mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 22:21:40 +00:00
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler changes for v3.4 from Ingo Molnar * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits) printk: Make it compile with !CONFIG_PRINTK sched/x86: Fix overflow in cyc2ns_offset sched: Fix nohz load accounting -- again! sched: Update yield() docs printk/sched: Introduce special printk_sched() for those awkward moments sched/nohz: Correctly initialize 'next_balance' in 'nohz' idle balancer sched: Cleanup cpu_active madness sched: Fix load-balance wreckage sched: Clean up parameter passing of proc_sched_autogroup_set_nice() sched: Ditch per cgroup task lists for load-balancing sched: Rename load-balancing fields sched: Move load-balancing arguments into helper struct sched/rt: Do not submit new work when PI-blocked sched/rt: Prevent idle task boosting sched/wait: Add __wake_up_all_locked() API sched/rt: Document scheduler related skip-resched-check sites sched/rt: Use schedule_preempt_disabled() sched/rt: Add schedule_preempt_disabled() sched/rt: Do not throttle when PI boosting sched/rt: Keep period timer ticking when rt throttling is active ...
This commit is contained in:
commit
2ba68940c8
@ -38,7 +38,8 @@ First field is a sched_yield() statistic:
|
||||
1) # of times sched_yield() was called
|
||||
|
||||
Next three are schedule() statistics:
|
||||
2) # of times we switched to the expired queue and reused it
|
||||
2) This field is a legacy array expiration count field used in the O(1)
|
||||
scheduler. We kept it for ABI compatibility, but it is always set to zero.
|
||||
3) # of times schedule() was called
|
||||
4) # of times schedule() left the processor idle
|
||||
|
||||
|
@ -239,9 +239,7 @@ void cpu_idle(void)
|
||||
leds_event(led_idle_end);
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -295,13 +295,6 @@ asmlinkage void __cpuinit secondary_start_kernel(void)
|
||||
*/
|
||||
percpu_timer_setup();
|
||||
|
||||
while (!cpu_active(cpu))
|
||||
cpu_relax();
|
||||
|
||||
/*
|
||||
* cpu_active bit is set, so it's safe to enalbe interrupts
|
||||
* now.
|
||||
*/
|
||||
local_irq_enable();
|
||||
local_fiq_enable();
|
||||
|
||||
|
@ -40,9 +40,7 @@ void cpu_idle(void)
|
||||
cpu_idle_sleep();
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -94,9 +94,7 @@ void cpu_idle(void)
|
||||
idle();
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -115,9 +115,7 @@ void cpu_idle (void)
|
||||
idle = default_idle;
|
||||
idle();
|
||||
}
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -92,9 +92,7 @@ void cpu_idle(void)
|
||||
idle();
|
||||
}
|
||||
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -81,9 +81,7 @@ void cpu_idle(void)
|
||||
while (1) {
|
||||
while (!need_resched())
|
||||
idle();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -179,8 +179,6 @@ void __cpuinit start_secondary(void)
|
||||
printk(KERN_INFO "%s cpu %d\n", __func__, current_thread_info()->cpu);
|
||||
|
||||
set_cpu_online(cpu, true);
|
||||
while (!cpumask_test_cpu(cpu, cpu_active_mask))
|
||||
cpu_relax();
|
||||
local_irq_enable();
|
||||
|
||||
cpu_idle();
|
||||
|
@ -330,9 +330,7 @@ cpu_idle (void)
|
||||
normal_xtp();
|
||||
#endif
|
||||
}
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
check_pgt_cache();
|
||||
if (cpu_is_offline(cpu))
|
||||
play_dead();
|
||||
|
@ -90,9 +90,7 @@ void cpu_idle (void)
|
||||
|
||||
idle();
|
||||
}
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -78,9 +78,7 @@ void cpu_idle(void)
|
||||
while (1) {
|
||||
while (!need_resched())
|
||||
idle();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -73,9 +73,7 @@ void cpu_idle(void)
|
||||
/* endless idle loop with no priority at all */
|
||||
while (1) {
|
||||
idle();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -110,9 +110,7 @@ void cpu_idle(void)
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
check_pgt_cache();
|
||||
}
|
||||
}
|
||||
|
@ -80,9 +80,7 @@ void __noreturn cpu_idle(void)
|
||||
#endif
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -123,9 +123,7 @@ void cpu_idle(void)
|
||||
idle();
|
||||
}
|
||||
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -71,9 +71,7 @@ void cpu_idle(void)
|
||||
while (1) {
|
||||
while (!need_resched())
|
||||
barrier();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
check_pgt_cache();
|
||||
}
|
||||
}
|
||||
|
@ -101,11 +101,11 @@ void cpu_idle(void)
|
||||
ppc64_runlatch_on();
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
preempt_enable_no_resched();
|
||||
if (cpu_should_die())
|
||||
if (cpu_should_die()) {
|
||||
sched_preempt_enable_no_resched();
|
||||
cpu_die();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
}
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -584,9 +584,7 @@ static void iseries_shared_idle(void)
|
||||
if (hvlpevent_is_pending())
|
||||
process_iSeries_events();
|
||||
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
@ -615,9 +613,7 @@ static void iseries_dedicated_idle(void)
|
||||
ppc64_runlatch_on();
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -97,9 +97,7 @@ void cpu_idle(void)
|
||||
tick_nohz_idle_exit();
|
||||
if (test_thread_flag(TIF_MCCK_PENDING))
|
||||
s390_handle_mcck();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -550,12 +550,6 @@ int __cpuinit start_secondary(void *cpuvoid)
|
||||
S390_lowcore.restart_psw.addr =
|
||||
PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler;
|
||||
__ctl_set_bit(0, 28); /* Enable lowcore protection */
|
||||
/*
|
||||
* Wait until the cpu which brought this one up marked it
|
||||
* active before enabling interrupts.
|
||||
*/
|
||||
while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask))
|
||||
cpu_relax();
|
||||
local_irq_enable();
|
||||
/* cpu_idle will call schedule for us */
|
||||
cpu_idle();
|
||||
|
@ -53,9 +53,7 @@ void __noreturn cpu_idle(void)
|
||||
while (!need_resched())
|
||||
barrier();
|
||||
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -114,9 +114,7 @@ void cpu_idle(void)
|
||||
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -113,9 +113,7 @@ void cpu_idle(void)
|
||||
while (!need_resched())
|
||||
cpu_relax();
|
||||
}
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
check_pgt_cache();
|
||||
}
|
||||
}
|
||||
@ -138,9 +136,7 @@ void cpu_idle(void)
|
||||
while (!need_resched())
|
||||
cpu_relax();
|
||||
}
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
check_pgt_cache();
|
||||
}
|
||||
}
|
||||
|
@ -104,15 +104,13 @@ void cpu_idle(void)
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
|
||||
preempt_enable_no_resched();
|
||||
|
||||
#ifdef CONFIG_HOTPLUG_CPU
|
||||
if (cpu_is_offline(cpu))
|
||||
if (cpu_is_offline(cpu)) {
|
||||
sched_preempt_enable_no_resched();
|
||||
cpu_play_dead();
|
||||
}
|
||||
#endif
|
||||
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -108,9 +108,7 @@ void cpu_idle(void)
|
||||
}
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -57,14 +57,10 @@ DECLARE_PER_CPU(unsigned long long, cyc2ns_offset);
|
||||
|
||||
static inline unsigned long long __cycles_2_ns(unsigned long long cyc)
|
||||
{
|
||||
unsigned long long quot;
|
||||
unsigned long long rem;
|
||||
int cpu = smp_processor_id();
|
||||
unsigned long long ns = per_cpu(cyc2ns_offset, cpu);
|
||||
quot = (cyc >> CYC2NS_SCALE_FACTOR);
|
||||
rem = cyc & ((1ULL << CYC2NS_SCALE_FACTOR) - 1);
|
||||
ns += quot * per_cpu(cyc2ns, cpu) +
|
||||
((rem * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR);
|
||||
ns += mult_frac(cyc, per_cpu(cyc2ns, cpu),
|
||||
(1UL << CYC2NS_SCALE_FACTOR));
|
||||
return ns;
|
||||
}
|
||||
|
||||
|
@ -119,9 +119,7 @@ void cpu_idle(void)
|
||||
}
|
||||
rcu_idle_exit();
|
||||
tick_nohz_idle_exit();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -156,9 +156,7 @@ void cpu_idle(void)
|
||||
}
|
||||
|
||||
tick_nohz_idle_exit();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -291,19 +291,6 @@ notrace static void __cpuinit start_secondary(void *unused)
|
||||
per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
|
||||
x86_platform.nmi_init();
|
||||
|
||||
/*
|
||||
* Wait until the cpu which brought this one up marked it
|
||||
* online before enabling interrupts. If we don't do that then
|
||||
* we can end up waking up the softirq thread before this cpu
|
||||
* reached the active state, which makes the scheduler unhappy
|
||||
* and schedule the softirq thread on the wrong cpu. This is
|
||||
* only observable with forced threaded interrupts, but in
|
||||
* theory it could also happen w/o them. It's just way harder
|
||||
* to achieve.
|
||||
*/
|
||||
while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask))
|
||||
cpu_relax();
|
||||
|
||||
/* enable local interrupts */
|
||||
local_irq_enable();
|
||||
|
||||
|
@ -620,7 +620,8 @@ static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
|
||||
|
||||
if (cpu_khz) {
|
||||
*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
|
||||
*offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
|
||||
*offset = ns_now - mult_frac(tsc_now, *scale,
|
||||
(1UL << CYC2NS_SCALE_FACTOR));
|
||||
}
|
||||
|
||||
sched_clock_idle_wakeup_event(0);
|
||||
|
@ -113,9 +113,7 @@ void cpu_idle(void)
|
||||
while (1) {
|
||||
while (!need_resched())
|
||||
platform_idle();
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -8,6 +8,7 @@
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/sched.h>
|
||||
|
||||
#include "blk.h"
|
||||
|
||||
@ -103,9 +104,10 @@ static struct notifier_block __cpuinitdata blk_cpu_notifier = {
|
||||
|
||||
void __blk_complete_request(struct request *req)
|
||||
{
|
||||
int ccpu, cpu, group_cpu = NR_CPUS;
|
||||
int ccpu, cpu;
|
||||
struct request_queue *q = req->q;
|
||||
unsigned long flags;
|
||||
bool shared = false;
|
||||
|
||||
BUG_ON(!q->softirq_done_fn);
|
||||
|
||||
@ -117,22 +119,20 @@ void __blk_complete_request(struct request *req)
|
||||
*/
|
||||
if (req->cpu != -1) {
|
||||
ccpu = req->cpu;
|
||||
if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) {
|
||||
ccpu = blk_cpu_to_group(ccpu);
|
||||
group_cpu = blk_cpu_to_group(cpu);
|
||||
}
|
||||
if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
|
||||
shared = cpus_share_cache(cpu, ccpu);
|
||||
} else
|
||||
ccpu = cpu;
|
||||
|
||||
/*
|
||||
* If current CPU and requested CPU are in the same group, running
|
||||
* softirq in current CPU. One might concern this is just like
|
||||
* If current CPU and requested CPU share a cache, run the softirq on
|
||||
* the current CPU. One might concern this is just like
|
||||
* QUEUE_FLAG_SAME_FORCE, but actually not. blk_complete_request() is
|
||||
* running in interrupt handler, and currently I/O controller doesn't
|
||||
* support multiple interrupts, so current CPU is unique actually. This
|
||||
* avoids IPI sending from current CPU to the first CPU of a group.
|
||||
*/
|
||||
if (ccpu == cpu || ccpu == group_cpu) {
|
||||
if (ccpu == cpu || shared) {
|
||||
struct list_head *list;
|
||||
do_local:
|
||||
list = &__get_cpu_var(blk_cpu_done);
|
||||
|
16
block/blk.h
16
block/blk.h
@ -166,22 +166,6 @@ static inline int queue_congestion_off_threshold(struct request_queue *q)
|
||||
return q->nr_congestion_off;
|
||||
}
|
||||
|
||||
static inline int blk_cpu_to_group(int cpu)
|
||||
{
|
||||
int group = NR_CPUS;
|
||||
#ifdef CONFIG_SCHED_MC
|
||||
const struct cpumask *mask = cpu_coregroup_mask(cpu);
|
||||
group = cpumask_first(mask);
|
||||
#elif defined(CONFIG_SCHED_SMT)
|
||||
group = cpumask_first(topology_thread_cpumask(cpu));
|
||||
#else
|
||||
return cpu;
|
||||
#endif
|
||||
if (likely(group < NR_CPUS))
|
||||
return group;
|
||||
return cpu;
|
||||
}
|
||||
|
||||
/*
|
||||
* Contribute to IO statistics IFF:
|
||||
*
|
||||
|
@ -1310,8 +1310,7 @@ sched_autogroup_write(struct file *file, const char __user *buf,
|
||||
if (!p)
|
||||
return -ESRCH;
|
||||
|
||||
err = nice;
|
||||
err = proc_sched_autogroup_set_nice(p, &err);
|
||||
err = proc_sched_autogroup_set_nice(p, nice);
|
||||
if (err)
|
||||
count = err;
|
||||
|
||||
|
@ -149,7 +149,7 @@ extern struct cred init_cred;
|
||||
}, \
|
||||
.rt = { \
|
||||
.run_list = LIST_HEAD_INIT(tsk.rt.run_list), \
|
||||
.time_slice = HZ, \
|
||||
.time_slice = RR_TIMESLICE, \
|
||||
.nr_cpus_allowed = NR_CPUS, \
|
||||
}, \
|
||||
.tasks = LIST_HEAD_INIT(tsk.tasks), \
|
||||
|
@ -85,6 +85,19 @@
|
||||
} \
|
||||
)
|
||||
|
||||
/*
|
||||
* Multiplies an integer by a fraction, while avoiding unnecessary
|
||||
* overflow or loss of precision.
|
||||
*/
|
||||
#define mult_frac(x, numer, denom)( \
|
||||
{ \
|
||||
typeof(x) quot = (x) / (denom); \
|
||||
typeof(x) rem = (x) % (denom); \
|
||||
(quot * (numer)) + ((rem * (numer)) / (denom)); \
|
||||
} \
|
||||
)
|
||||
|
||||
|
||||
#define _RET_IP_ (unsigned long)__builtin_return_address(0)
|
||||
#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
|
||||
|
||||
|
@ -48,12 +48,14 @@ do { \
|
||||
barrier(); \
|
||||
} while (0)
|
||||
|
||||
#define preempt_enable_no_resched() \
|
||||
#define sched_preempt_enable_no_resched() \
|
||||
do { \
|
||||
barrier(); \
|
||||
dec_preempt_count(); \
|
||||
} while (0)
|
||||
|
||||
#define preempt_enable_no_resched() sched_preempt_enable_no_resched()
|
||||
|
||||
#define preempt_enable() \
|
||||
do { \
|
||||
preempt_enable_no_resched(); \
|
||||
@ -92,6 +94,7 @@ do { \
|
||||
#else /* !CONFIG_PREEMPT_COUNT */
|
||||
|
||||
#define preempt_disable() do { } while (0)
|
||||
#define sched_preempt_enable_no_resched() do { } while (0)
|
||||
#define preempt_enable_no_resched() do { } while (0)
|
||||
#define preempt_enable() do { } while (0)
|
||||
|
||||
|
@ -100,6 +100,11 @@ int vprintk(const char *fmt, va_list args);
|
||||
asmlinkage __printf(1, 2) __cold
|
||||
int printk(const char *fmt, ...);
|
||||
|
||||
/*
|
||||
* Special printk facility for scheduler use only, _DO_NOT_USE_ !
|
||||
*/
|
||||
__printf(1, 2) __cold int printk_sched(const char *fmt, ...);
|
||||
|
||||
/*
|
||||
* Please don't use printk_ratelimit(), because it shares ratelimiting state
|
||||
* with all other unrelated printk_ratelimit() callsites. Instead use
|
||||
@ -127,6 +132,11 @@ int printk(const char *s, ...)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
static inline __printf(1, 2) __cold
|
||||
int printk_sched(const char *s, ...)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
static inline int printk_ratelimit(void)
|
||||
{
|
||||
return 0;
|
||||
|
@ -361,6 +361,7 @@ extern signed long schedule_timeout_interruptible(signed long timeout);
|
||||
extern signed long schedule_timeout_killable(signed long timeout);
|
||||
extern signed long schedule_timeout_uninterruptible(signed long timeout);
|
||||
asmlinkage void schedule(void);
|
||||
extern void schedule_preempt_disabled(void);
|
||||
extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
|
||||
|
||||
struct nsproxy;
|
||||
@ -905,6 +906,7 @@ struct sched_group_power {
|
||||
* single CPU.
|
||||
*/
|
||||
unsigned int power, power_orig;
|
||||
unsigned long next_update;
|
||||
/*
|
||||
* Number of busy cpus in this group.
|
||||
*/
|
||||
@ -1052,6 +1054,8 @@ static inline int test_sd_parent(struct sched_domain *sd, int flag)
|
||||
unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
|
||||
unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
|
||||
|
||||
bool cpus_share_cache(int this_cpu, int that_cpu);
|
||||
|
||||
#else /* CONFIG_SMP */
|
||||
|
||||
struct sched_domain_attr;
|
||||
@ -1061,6 +1065,12 @@ partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
|
||||
struct sched_domain_attr *dattr_new)
|
||||
{
|
||||
}
|
||||
|
||||
static inline bool cpus_share_cache(int this_cpu, int that_cpu)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif /* !CONFIG_SMP */
|
||||
|
||||
|
||||
@ -1225,6 +1235,12 @@ struct sched_rt_entity {
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
* default timeslice is 100 msecs (used only for SCHED_RR tasks).
|
||||
* Timeslices get refilled after they expire.
|
||||
*/
|
||||
#define RR_TIMESLICE (100 * HZ / 1000)
|
||||
|
||||
struct rcu_node;
|
||||
|
||||
enum perf_event_task_context {
|
||||
@ -2047,7 +2063,7 @@ extern void sched_autogroup_fork(struct signal_struct *sig);
|
||||
extern void sched_autogroup_exit(struct signal_struct *sig);
|
||||
#ifdef CONFIG_PROC_FS
|
||||
extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
|
||||
extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
|
||||
extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
|
||||
#endif
|
||||
#else
|
||||
static inline void sched_autogroup_create_attach(struct task_struct *p) { }
|
||||
@ -2064,12 +2080,20 @@ extern unsigned int sysctl_sched_cfs_bandwidth_slice;
|
||||
extern int rt_mutex_getprio(struct task_struct *p);
|
||||
extern void rt_mutex_setprio(struct task_struct *p, int prio);
|
||||
extern void rt_mutex_adjust_pi(struct task_struct *p);
|
||||
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
|
||||
{
|
||||
return tsk->pi_blocked_on != NULL;
|
||||
}
|
||||
#else
|
||||
static inline int rt_mutex_getprio(struct task_struct *p)
|
||||
{
|
||||
return p->normal_prio;
|
||||
}
|
||||
# define rt_mutex_adjust_pi(p) do { } while (0)
|
||||
static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
extern bool yield_to(struct task_struct *p, bool preempt);
|
||||
@ -2388,12 +2412,15 @@ static inline void task_unlock(struct task_struct *p)
|
||||
extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
|
||||
unsigned long *flags);
|
||||
|
||||
#define lock_task_sighand(tsk, flags) \
|
||||
({ struct sighand_struct *__ss; \
|
||||
__cond_lock(&(tsk)->sighand->siglock, \
|
||||
(__ss = __lock_task_sighand(tsk, flags))); \
|
||||
__ss; \
|
||||
}) \
|
||||
static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
|
||||
unsigned long *flags)
|
||||
{
|
||||
struct sighand_struct *ret;
|
||||
|
||||
ret = __lock_task_sighand(tsk, flags);
|
||||
(void)__cond_lock(&tsk->sighand->siglock, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline void unlock_task_sighand(struct task_struct *tsk,
|
||||
unsigned long *flags)
|
||||
|
@ -157,7 +157,7 @@ void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
|
||||
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
|
||||
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr,
|
||||
void *key);
|
||||
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode);
|
||||
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
|
||||
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
|
||||
void __wake_up_bit(wait_queue_head_t *, void *, int);
|
||||
int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, int (*)(void *), unsigned);
|
||||
@ -170,7 +170,8 @@ wait_queue_head_t *bit_waitqueue(void *, int);
|
||||
#define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)
|
||||
#define wake_up_nr(x, nr) __wake_up(x, TASK_NORMAL, nr, NULL)
|
||||
#define wake_up_all(x) __wake_up(x, TASK_NORMAL, 0, NULL)
|
||||
#define wake_up_locked(x) __wake_up_locked((x), TASK_NORMAL)
|
||||
#define wake_up_locked(x) __wake_up_locked((x), TASK_NORMAL, 1)
|
||||
#define wake_up_all_locked(x) __wake_up_locked((x), TASK_NORMAL, 0)
|
||||
|
||||
#define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
|
||||
#define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
|
||||
|
@ -374,11 +374,8 @@ static noinline void __init_refok rest_init(void)
|
||||
* at least once to get things moving:
|
||||
*/
|
||||
init_idle_bootup_task(current);
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
|
||||
schedule_preempt_disabled();
|
||||
/* Call into cpu_idle with preempt disabled */
|
||||
preempt_disable();
|
||||
cpu_idle();
|
||||
}
|
||||
|
||||
|
@ -240,9 +240,7 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
|
||||
|
||||
/* didn't get the lock, go to sleep: */
|
||||
spin_unlock_mutex(&lock->wait_lock, flags);
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
spin_lock_mutex(&lock->wait_lock, flags);
|
||||
}
|
||||
|
||||
|
@ -1216,13 +1216,27 @@ int is_console_locked(void)
|
||||
return console_locked;
|
||||
}
|
||||
|
||||
/*
|
||||
* Delayed printk facility, for scheduler-internal messages:
|
||||
*/
|
||||
#define PRINTK_BUF_SIZE 512
|
||||
|
||||
#define PRINTK_PENDING_WAKEUP 0x01
|
||||
#define PRINTK_PENDING_SCHED 0x02
|
||||
|
||||
static DEFINE_PER_CPU(int, printk_pending);
|
||||
static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
|
||||
|
||||
void printk_tick(void)
|
||||
{
|
||||
if (__this_cpu_read(printk_pending)) {
|
||||
__this_cpu_write(printk_pending, 0);
|
||||
wake_up_interruptible(&log_wait);
|
||||
int pending = __this_cpu_xchg(printk_pending, 0);
|
||||
if (pending & PRINTK_PENDING_SCHED) {
|
||||
char *buf = __get_cpu_var(printk_sched_buf);
|
||||
printk(KERN_WARNING "[sched_delayed] %s", buf);
|
||||
}
|
||||
if (pending & PRINTK_PENDING_WAKEUP)
|
||||
wake_up_interruptible(&log_wait);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1236,7 +1250,7 @@ int printk_needs_cpu(int cpu)
|
||||
void wake_up_klogd(void)
|
||||
{
|
||||
if (waitqueue_active(&log_wait))
|
||||
this_cpu_write(printk_pending, 1);
|
||||
this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -1629,6 +1643,26 @@ late_initcall(printk_late_init);
|
||||
|
||||
#if defined CONFIG_PRINTK
|
||||
|
||||
int printk_sched(const char *fmt, ...)
|
||||
{
|
||||
unsigned long flags;
|
||||
va_list args;
|
||||
char *buf;
|
||||
int r;
|
||||
|
||||
local_irq_save(flags);
|
||||
buf = __get_cpu_var(printk_sched_buf);
|
||||
|
||||
va_start(args, fmt);
|
||||
r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
|
||||
va_end(args);
|
||||
|
||||
__this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
|
||||
local_irq_restore(flags);
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* printk rate limiting, lifted from the networking subsystem.
|
||||
*
|
||||
|
@ -195,20 +195,20 @@ __setup("noautogroup", setup_autogroup);
|
||||
|
||||
#ifdef CONFIG_PROC_FS
|
||||
|
||||
int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice)
|
||||
int proc_sched_autogroup_set_nice(struct task_struct *p, int nice)
|
||||
{
|
||||
static unsigned long next = INITIAL_JIFFIES;
|
||||
struct autogroup *ag;
|
||||
int err;
|
||||
|
||||
if (*nice < -20 || *nice > 19)
|
||||
if (nice < -20 || nice > 19)
|
||||
return -EINVAL;
|
||||
|
||||
err = security_task_setnice(current, *nice);
|
||||
err = security_task_setnice(current, nice);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (*nice < 0 && !can_nice(current, *nice))
|
||||
if (nice < 0 && !can_nice(current, nice))
|
||||
return -EPERM;
|
||||
|
||||
/* this is a heavy operation taking global locks.. */
|
||||
@ -219,9 +219,9 @@ int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice)
|
||||
ag = autogroup_task_get(p);
|
||||
|
||||
down_write(&ag->lock);
|
||||
err = sched_group_set_shares(ag->tg, prio_to_weight[*nice + 20]);
|
||||
err = sched_group_set_shares(ag->tg, prio_to_weight[nice + 20]);
|
||||
if (!err)
|
||||
ag->nice = *nice;
|
||||
ag->nice = nice;
|
||||
up_write(&ag->lock);
|
||||
|
||||
autogroup_kref_put(ag);
|
||||
|
@ -1284,7 +1284,7 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
|
||||
* leave kernel.
|
||||
*/
|
||||
if (p->mm && printk_ratelimit()) {
|
||||
printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
|
||||
printk_sched("process %d (%s) no longer affine to cpu%d\n",
|
||||
task_pid_nr(p), p->comm, cpu);
|
||||
}
|
||||
|
||||
@ -1507,7 +1507,7 @@ static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
|
||||
}
|
||||
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
|
||||
|
||||
static inline int ttwu_share_cache(int this_cpu, int that_cpu)
|
||||
bool cpus_share_cache(int this_cpu, int that_cpu)
|
||||
{
|
||||
return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
|
||||
}
|
||||
@ -1518,7 +1518,7 @@ static void ttwu_queue(struct task_struct *p, int cpu)
|
||||
struct rq *rq = cpu_rq(cpu);
|
||||
|
||||
#if defined(CONFIG_SMP)
|
||||
if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
|
||||
if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
|
||||
sched_clock_cpu(cpu); /* sync clocks x-cpu */
|
||||
ttwu_queue_remote(p, cpu);
|
||||
return;
|
||||
@ -2266,13 +2266,10 @@ calc_load_n(unsigned long load, unsigned long exp,
|
||||
* Once we've updated the global active value, we need to apply the exponential
|
||||
* weights adjusted to the number of cycles missed.
|
||||
*/
|
||||
static void calc_global_nohz(unsigned long ticks)
|
||||
static void calc_global_nohz(void)
|
||||
{
|
||||
long delta, active, n;
|
||||
|
||||
if (time_before(jiffies, calc_load_update))
|
||||
return;
|
||||
|
||||
/*
|
||||
* If we crossed a calc_load_update boundary, make sure to fold
|
||||
* any pending idle changes, the respective CPUs might have
|
||||
@ -2284,31 +2281,25 @@ static void calc_global_nohz(unsigned long ticks)
|
||||
atomic_long_add(delta, &calc_load_tasks);
|
||||
|
||||
/*
|
||||
* If we were idle for multiple load cycles, apply them.
|
||||
* It could be the one fold was all it took, we done!
|
||||
*/
|
||||
if (ticks >= LOAD_FREQ) {
|
||||
n = ticks / LOAD_FREQ;
|
||||
|
||||
active = atomic_long_read(&calc_load_tasks);
|
||||
active = active > 0 ? active * FIXED_1 : 0;
|
||||
|
||||
avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
|
||||
avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
|
||||
avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
|
||||
|
||||
calc_load_update += n * LOAD_FREQ;
|
||||
}
|
||||
if (time_before(jiffies, calc_load_update + 10))
|
||||
return;
|
||||
|
||||
/*
|
||||
* Its possible the remainder of the above division also crosses
|
||||
* a LOAD_FREQ period, the regular check in calc_global_load()
|
||||
* which comes after this will take care of that.
|
||||
*
|
||||
* Consider us being 11 ticks before a cycle completion, and us
|
||||
* sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
|
||||
* age us 4 cycles, and the test in calc_global_load() will
|
||||
* pick up the final one.
|
||||
* Catch-up, fold however many we are behind still
|
||||
*/
|
||||
delta = jiffies - calc_load_update - 10;
|
||||
n = 1 + (delta / LOAD_FREQ);
|
||||
|
||||
active = atomic_long_read(&calc_load_tasks);
|
||||
active = active > 0 ? active * FIXED_1 : 0;
|
||||
|
||||
avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
|
||||
avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
|
||||
avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
|
||||
|
||||
calc_load_update += n * LOAD_FREQ;
|
||||
}
|
||||
#else
|
||||
void calc_load_account_idle(struct rq *this_rq)
|
||||
@ -2320,7 +2311,7 @@ static inline long calc_load_fold_idle(void)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void calc_global_nohz(unsigned long ticks)
|
||||
static void calc_global_nohz(void)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
@ -2348,8 +2339,6 @@ void calc_global_load(unsigned long ticks)
|
||||
{
|
||||
long active;
|
||||
|
||||
calc_global_nohz(ticks);
|
||||
|
||||
if (time_before(jiffies, calc_load_update + 10))
|
||||
return;
|
||||
|
||||
@ -2361,6 +2350,16 @@ void calc_global_load(unsigned long ticks)
|
||||
avenrun[2] = calc_load(avenrun[2], EXP_15, active);
|
||||
|
||||
calc_load_update += LOAD_FREQ;
|
||||
|
||||
/*
|
||||
* Account one period with whatever state we found before
|
||||
* folding in the nohz state and ageing the entire idle period.
|
||||
*
|
||||
* This avoids loosing a sample when we go idle between
|
||||
* calc_load_account_active() (10 ticks ago) and now and thus
|
||||
* under-accounting.
|
||||
*/
|
||||
calc_global_nohz();
|
||||
}
|
||||
|
||||
/*
|
||||
@ -3220,14 +3219,14 @@ need_resched:
|
||||
|
||||
post_schedule(rq);
|
||||
|
||||
preempt_enable_no_resched();
|
||||
sched_preempt_enable_no_resched();
|
||||
if (need_resched())
|
||||
goto need_resched;
|
||||
}
|
||||
|
||||
static inline void sched_submit_work(struct task_struct *tsk)
|
||||
{
|
||||
if (!tsk->state)
|
||||
if (!tsk->state || tsk_is_pi_blocked(tsk))
|
||||
return;
|
||||
/*
|
||||
* If we are going to sleep and we have plugged IO queued,
|
||||
@ -3246,6 +3245,18 @@ asmlinkage void __sched schedule(void)
|
||||
}
|
||||
EXPORT_SYMBOL(schedule);
|
||||
|
||||
/**
|
||||
* schedule_preempt_disabled - called with preemption disabled
|
||||
*
|
||||
* Returns with preemption disabled. Note: preempt_count must be 1
|
||||
*/
|
||||
void __sched schedule_preempt_disabled(void)
|
||||
{
|
||||
sched_preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
|
||||
|
||||
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
|
||||
@ -3406,9 +3417,9 @@ EXPORT_SYMBOL(__wake_up);
|
||||
/*
|
||||
* Same as __wake_up but called with the spinlock in wait_queue_head_t held.
|
||||
*/
|
||||
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
|
||||
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
|
||||
{
|
||||
__wake_up_common(q, mode, 1, 0, NULL);
|
||||
__wake_up_common(q, mode, nr, 0, NULL);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__wake_up_locked);
|
||||
|
||||
@ -3767,6 +3778,24 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
|
||||
|
||||
rq = __task_rq_lock(p);
|
||||
|
||||
/*
|
||||
* Idle task boosting is a nono in general. There is one
|
||||
* exception, when PREEMPT_RT and NOHZ is active:
|
||||
*
|
||||
* The idle task calls get_next_timer_interrupt() and holds
|
||||
* the timer wheel base->lock on the CPU and another CPU wants
|
||||
* to access the timer (probably to cancel it). We can safely
|
||||
* ignore the boosting request, as the idle CPU runs this code
|
||||
* with interrupts disabled and will complete the lock
|
||||
* protected section without being interrupted. So there is no
|
||||
* real need to boost.
|
||||
*/
|
||||
if (unlikely(p == rq->idle)) {
|
||||
WARN_ON(p != rq->curr);
|
||||
WARN_ON(p->pi_blocked_on);
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
trace_sched_pi_setprio(p, prio);
|
||||
oldprio = p->prio;
|
||||
prev_class = p->sched_class;
|
||||
@ -3790,11 +3819,10 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
|
||||
enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
|
||||
|
||||
check_class_changed(rq, p, prev_class, oldprio);
|
||||
out_unlock:
|
||||
__task_rq_unlock(rq);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
void set_user_nice(struct task_struct *p, long nice)
|
||||
{
|
||||
int old_prio, delta, on_rq;
|
||||
@ -4474,7 +4502,7 @@ SYSCALL_DEFINE0(sched_yield)
|
||||
__release(rq->lock);
|
||||
spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
|
||||
do_raw_spin_unlock(&rq->lock);
|
||||
preempt_enable_no_resched();
|
||||
sched_preempt_enable_no_resched();
|
||||
|
||||
schedule();
|
||||
|
||||
@ -4548,8 +4576,24 @@ EXPORT_SYMBOL(__cond_resched_softirq);
|
||||
/**
|
||||
* yield - yield the current processor to other threads.
|
||||
*
|
||||
* This is a shortcut for kernel-space yielding - it marks the
|
||||
* thread runnable and calls sys_sched_yield().
|
||||
* Do not ever use this function, there's a 99% chance you're doing it wrong.
|
||||
*
|
||||
* The scheduler is at all times free to pick the calling task as the most
|
||||
* eligible task to run, if removing the yield() call from your code breaks
|
||||
* it, its already broken.
|
||||
*
|
||||
* Typical broken usage is:
|
||||
*
|
||||
* while (!event)
|
||||
* yield();
|
||||
*
|
||||
* where one assumes that yield() will let 'the other' process run that will
|
||||
* make event true. If the current task is a SCHED_FIFO task that will never
|
||||
* happen. Never use yield() as a progress guarantee!!
|
||||
*
|
||||
* If you want to use yield() to wait for something, use wait_event().
|
||||
* If you want to use yield() to be 'nice' for others, use cond_resched().
|
||||
* If you still want to use yield(), do not!
|
||||
*/
|
||||
void __sched yield(void)
|
||||
{
|
||||
@ -5381,7 +5425,7 @@ static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
|
||||
unsigned long action, void *hcpu)
|
||||
{
|
||||
switch (action & ~CPU_TASKS_FROZEN) {
|
||||
case CPU_ONLINE:
|
||||
case CPU_STARTING:
|
||||
case CPU_DOWN_FAILED:
|
||||
set_cpu_active((long)hcpu, true);
|
||||
return NOTIFY_OK;
|
||||
@ -5753,7 +5797,7 @@ static void destroy_sched_domains(struct sched_domain *sd, int cpu)
|
||||
*
|
||||
* Also keep a unique ID per domain (we use the first cpu number in
|
||||
* the cpumask of the domain), this allows us to quickly tell if
|
||||
* two cpus are in the same cache domain, see ttwu_share_cache().
|
||||
* two cpus are in the same cache domain, see cpus_share_cache().
|
||||
*/
|
||||
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
|
||||
DEFINE_PER_CPU(int, sd_llc_id);
|
||||
@ -6930,6 +6974,9 @@ void __init sched_init(void)
|
||||
rq->online = 0;
|
||||
rq->idle_stamp = 0;
|
||||
rq->avg_idle = 2*sysctl_sched_migration_cost;
|
||||
|
||||
INIT_LIST_HEAD(&rq->cfs_tasks);
|
||||
|
||||
rq_attach_root(rq, &def_root_domain);
|
||||
#ifdef CONFIG_NO_HZ
|
||||
rq->nohz_flags = 0;
|
||||
|
@ -288,7 +288,6 @@ static void print_cpu(struct seq_file *m, int cpu)
|
||||
|
||||
P(yld_count);
|
||||
|
||||
P(sched_switch);
|
||||
P(sched_count);
|
||||
P(sched_goidle);
|
||||
#ifdef CONFIG_SMP
|
||||
|
@ -776,29 +776,16 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
* Scheduling class queueing methods:
|
||||
*/
|
||||
|
||||
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
|
||||
static void
|
||||
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
|
||||
{
|
||||
cfs_rq->task_weight += weight;
|
||||
}
|
||||
#else
|
||||
static inline void
|
||||
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
static void
|
||||
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
{
|
||||
update_load_add(&cfs_rq->load, se->load.weight);
|
||||
if (!parent_entity(se))
|
||||
update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
|
||||
if (entity_is_task(se)) {
|
||||
add_cfs_task_weight(cfs_rq, se->load.weight);
|
||||
list_add(&se->group_node, &cfs_rq->tasks);
|
||||
}
|
||||
#ifdef CONFIG_SMP
|
||||
if (entity_is_task(se))
|
||||
list_add_tail(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
|
||||
#endif
|
||||
cfs_rq->nr_running++;
|
||||
}
|
||||
|
||||
@ -808,10 +795,8 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
update_load_sub(&cfs_rq->load, se->load.weight);
|
||||
if (!parent_entity(se))
|
||||
update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
|
||||
if (entity_is_task(se)) {
|
||||
add_cfs_task_weight(cfs_rq, -se->load.weight);
|
||||
if (entity_is_task(se))
|
||||
list_del_init(&se->group_node);
|
||||
}
|
||||
cfs_rq->nr_running--;
|
||||
}
|
||||
|
||||
@ -2672,8 +2657,6 @@ static int select_idle_sibling(struct task_struct *p, int target)
|
||||
/*
|
||||
* Otherwise, iterate the domains and find an elegible idle cpu.
|
||||
*/
|
||||
rcu_read_lock();
|
||||
|
||||
sd = rcu_dereference(per_cpu(sd_llc, target));
|
||||
for_each_lower_domain(sd) {
|
||||
sg = sd->groups;
|
||||
@ -2695,8 +2678,6 @@ next:
|
||||
} while (sg != sd->groups);
|
||||
}
|
||||
done:
|
||||
rcu_read_unlock();
|
||||
|
||||
return target;
|
||||
}
|
||||
|
||||
@ -2922,7 +2903,7 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
|
||||
return;
|
||||
|
||||
/*
|
||||
* This is possible from callers such as pull_task(), in which we
|
||||
* This is possible from callers such as move_task(), in which we
|
||||
* unconditionally check_prempt_curr() after an enqueue (which may have
|
||||
* lead to a throttle). This both saves work and prevents false
|
||||
* next-buddy nomination below.
|
||||
@ -3086,17 +3067,39 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp
|
||||
* Fair scheduling class load-balancing methods:
|
||||
*/
|
||||
|
||||
static unsigned long __read_mostly max_load_balance_interval = HZ/10;
|
||||
|
||||
#define LBF_ALL_PINNED 0x01
|
||||
#define LBF_NEED_BREAK 0x02
|
||||
|
||||
struct lb_env {
|
||||
struct sched_domain *sd;
|
||||
|
||||
int src_cpu;
|
||||
struct rq *src_rq;
|
||||
|
||||
int dst_cpu;
|
||||
struct rq *dst_rq;
|
||||
|
||||
enum cpu_idle_type idle;
|
||||
long load_move;
|
||||
unsigned int flags;
|
||||
|
||||
unsigned int loop;
|
||||
unsigned int loop_break;
|
||||
unsigned int loop_max;
|
||||
};
|
||||
|
||||
/*
|
||||
* pull_task - move a task from a remote runqueue to the local runqueue.
|
||||
* move_task - move a task from one runqueue to another runqueue.
|
||||
* Both runqueues must be locked.
|
||||
*/
|
||||
static void pull_task(struct rq *src_rq, struct task_struct *p,
|
||||
struct rq *this_rq, int this_cpu)
|
||||
static void move_task(struct task_struct *p, struct lb_env *env)
|
||||
{
|
||||
deactivate_task(src_rq, p, 0);
|
||||
set_task_cpu(p, this_cpu);
|
||||
activate_task(this_rq, p, 0);
|
||||
check_preempt_curr(this_rq, p, 0);
|
||||
deactivate_task(env->src_rq, p, 0);
|
||||
set_task_cpu(p, env->dst_cpu);
|
||||
activate_task(env->dst_rq, p, 0);
|
||||
check_preempt_curr(env->dst_rq, p, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -3131,19 +3134,11 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
|
||||
return delta < (s64)sysctl_sched_migration_cost;
|
||||
}
|
||||
|
||||
#define LBF_ALL_PINNED 0x01
|
||||
#define LBF_NEED_BREAK 0x02 /* clears into HAD_BREAK */
|
||||
#define LBF_HAD_BREAK 0x04
|
||||
#define LBF_HAD_BREAKS 0x0C /* count HAD_BREAKs overflows into ABORT */
|
||||
#define LBF_ABORT 0x10
|
||||
|
||||
/*
|
||||
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
|
||||
*/
|
||||
static
|
||||
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
|
||||
struct sched_domain *sd, enum cpu_idle_type idle,
|
||||
int *lb_flags)
|
||||
int can_migrate_task(struct task_struct *p, struct lb_env *env)
|
||||
{
|
||||
int tsk_cache_hot = 0;
|
||||
/*
|
||||
@ -3152,13 +3147,13 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
|
||||
* 2) cannot be migrated to this CPU due to cpus_allowed, or
|
||||
* 3) are cache-hot on their current CPU.
|
||||
*/
|
||||
if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
|
||||
if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
|
||||
schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
|
||||
return 0;
|
||||
}
|
||||
*lb_flags &= ~LBF_ALL_PINNED;
|
||||
env->flags &= ~LBF_ALL_PINNED;
|
||||
|
||||
if (task_running(rq, p)) {
|
||||
if (task_running(env->src_rq, p)) {
|
||||
schedstat_inc(p, se.statistics.nr_failed_migrations_running);
|
||||
return 0;
|
||||
}
|
||||
@ -3169,12 +3164,12 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
|
||||
* 2) too many balance attempts have failed.
|
||||
*/
|
||||
|
||||
tsk_cache_hot = task_hot(p, rq->clock_task, sd);
|
||||
tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
|
||||
if (!tsk_cache_hot ||
|
||||
sd->nr_balance_failed > sd->cache_nice_tries) {
|
||||
env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
|
||||
#ifdef CONFIG_SCHEDSTATS
|
||||
if (tsk_cache_hot) {
|
||||
schedstat_inc(sd, lb_hot_gained[idle]);
|
||||
schedstat_inc(env->sd, lb_hot_gained[env->idle]);
|
||||
schedstat_inc(p, se.statistics.nr_forced_migrations);
|
||||
}
|
||||
#endif
|
||||
@ -3195,65 +3190,80 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
|
||||
*
|
||||
* Called with both runqueues locked.
|
||||
*/
|
||||
static int
|
||||
move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
||||
struct sched_domain *sd, enum cpu_idle_type idle)
|
||||
static int move_one_task(struct lb_env *env)
|
||||
{
|
||||
struct task_struct *p, *n;
|
||||
struct cfs_rq *cfs_rq;
|
||||
int pinned = 0;
|
||||
|
||||
for_each_leaf_cfs_rq(busiest, cfs_rq) {
|
||||
list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
|
||||
if (throttled_lb_pair(task_group(p),
|
||||
busiest->cpu, this_cpu))
|
||||
break;
|
||||
list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
|
||||
if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
|
||||
continue;
|
||||
|
||||
if (!can_migrate_task(p, busiest, this_cpu,
|
||||
sd, idle, &pinned))
|
||||
continue;
|
||||
if (!can_migrate_task(p, env))
|
||||
continue;
|
||||
|
||||
pull_task(busiest, p, this_rq, this_cpu);
|
||||
/*
|
||||
* Right now, this is only the second place pull_task()
|
||||
* is called, so we can safely collect pull_task()
|
||||
* stats here rather than inside pull_task().
|
||||
*/
|
||||
schedstat_inc(sd, lb_gained[idle]);
|
||||
return 1;
|
||||
}
|
||||
move_task(p, env);
|
||||
/*
|
||||
* Right now, this is only the second place move_task()
|
||||
* is called, so we can safely collect move_task()
|
||||
* stats here rather than inside move_task().
|
||||
*/
|
||||
schedstat_inc(env->sd, lb_gained[env->idle]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static unsigned long
|
||||
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
||||
unsigned long max_load_move, struct sched_domain *sd,
|
||||
enum cpu_idle_type idle, int *lb_flags,
|
||||
struct cfs_rq *busiest_cfs_rq)
|
||||
static unsigned long task_h_load(struct task_struct *p);
|
||||
|
||||
/*
|
||||
* move_tasks tries to move up to load_move weighted load from busiest to
|
||||
* this_rq, as part of a balancing operation within domain "sd".
|
||||
* Returns 1 if successful and 0 otherwise.
|
||||
*
|
||||
* Called with both runqueues locked.
|
||||
*/
|
||||
static int move_tasks(struct lb_env *env)
|
||||
{
|
||||
int loops = 0, pulled = 0;
|
||||
long rem_load_move = max_load_move;
|
||||
struct task_struct *p, *n;
|
||||
struct list_head *tasks = &env->src_rq->cfs_tasks;
|
||||
struct task_struct *p;
|
||||
unsigned long load;
|
||||
int pulled = 0;
|
||||
|
||||
if (max_load_move == 0)
|
||||
goto out;
|
||||
if (env->load_move <= 0)
|
||||
return 0;
|
||||
|
||||
list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
|
||||
if (loops++ > sysctl_sched_nr_migrate) {
|
||||
*lb_flags |= LBF_NEED_BREAK;
|
||||
while (!list_empty(tasks)) {
|
||||
p = list_first_entry(tasks, struct task_struct, se.group_node);
|
||||
|
||||
env->loop++;
|
||||
/* We've more or less seen every task there is, call it quits */
|
||||
if (env->loop > env->loop_max)
|
||||
break;
|
||||
|
||||
/* take a breather every nr_migrate tasks */
|
||||
if (env->loop > env->loop_break) {
|
||||
env->loop_break += sysctl_sched_nr_migrate;
|
||||
env->flags |= LBF_NEED_BREAK;
|
||||
break;
|
||||
}
|
||||
|
||||
if ((p->se.load.weight >> 1) > rem_load_move ||
|
||||
!can_migrate_task(p, busiest, this_cpu, sd, idle,
|
||||
lb_flags))
|
||||
continue;
|
||||
if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
|
||||
goto next;
|
||||
|
||||
pull_task(busiest, p, this_rq, this_cpu);
|
||||
load = task_h_load(p);
|
||||
|
||||
if (load < 16 && !env->sd->nr_balance_failed)
|
||||
goto next;
|
||||
|
||||
if ((load / 2) > env->load_move)
|
||||
goto next;
|
||||
|
||||
if (!can_migrate_task(p, env))
|
||||
goto next;
|
||||
|
||||
move_task(p, env);
|
||||
pulled++;
|
||||
rem_load_move -= p->se.load.weight;
|
||||
env->load_move -= load;
|
||||
|
||||
#ifdef CONFIG_PREEMPT
|
||||
/*
|
||||
@ -3261,28 +3271,30 @@ balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
||||
* kernels will stop after the first task is pulled to minimize
|
||||
* the critical section.
|
||||
*/
|
||||
if (idle == CPU_NEWLY_IDLE) {
|
||||
*lb_flags |= LBF_ABORT;
|
||||
if (env->idle == CPU_NEWLY_IDLE)
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* We only want to steal up to the prescribed amount of
|
||||
* weighted load.
|
||||
*/
|
||||
if (rem_load_move <= 0)
|
||||
if (env->load_move <= 0)
|
||||
break;
|
||||
}
|
||||
out:
|
||||
/*
|
||||
* Right now, this is one of only two places pull_task() is called,
|
||||
* so we can safely collect pull_task() stats here rather than
|
||||
* inside pull_task().
|
||||
*/
|
||||
schedstat_add(sd, lb_gained[idle], pulled);
|
||||
|
||||
return max_load_move - rem_load_move;
|
||||
continue;
|
||||
next:
|
||||
list_move_tail(&p->se.group_node, tasks);
|
||||
}
|
||||
|
||||
/*
|
||||
* Right now, this is one of only two places move_task() is called,
|
||||
* so we can safely collect move_task() stats here rather than
|
||||
* inside move_task().
|
||||
*/
|
||||
schedstat_add(env->sd, lb_gained[env->idle], pulled);
|
||||
|
||||
return pulled;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_FAIR_GROUP_SCHED
|
||||
@ -3362,114 +3374,36 @@ static int tg_load_down(struct task_group *tg, void *data)
|
||||
|
||||
static void update_h_load(long cpu)
|
||||
{
|
||||
rcu_read_lock();
|
||||
walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
static unsigned long
|
||||
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
||||
unsigned long max_load_move,
|
||||
struct sched_domain *sd, enum cpu_idle_type idle,
|
||||
int *lb_flags)
|
||||
static unsigned long task_h_load(struct task_struct *p)
|
||||
{
|
||||
long rem_load_move = max_load_move;
|
||||
struct cfs_rq *busiest_cfs_rq;
|
||||
struct cfs_rq *cfs_rq = task_cfs_rq(p);
|
||||
unsigned long load;
|
||||
|
||||
rcu_read_lock();
|
||||
update_h_load(cpu_of(busiest));
|
||||
load = p->se.load.weight;
|
||||
load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
|
||||
|
||||
for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
|
||||
unsigned long busiest_h_load = busiest_cfs_rq->h_load;
|
||||
unsigned long busiest_weight = busiest_cfs_rq->load.weight;
|
||||
u64 rem_load, moved_load;
|
||||
|
||||
if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
|
||||
break;
|
||||
|
||||
/*
|
||||
* empty group or part of a throttled hierarchy
|
||||
*/
|
||||
if (!busiest_cfs_rq->task_weight ||
|
||||
throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
|
||||
continue;
|
||||
|
||||
rem_load = (u64)rem_load_move * busiest_weight;
|
||||
rem_load = div_u64(rem_load, busiest_h_load + 1);
|
||||
|
||||
moved_load = balance_tasks(this_rq, this_cpu, busiest,
|
||||
rem_load, sd, idle, lb_flags,
|
||||
busiest_cfs_rq);
|
||||
|
||||
if (!moved_load)
|
||||
continue;
|
||||
|
||||
moved_load *= busiest_h_load;
|
||||
moved_load = div_u64(moved_load, busiest_weight + 1);
|
||||
|
||||
rem_load_move -= moved_load;
|
||||
if (rem_load_move < 0)
|
||||
break;
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
return max_load_move - rem_load_move;
|
||||
return load;
|
||||
}
|
||||
#else
|
||||
static inline void update_shares(int cpu)
|
||||
{
|
||||
}
|
||||
|
||||
static unsigned long
|
||||
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
||||
unsigned long max_load_move,
|
||||
struct sched_domain *sd, enum cpu_idle_type idle,
|
||||
int *lb_flags)
|
||||
static inline void update_h_load(long cpu)
|
||||
{
|
||||
return balance_tasks(this_rq, this_cpu, busiest,
|
||||
max_load_move, sd, idle, lb_flags,
|
||||
&busiest->cfs);
|
||||
}
|
||||
|
||||
static unsigned long task_h_load(struct task_struct *p)
|
||||
{
|
||||
return p->se.load.weight;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* move_tasks tries to move up to max_load_move weighted load from busiest to
|
||||
* this_rq, as part of a balancing operation within domain "sd".
|
||||
* Returns 1 if successful and 0 otherwise.
|
||||
*
|
||||
* Called with both runqueues locked.
|
||||
*/
|
||||
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
||||
unsigned long max_load_move,
|
||||
struct sched_domain *sd, enum cpu_idle_type idle,
|
||||
int *lb_flags)
|
||||
{
|
||||
unsigned long total_load_moved = 0, load_moved;
|
||||
|
||||
do {
|
||||
load_moved = load_balance_fair(this_rq, this_cpu, busiest,
|
||||
max_load_move - total_load_moved,
|
||||
sd, idle, lb_flags);
|
||||
|
||||
total_load_moved += load_moved;
|
||||
|
||||
if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
|
||||
break;
|
||||
|
||||
#ifdef CONFIG_PREEMPT
|
||||
/*
|
||||
* NEWIDLE balancing is a source of latency, so preemptible
|
||||
* kernels will stop after the first task is pulled to minimize
|
||||
* the critical section.
|
||||
*/
|
||||
if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) {
|
||||
*lb_flags |= LBF_ABORT;
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
} while (load_moved && max_load_move > total_load_moved);
|
||||
|
||||
return total_load_moved > 0;
|
||||
}
|
||||
|
||||
/********** Helpers for find_busiest_group ************************/
|
||||
/*
|
||||
* sd_lb_stats - Structure to store the statistics of a sched_domain
|
||||
@ -3778,6 +3712,11 @@ void update_group_power(struct sched_domain *sd, int cpu)
|
||||
struct sched_domain *child = sd->child;
|
||||
struct sched_group *group, *sdg = sd->groups;
|
||||
unsigned long power;
|
||||
unsigned long interval;
|
||||
|
||||
interval = msecs_to_jiffies(sd->balance_interval);
|
||||
interval = clamp(interval, 1UL, max_load_balance_interval);
|
||||
sdg->sgp->next_update = jiffies + interval;
|
||||
|
||||
if (!child) {
|
||||
update_cpu_power(sd, cpu);
|
||||
@ -3885,12 +3824,15 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
|
||||
* domains. In the newly idle case, we will allow all the cpu's
|
||||
* to do the newly idle load balance.
|
||||
*/
|
||||
if (idle != CPU_NEWLY_IDLE && local_group) {
|
||||
if (balance_cpu != this_cpu) {
|
||||
*balance = 0;
|
||||
return;
|
||||
}
|
||||
update_group_power(sd, this_cpu);
|
||||
if (local_group) {
|
||||
if (idle != CPU_NEWLY_IDLE) {
|
||||
if (balance_cpu != this_cpu) {
|
||||
*balance = 0;
|
||||
return;
|
||||
}
|
||||
update_group_power(sd, this_cpu);
|
||||
} else if (time_after_eq(jiffies, group->sgp->next_update))
|
||||
update_group_power(sd, this_cpu);
|
||||
}
|
||||
|
||||
/* Adjust by relative CPU power of the group */
|
||||
@ -4453,13 +4395,21 @@ static int load_balance(int this_cpu, struct rq *this_rq,
|
||||
struct sched_domain *sd, enum cpu_idle_type idle,
|
||||
int *balance)
|
||||
{
|
||||
int ld_moved, lb_flags = 0, active_balance = 0;
|
||||
int ld_moved, active_balance = 0;
|
||||
struct sched_group *group;
|
||||
unsigned long imbalance;
|
||||
struct rq *busiest;
|
||||
unsigned long flags;
|
||||
struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
|
||||
|
||||
struct lb_env env = {
|
||||
.sd = sd,
|
||||
.dst_cpu = this_cpu,
|
||||
.dst_rq = this_rq,
|
||||
.idle = idle,
|
||||
.loop_break = sysctl_sched_nr_migrate,
|
||||
};
|
||||
|
||||
cpumask_copy(cpus, cpu_active_mask);
|
||||
|
||||
schedstat_inc(sd, lb_count[idle]);
|
||||
@ -4494,32 +4444,34 @@ redo:
|
||||
* still unbalanced. ld_moved simply stays zero, so it is
|
||||
* correctly treated as an imbalance.
|
||||
*/
|
||||
lb_flags |= LBF_ALL_PINNED;
|
||||
env.flags |= LBF_ALL_PINNED;
|
||||
env.load_move = imbalance;
|
||||
env.src_cpu = busiest->cpu;
|
||||
env.src_rq = busiest;
|
||||
env.loop_max = busiest->nr_running;
|
||||
|
||||
more_balance:
|
||||
local_irq_save(flags);
|
||||
double_rq_lock(this_rq, busiest);
|
||||
ld_moved = move_tasks(this_rq, this_cpu, busiest,
|
||||
imbalance, sd, idle, &lb_flags);
|
||||
if (!env.loop)
|
||||
update_h_load(env.src_cpu);
|
||||
ld_moved += move_tasks(&env);
|
||||
double_rq_unlock(this_rq, busiest);
|
||||
local_irq_restore(flags);
|
||||
|
||||
if (env.flags & LBF_NEED_BREAK) {
|
||||
env.flags &= ~LBF_NEED_BREAK;
|
||||
goto more_balance;
|
||||
}
|
||||
|
||||
/*
|
||||
* some other cpu did the load balance for us.
|
||||
*/
|
||||
if (ld_moved && this_cpu != smp_processor_id())
|
||||
resched_cpu(this_cpu);
|
||||
|
||||
if (lb_flags & LBF_ABORT)
|
||||
goto out_balanced;
|
||||
|
||||
if (lb_flags & LBF_NEED_BREAK) {
|
||||
lb_flags += LBF_HAD_BREAK - LBF_NEED_BREAK;
|
||||
if (lb_flags & LBF_ABORT)
|
||||
goto out_balanced;
|
||||
goto redo;
|
||||
}
|
||||
|
||||
/* All tasks on this runqueue were pinned by CPU affinity */
|
||||
if (unlikely(lb_flags & LBF_ALL_PINNED)) {
|
||||
if (unlikely(env.flags & LBF_ALL_PINNED)) {
|
||||
cpumask_clear_cpu(cpu_of(busiest), cpus);
|
||||
if (!cpumask_empty(cpus))
|
||||
goto redo;
|
||||
@ -4549,7 +4501,7 @@ redo:
|
||||
tsk_cpus_allowed(busiest->curr))) {
|
||||
raw_spin_unlock_irqrestore(&busiest->lock,
|
||||
flags);
|
||||
lb_flags |= LBF_ALL_PINNED;
|
||||
env.flags |= LBF_ALL_PINNED;
|
||||
goto out_one_pinned;
|
||||
}
|
||||
|
||||
@ -4602,7 +4554,7 @@ out_balanced:
|
||||
|
||||
out_one_pinned:
|
||||
/* tune up the balancing interval */
|
||||
if (((lb_flags & LBF_ALL_PINNED) &&
|
||||
if (((env.flags & LBF_ALL_PINNED) &&
|
||||
sd->balance_interval < MAX_PINNED_INTERVAL) ||
|
||||
(sd->balance_interval < sd->max_interval))
|
||||
sd->balance_interval *= 2;
|
||||
@ -4712,10 +4664,18 @@ static int active_load_balance_cpu_stop(void *data)
|
||||
}
|
||||
|
||||
if (likely(sd)) {
|
||||
struct lb_env env = {
|
||||
.sd = sd,
|
||||
.dst_cpu = target_cpu,
|
||||
.dst_rq = target_rq,
|
||||
.src_cpu = busiest_rq->cpu,
|
||||
.src_rq = busiest_rq,
|
||||
.idle = CPU_IDLE,
|
||||
};
|
||||
|
||||
schedstat_inc(sd, alb_count);
|
||||
|
||||
if (move_one_task(target_rq, target_cpu, busiest_rq,
|
||||
sd, CPU_IDLE))
|
||||
if (move_one_task(&env))
|
||||
schedstat_inc(sd, alb_pushed);
|
||||
else
|
||||
schedstat_inc(sd, alb_failed);
|
||||
@ -4947,8 +4907,6 @@ static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
|
||||
|
||||
static DEFINE_SPINLOCK(balancing);
|
||||
|
||||
static unsigned long __read_mostly max_load_balance_interval = HZ/10;
|
||||
|
||||
/*
|
||||
* Scale the max load_balance interval with the number of CPUs in the system.
|
||||
* This trades load-balance latency on larger machines for less cross talk.
|
||||
@ -5342,7 +5300,6 @@ static void set_curr_task_fair(struct rq *rq)
|
||||
void init_cfs_rq(struct cfs_rq *cfs_rq)
|
||||
{
|
||||
cfs_rq->tasks_timeline = RB_ROOT;
|
||||
INIT_LIST_HEAD(&cfs_rq->tasks);
|
||||
cfs_rq->min_vruntime = (u64)(-(1LL << 20));
|
||||
#ifndef CONFIG_64BIT
|
||||
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
|
||||
@ -5614,6 +5571,7 @@ __init void init_sched_fair_class(void)
|
||||
open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
|
||||
|
||||
#ifdef CONFIG_NO_HZ
|
||||
nohz.next_balance = jiffies;
|
||||
zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
|
||||
cpu_notifier(sched_ilb_notifier, 0);
|
||||
#endif
|
||||
|
@ -778,12 +778,9 @@ static inline int balance_runtime(struct rt_rq *rt_rq)
|
||||
|
||||
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
|
||||
{
|
||||
int i, idle = 1;
|
||||
int i, idle = 1, throttled = 0;
|
||||
const struct cpumask *span;
|
||||
|
||||
if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
|
||||
return 1;
|
||||
|
||||
span = sched_rt_period_mask();
|
||||
for_each_cpu(i, span) {
|
||||
int enqueue = 0;
|
||||
@ -818,12 +815,17 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
|
||||
if (!rt_rq_throttled(rt_rq))
|
||||
enqueue = 1;
|
||||
}
|
||||
if (rt_rq->rt_throttled)
|
||||
throttled = 1;
|
||||
|
||||
if (enqueue)
|
||||
sched_rt_rq_enqueue(rt_rq);
|
||||
raw_spin_unlock(&rq->lock);
|
||||
}
|
||||
|
||||
if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
|
||||
return 1;
|
||||
|
||||
return idle;
|
||||
}
|
||||
|
||||
@ -855,8 +857,30 @@ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
|
||||
return 0;
|
||||
|
||||
if (rt_rq->rt_time > runtime) {
|
||||
rt_rq->rt_throttled = 1;
|
||||
printk_once(KERN_WARNING "sched: RT throttling activated\n");
|
||||
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
|
||||
|
||||
/*
|
||||
* Don't actually throttle groups that have no runtime assigned
|
||||
* but accrue some time due to boosting.
|
||||
*/
|
||||
if (likely(rt_b->rt_runtime)) {
|
||||
static bool once = false;
|
||||
|
||||
rt_rq->rt_throttled = 1;
|
||||
|
||||
if (!once) {
|
||||
once = true;
|
||||
printk_sched("sched: RT throttling activated\n");
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
* In case we did anyway, make it go away,
|
||||
* replenishment is a joke, since it will replenish us
|
||||
* with exactly 0 ns.
|
||||
*/
|
||||
rt_rq->rt_time = 0;
|
||||
}
|
||||
|
||||
if (rt_rq_throttled(rt_rq)) {
|
||||
sched_rt_rq_dequeue(rt_rq);
|
||||
return 1;
|
||||
@ -884,7 +908,8 @@ static void update_curr_rt(struct rq *rq)
|
||||
if (unlikely((s64)delta_exec < 0))
|
||||
delta_exec = 0;
|
||||
|
||||
schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
|
||||
schedstat_set(curr->se.statistics.exec_max,
|
||||
max(curr->se.statistics.exec_max, delta_exec));
|
||||
|
||||
curr->se.sum_exec_runtime += delta_exec;
|
||||
account_group_exec_runtime(curr, delta_exec);
|
||||
@ -1972,7 +1997,7 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
|
||||
if (--p->rt.time_slice)
|
||||
return;
|
||||
|
||||
p->rt.time_slice = DEF_TIMESLICE;
|
||||
p->rt.time_slice = RR_TIMESLICE;
|
||||
|
||||
/*
|
||||
* Requeue to the end of queue if we are not the only element
|
||||
@ -2000,7 +2025,7 @@ static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
|
||||
* Time slice is 0 for SCHED_FIFO tasks
|
||||
*/
|
||||
if (task->policy == SCHED_RR)
|
||||
return DEF_TIMESLICE;
|
||||
return RR_TIMESLICE;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
@ -36,11 +36,7 @@ extern __read_mostly int scheduler_running;
|
||||
|
||||
/*
|
||||
* These are the 'tuning knobs' of the scheduler:
|
||||
*
|
||||
* default timeslice is 100 msecs (used only for SCHED_RR tasks).
|
||||
* Timeslices get refilled after they expire.
|
||||
*/
|
||||
#define DEF_TIMESLICE (100 * HZ / 1000)
|
||||
|
||||
/*
|
||||
* single value that denotes runtime == period, ie unlimited time.
|
||||
@ -216,9 +212,6 @@ struct cfs_rq {
|
||||
struct rb_root tasks_timeline;
|
||||
struct rb_node *rb_leftmost;
|
||||
|
||||
struct list_head tasks;
|
||||
struct list_head *balance_iterator;
|
||||
|
||||
/*
|
||||
* 'curr' points to currently running entity on this cfs_rq.
|
||||
* It is set to NULL otherwise (i.e when none are currently running).
|
||||
@ -245,11 +238,6 @@ struct cfs_rq {
|
||||
struct task_group *tg; /* group that "owns" this runqueue */
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* the part of load.weight contributed by tasks
|
||||
*/
|
||||
unsigned long task_weight;
|
||||
|
||||
/*
|
||||
* h_load = weight * f(tg)
|
||||
*
|
||||
@ -424,6 +412,8 @@ struct rq {
|
||||
int cpu;
|
||||
int online;
|
||||
|
||||
struct list_head cfs_tasks;
|
||||
|
||||
u64 rt_avg;
|
||||
u64 age_stamp;
|
||||
u64 idle_stamp;
|
||||
@ -462,7 +452,6 @@ struct rq {
|
||||
unsigned int yld_count;
|
||||
|
||||
/* schedule() stats */
|
||||
unsigned int sched_switch;
|
||||
unsigned int sched_count;
|
||||
unsigned int sched_goidle;
|
||||
|
||||
|
@ -32,9 +32,9 @@ static int show_schedstat(struct seq_file *seq, void *v)
|
||||
|
||||
/* runqueue-specific stats */
|
||||
seq_printf(seq,
|
||||
"cpu%d %u %u %u %u %u %u %llu %llu %lu",
|
||||
"cpu%d %u 0 %u %u %u %u %llu %llu %lu",
|
||||
cpu, rq->yld_count,
|
||||
rq->sched_switch, rq->sched_count, rq->sched_goidle,
|
||||
rq->sched_count, rq->sched_goidle,
|
||||
rq->ttwu_count, rq->ttwu_local,
|
||||
rq->rq_cpu_time,
|
||||
rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
|
||||
|
@ -343,7 +343,7 @@ void irq_exit(void)
|
||||
tick_nohz_irq_exit();
|
||||
#endif
|
||||
rcu_irq_exit();
|
||||
preempt_enable_no_resched();
|
||||
sched_preempt_enable_no_resched();
|
||||
}
|
||||
|
||||
/*
|
||||
@ -740,9 +740,7 @@ static int run_ksoftirqd(void * __bind_cpu)
|
||||
while (!kthread_should_stop()) {
|
||||
preempt_disable();
|
||||
if (!local_softirq_pending()) {
|
||||
preempt_enable_no_resched();
|
||||
schedule();
|
||||
preempt_disable();
|
||||
schedule_preempt_disabled();
|
||||
}
|
||||
|
||||
__set_current_state(TASK_RUNNING);
|
||||
@ -757,7 +755,7 @@ static int run_ksoftirqd(void * __bind_cpu)
|
||||
if (local_softirq_pending())
|
||||
__do_softirq();
|
||||
local_irq_enable();
|
||||
preempt_enable_no_resched();
|
||||
sched_preempt_enable_no_resched();
|
||||
cond_resched();
|
||||
preempt_disable();
|
||||
rcu_note_context_switch((long)__bind_cpu);
|
||||
|
Loading…
Reference in New Issue
Block a user