the interrupt handler.
*/
static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
struct pt_regs *regs)
{
kcb->saved_sr = regs->sr;
regs->sr &= ~BIT(6);
}
static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
struct pt_regs *regs)
{
regs->sr = kcb->saved_sr;
}
static void __kprobes
set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p)
{
unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
kcb->ss_ctx.ss_pending = true;
kcb->ss_ctx.match_addr = addr + offset;
}
static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
{
kcb->ss_ctx.ss_pending = false;
kcb->ss_ctx.match_addr = 0;
}
#define TRACE_MODE_SI BIT(14)
#define TRACE_MODE_MASK ~(0x3 << 14)
#define TRACE_MODE_RUN 0
static void __kprobes setup_singlestep(struct kprobe *p,
struct pt_regs *regs,
struct kprobe_ctlblk *kcb, int reenter)
{
unsigned long slot;
if (reenter) {
save_previous_kprobe(kcb);
set_current_kprobe(p);
kcb->kprobe_status = KPROBE_REENTER;
} else {
kcb->kprobe_status = KPROBE_HIT_SS;
}
if (p->ainsn.api.insn) {
/* prepare for single stepping */
slot = (unsigned long)p->ainsn.api.insn;
set_ss_context(kcb, slot, p); /* mark pending ss */
/* IRQs and single stepping do not mix well. */
kprobes_save_local_irqflag(kcb, regs);
regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
instruction_pointer_set(regs, slot);
} else {
/* insn simulation */
arch_simulate_insn(p, regs);
}
}
static int __kprobes reenter_kprobe(struct kprobe *p,
struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
switch (kcb->kprobe_status) {
case KPROBE_HIT_SSDONE:
case KPROBE_HIT_ACTIVE:
kprobes_inc_nmissed_count(p);
setup_singlestep(p, regs, kcb, 1);
break;
case KPROBE_HIT_SS:
case KPROBE_REENTER:
pr_warn("Unrecoverable kprobe detected.\n");
dump_kprobe(p);
BUG();
break;
default:
WARN_ON(1);
return 0;
}
return 1;
}
static void __kprobes
post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
if (!cur)
return;
/* return addr restore if non-branching insn */
if (cur->ainsn.api.restore != 0)
regs->pc = cur->ainsn.api.restore;
/* restore back original saved kprobe variables and continue */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
return;
}
/* call post handler */
kcb->kprobe_status = KPROBE_HIT_SSDONE;
if (cur->post_handler) {
/* post_handler can hit breakpoint and single step
* again, so we enable D-flag for recursive exception.
*/
cur->post_handler(cur, regs, 0);
}
reset_current_kprobe();
}
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
switch (kcb->kprobe_status) {
case KPROBE_HIT_SS:
case KPROBE_REENTER:
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
* kprobe and the ip points back to the probe address
* and allow the page fault handler to continue as a
* normal page fault.
*/
regs->pc = (unsigned long) cur->addr;
if (!instruction_pointer(regs))
BUG();
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else
reset_current_kprobe();
break;
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SSDONE:
/*
* We increment the nmissed count for accounting,
* we can also use npre/npostfault count for accounting
* these specific fault cases.
*/
kprobes_inc_nmissed_count(cur);
/*
* We come here because instructions in the pre/post
* handler caused the page_fault, this could happen
* if handler tries to access user space by
* copy_from_user(), get_user() etc. Let the
* user-specified handler try to fix it first.
*/
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
return 1;
/*
* In case the user-specified fault handler returned
* zero, try to fix up.
*/
if (fixup_exception(regs))
return 1;
}
return 0;
}
int __kprobes
kprobe_breakpoint_handler(struct pt_regs *regs)
{
struct kprobe *p, *cur_kprobe;
struct kprobe_ctlblk *kcb;
unsigned long addr = instruction_pointer(regs);
kcb = get_kprobe_ctlblk();
cur_kprobe = kprobe_running();
p = get_kprobe((kprobe_opcode_t *) addr);
if (p) {
if (cur_kprobe) {
if (reenter_kprobe(p, regs, kcb))
return 1;
} else {
/* Probe hit */
set_current_kprobe(p);
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
/*
* If we have no pre-handler or it returned 0, we
* continue with normal processing. If we have a
* pre-handler and it returned non-zero, it will
* modify the execution path and no need to single
* stepping. Let's just reset current kprobe and exit.
*
* pre_handler can hit a breakpoint and can step thru
* before return.
*/
if (!p->pre_handler || !p->pre_handler(p, regs))
setup_singlestep(p, regs, kcb, 0);
else
reset_current_kprobe();
}
return 1;
}
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
* Return back to original instruction, and continue.
*/
return 0;
}
int __kprobes
kprobe_single_step_handler(struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if ((kcb->ss_ctx.ss_pending)
&& (kcb->ss_ctx.match_addr == instruction_pointer(regs))) {
clear_ss_context(kcb); /* clear pending ss */
kprobes_restore_local_irqflag(kcb, regs);
regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
post_kprobe_handler(kcb, regs);
return 1;
}
return 0;
}
/*
* Provide a blacklist of symbols identifying ranges which cannot be kprobed.
* This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
*/
int __init arch_populate_kprobe_blacklist(void)
{
int ret;
ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
(unsigned long)__irqentry_text_end);
return ret;
}
void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
{
struct kretprobe_instance *ri = NULL;
struct hlist_head *head, empty_rp;
struct hlist_node *tmp;
unsigned long flags, orig_ret_address = 0;
unsigned long trampoline_address =
(unsigned long)&kretprobe_trampoline;
kprobe_opcode_t *correct_ret_addr = NULL;
INIT_HLIST_HEAD(&empty_rp);
kretprobe_hash_lock(current, &head, &flags);
/*
* It is possible to have multiple instances associated with a given
* task either because multiple functions in the call path have
* return probes installed on them, and/or more than one
* return probe was registered for a target function.
*
* We can handle this because:
* - instances are always pushed into the head of the list
* - when multiple return probes are registered for the same
* function, the (chronologically) first instance's ret_addr
* will be the real return address, and all the rest will
* point to kretprobe_trampoline.
*/
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
orig_ret_address = (unsigned long)ri->ret_addr;
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_assert(ri, orig_ret_address, trampoline_address);
correct_ret_addr = ri->ret_addr;
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
orig_ret_address = (unsigned long)ri->ret_addr;
if (ri->rp && ri->rp->handler) {
__this_cpu_write(current_kprobe, &ri->rp->kp);
get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
ri->ret_addr = correct_ret_addr;
ri->rp->handler(ri, regs);
__this_cpu_write(current_kprobe, NULL);
}
recycle_rp_inst(ri, &empty_rp);
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_hash_unlock(current, &flags);
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
hlist_del(&ri->hlist);
kfree(ri);
}
return (void *)orig_ret_address;
}
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
struct pt_regs *regs)
{
ri->ret_addr = (kprobe_opcode_t *)regs->lr;
regs->lr = (unsigned long) &kretprobe_trampoline;
}
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
return 0;
}
int __init arch_init_kprobes(void)
{
return 0;
}

View File

@ -0,0 +1,19 @@
/* SPDX-License-Identifier: GPL-2.0+ */
#include <linux/linkage.h>
#include <abi/entry.h>
ENTRY(kretprobe_trampoline)
SAVE_REGS_FTRACE
mov a0, sp /* pt_regs */
jbsr trampoline_probe_handler
/* use the result as the return-address */
mov lr, a0
RESTORE_REGS_FTRACE
rts
ENDPROC(kretprobe_trampoline)

View File

@ -0,0 +1,398 @@
// SPDX-License-Identifier: GPL-2.0+
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include "decode-insn.h"
#include "simulate-insn.h"
static inline bool csky_insn_reg_get_val(struct pt_regs *regs,
unsigned long index,
unsigned long *ptr)
{
if (index < 14)
*ptr = *(&regs->a0 + index);
if (index > 15 && index < 31)
*ptr = *(&regs->exregs[0] + index - 16);
switch (index) {
case 14:
*ptr = regs->usp;
break;
case 15:
*ptr = regs->lr;
break;
case 31:
*ptr = regs->tls;
break;
default:
goto fail;
}
return true;
fail:
return false;
}
static inline bool csky_insn_reg_set_val(struct pt_regs *regs,
unsigned long index,
unsigned long val)
{
if (index < 14)
*(&regs->a0 + index) = val;
if (index > 15 && index < 31)
*(&regs->exregs[0] + index - 16) = val;
switch (index) {
case 14:
regs->usp = val;
break;
case 15:
regs->lr = val;
break;
case 31:
regs->tls = val;
break;
default:
goto fail;
}
return true;
fail:
return false;
}
void __kprobes
simulate_br16(u32 opcode, long addr, struct pt_regs *regs)
{
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0x3ff) << 1, 9));
}
void __kprobes
simulate_br32(u32 opcode, long addr, struct pt_regs *regs)
{
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0xffff0000) >> 15, 15));
}
void __kprobes
simulate_bt16(u32 opcode, long addr, struct pt_regs *regs)
{
if (regs->sr & 1)
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0x3ff) << 1, 9));
else
instruction_pointer_set(regs, addr + 2);
}
void __kprobes
simulate_bt32(u32 opcode, long addr, struct pt_regs *regs)
{
if (regs->sr & 1)
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0xffff0000) >> 15, 15));
else
instruction_pointer_set(regs, addr + 4);
}
void __kprobes
simulate_bf16(u32 opcode, long addr, struct pt_regs *regs)
{
if (!(regs->sr & 1))
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0x3ff) << 1, 9));
else
instruction_pointer_set(regs, addr + 2);
}
void __kprobes
simulate_bf32(u32 opcode, long addr, struct pt_regs *regs)
{
if (!(regs->sr & 1))
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0xffff0000) >> 15, 15));
else
instruction_pointer_set(regs, addr + 4);
}
void __kprobes
simulate_jmp16(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp = (opcode >> 2) & 0xf;
csky_insn_reg_get_val(regs, tmp, &tmp);
instruction_pointer_set(regs, tmp & 0xfffffffe);
}
void __kprobes
simulate_jmp32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp = opcode & 0x1f;
csky_insn_reg_get_val(regs, tmp, &tmp);
instruction_pointer_set(regs, tmp & 0xfffffffe);
}
void __kprobes
simulate_jsr16(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp = (opcode >> 2) & 0xf;
csky_insn_reg_get_val(regs, tmp, &tmp);
regs->lr = addr + 2;
instruction_pointer_set(regs, tmp & 0xfffffffe);
}
void __kprobes
simulate_jsr32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp = opcode & 0x1f;
csky_insn_reg_get_val(regs, tmp, &tmp);
regs->lr = addr + 4;
instruction_pointer_set(regs, tmp & 0xfffffffe);
}
void __kprobes
simulate_lrw16(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long val;
unsigned long tmp = (opcode & 0x300) >> 3;
unsigned long offset = ((opcode & 0x1f) | tmp) << 2;
tmp = (opcode & 0xe0) >> 5;
val = *(unsigned int *)(instruction_pointer(regs) + offset);
csky_insn_reg_set_val(regs, tmp, val);
}
void __kprobes
simulate_lrw32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long val;
unsigned long offset = (opcode & 0xffff0000) >> 14;
unsigned long tmp = opcode & 0x0000001f;
val = *(unsigned int *)
((instruction_pointer(regs) + offset) & 0xfffffffc);
csky_insn_reg_set_val(regs, tmp, val);
}
void __kprobes
simulate_pop16(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long *tmp = (unsigned long *)regs->usp;
int i;
for (i = 0; i < (opcode & 0xf); i++) {
csky_insn_reg_set_val(regs, i + 4, *tmp);
tmp += 1;
}
if (opcode & 0x10) {
csky_insn_reg_set_val(regs, 15, *tmp);
tmp += 1;
}
regs->usp = (unsigned long)tmp;
instruction_pointer_set(regs, regs->lr);
}
void __kprobes
simulate_pop32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long *tmp = (unsigned long *)regs->usp;
int i;
for (i = 0; i < ((opcode & 0xf0000) >> 16); i++) {
csky_insn_reg_set_val(regs, i + 4, *tmp);
tmp += 1;
}
if (opcode & 0x100000) {
csky_insn_reg_set_val(regs, 15, *tmp);
tmp += 1;
}
for (i = 0; i < ((opcode & 0xe00000) >> 21); i++) {
csky_insn_reg_set_val(regs, i + 16, *tmp);
tmp += 1;
}
if (opcode & 0x1000000) {
csky_insn_reg_set_val(regs, 29, *tmp);
tmp += 1;
}
regs->usp = (unsigned long)tmp;
instruction_pointer_set(regs, regs->lr);
}
void __kprobes
simulate_bez32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp = opcode & 0x1f;
csky_insn_reg_get_val(regs, tmp, &tmp);
if (tmp == 0) {
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0xffff0000) >> 15, 15));
} else
instruction_pointer_set(regs, addr + 4);
}
void __kprobes
simulate_bnez32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp = opcode & 0x1f;
csky_insn_reg_get_val(regs, tmp, &tmp);
if (tmp != 0) {
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0xffff0000) >> 15, 15));
} else
instruction_pointer_set(regs, addr + 4);
}
void __kprobes
simulate_bnezad32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp = opcode & 0x1f;
unsigned long val;
csky_insn_reg_get_val(regs, tmp, &val);
val -= 1;
if (val > 0) {
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0xffff0000) >> 15, 15));
} else
instruction_pointer_set(regs, addr + 4);
csky_insn_reg_set_val(regs, tmp, val);
}
void __kprobes
simulate_bhsz32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp = opcode & 0x1f;
unsigned long val;
csky_insn_reg_get_val(regs, tmp, &val);
if (val >= 0) {
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0xffff0000) >> 15, 15));
} else
instruction_pointer_set(regs, addr + 4);
csky_insn_reg_set_val(regs, tmp, val);
}
void __kprobes
simulate_bhz32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp = opcode & 0x1f;
unsigned long val;
csky_insn_reg_get_val(regs, tmp, &val);
if (val > 0) {
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0xffff0000) >> 15, 15));
} else
instruction_pointer_set(regs, addr + 4);
csky_insn_reg_set_val(regs, tmp, val);
}
void __kprobes
simulate_blsz32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp = opcode & 0x1f;
unsigned long val;
csky_insn_reg_get_val(regs, tmp, &val);
if (val <= 0) {
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0xffff0000) >> 15, 15));
} else
instruction_pointer_set(regs, addr + 4);
csky_insn_reg_set_val(regs, tmp, val);
}
void __kprobes
simulate_blz32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp = opcode & 0x1f;
unsigned long val;
csky_insn_reg_get_val(regs, tmp, &val);
if (val < 0) {
instruction_pointer_set(regs,
addr + sign_extend32((opcode & 0xffff0000) >> 15, 15));
} else
instruction_pointer_set(regs, addr + 4);
csky_insn_reg_set_val(regs, tmp, val);
}
void __kprobes
simulate_bsr32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long tmp;
tmp = (opcode & 0xffff) << 16;
tmp |= (opcode & 0xffff0000) >> 16;
instruction_pointer_set(regs,
addr + sign_extend32((tmp & 0x3ffffff) << 1, 15));
regs->lr = addr + 4;
}
void __kprobes
simulate_jmpi32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long val;
unsigned long offset = ((opcode & 0xffff0000) >> 14);
val = *(unsigned int *)
((instruction_pointer(regs) + offset) & 0xfffffffc);
instruction_pointer_set(regs, val);
}
void __kprobes
simulate_jsri32(u32 opcode, long addr, struct pt_regs *regs)
{
unsigned long val;
unsigned long offset = ((opcode & 0xffff0000) >> 14);
val = *(unsigned int *)
((instruction_pointer(regs) + offset) & 0xfffffffc);
regs->lr = addr + 4;
instruction_pointer_set(regs, val);
}

View File

@ -0,0 +1,49 @@
/* SPDX-License-Identifier: GPL-2.0+ */
#ifndef __CSKY_KERNEL_PROBES_SIMULATE_INSN_H
#define __CSKY_KERNEL_PROBES_SIMULATE_INSN_H
#define __CSKY_INSN_FUNCS(name, mask, val) \
static __always_inline bool csky_insn_is_##name(probe_opcode_t code) \
{ \
BUILD_BUG_ON(~(mask) & (val)); \
return (code & (mask)) == (val); \
} \
void simulate_##name(u32 opcode, long addr, struct pt_regs *regs);
#define CSKY_INSN_SET_SIMULATE(name, code) \
do { \
if (csky_insn_is_##name(code)) { \
api->handler = simulate_##name; \
return INSN_GOOD_NO_SLOT; \
} \
} while (0)
__CSKY_INSN_FUNCS(br16, 0xfc00, 0x0400)
__CSKY_INSN_FUNCS(bt16, 0xfc00, 0x0800)
__CSKY_INSN_FUNCS(bf16, 0xfc00, 0x0c00)
__CSKY_INSN_FUNCS(jmp16, 0xffc3, 0x7800)
__CSKY_INSN_FUNCS(jsr16, 0xffc3, 0x7801)
__CSKY_INSN_FUNCS(lrw16, 0xfc00, 0x1000)
__CSKY_INSN_FUNCS(pop16, 0xffe0, 0x1480)
__CSKY_INSN_FUNCS(br32, 0x0000ffff, 0x0000e800)
__CSKY_INSN_FUNCS(bt32, 0x0000ffff, 0x0000e860)
__CSKY_INSN_FUNCS(bf32, 0x0000ffff, 0x0000e840)
__CSKY_INSN_FUNCS(jmp32, 0xffffffe0, 0x0000e8c0)
__CSKY_INSN_FUNCS(jsr32, 0xffffffe0, 0x0000e8e0)
__CSKY_INSN_FUNCS(lrw32, 0x0000ffe0, 0x0000ea80)
__CSKY_INSN_FUNCS(pop32, 0xfe00ffff, 0x0000ebc0)
__CSKY_INSN_FUNCS(bez32, 0x0000ffe0, 0x0000e900)
__CSKY_INSN_FUNCS(bnez32, 0x0000ffe0, 0x0000e920)
__CSKY_INSN_FUNCS(bnezad32, 0x0000ffe0, 0x0000e820)
__CSKY_INSN_FUNCS(bhsz32, 0x0000ffe0, 0x0000e9a0)
__CSKY_INSN_FUNCS(bhz32, 0x0000ffe0, 0x0000e940)
__CSKY_INSN_FUNCS(blsz32, 0x0000ffe0, 0x0000e960)
__CSKY_INSN_FUNCS(blz32, 0x0000ffe0, 0x0000e980)
__CSKY_INSN_FUNCS(bsr32, 0x0000fc00, 0x0000e000)
__CSKY_INSN_FUNCS(jmpi32, 0x0000ffff, 0x0000eac0)
__CSKY_INSN_FUNCS(jsri32, 0x0000ffff, 0x0000eae0)
#endif /* __CSKY_KERNEL_PROBES_SIMULATE_INSN_H */

View File

@ -14,6 +14,7 @@
#include <linux/kallsyms.h>
#include <linux/rtc.h>
#include <linux/uaccess.h>
#include <linux/kprobes.h>
#include <asm/setup.h>
#include <asm/traps.h>
@ -109,7 +110,6 @@ void buserr(struct pt_regs *regs)
force_sig_fault(SIGSEGV, 0, (void __user *)regs->pc);
}
#define USR_BKPT 0x1464
asmlinkage void trap_c(struct pt_regs *regs)
{
int sig;
@ -126,11 +126,19 @@ asmlinkage void trap_c(struct pt_regs *regs)
break;
/* ptrace */
case VEC_TRACE:
#ifdef CONFIG_KPROBES
if (kprobe_single_step_handler(regs))
return;
#endif
info.si_code = TRAP_TRACE;
sig = SIGTRAP;
break;
case VEC_ILLEGAL:
tsk->thread.trap_no = vector;
#ifdef CONFIG_KPROBES
if (kprobe_breakpoint_handler(regs))
return;
#endif
die_if_kernel("Kernel mode ILLEGAL", regs, vector);
#ifndef CONFIG_CPU_NO_USER_BKPT
if (*(uint16_t *)instruction_pointer(regs) != USR_BKPT)

View File

@ -18,6 +18,7 @@
#include <linux/extable.h>
#include <linux/uaccess.h>
#include <linux/perf_event.h>
#include <linux/kprobes.h>
#include <asm/hardirq.h>
#include <asm/mmu_context.h>
@ -53,6 +54,9 @@ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long write,
int fault;
unsigned long address = mmu_meh & PAGE_MASK;
if (kprobe_page_fault(regs, tsk->thread.trap_no))
return;
si_code = SEGV_MAPERR;
#ifndef CONFIG_CPU_HAS_TLBI