mirror of
https://github.com/torvalds/linux.git
synced 2024-11-11 06:31:49 +00:00
mm, vmscan: make kswapd reclaim in terms of nodes
Patch "mm: vmscan: Begin reclaiming pages on a per-node basis" started thinking of reclaim in terms of nodes but kswapd is still zone-centric. This patch gets rid of many of the node-based versus zone-based decisions. o A node is considered balanced when any eligible lower zone is balanced. This eliminates one class of age-inversion problem because we avoid reclaiming a newer page just because it's in the wrong zone o pgdat_balanced disappears because we now only care about one zone being balanced. o Some anomalies related to writeback and congestion tracking being based on zones disappear. o kswapd no longer has to take care to reclaim zones in the reverse order that the page allocator uses. o Most importantly of all, reclaim from node 0 with multiple zones will have similar aging and reclaiming characteristics as every other node. Link: http://lkml.kernel.org/r/1467970510-21195-8-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
f7b60926eb
commit
1d82de618d
302
mm/vmscan.c
302
mm/vmscan.c
@ -2980,7 +2980,8 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
|
||||
}
|
||||
#endif
|
||||
|
||||
static void age_active_anon(struct zone *zone, struct scan_control *sc)
|
||||
static void age_active_anon(struct pglist_data *pgdat,
|
||||
struct zone *zone, struct scan_control *sc)
|
||||
{
|
||||
struct mem_cgroup *memcg;
|
||||
|
||||
@ -2999,84 +3000,14 @@ static void age_active_anon(struct zone *zone, struct scan_control *sc)
|
||||
} while (memcg);
|
||||
}
|
||||
|
||||
static bool zone_balanced(struct zone *zone, int order, bool highorder,
|
||||
static bool zone_balanced(struct zone *zone, int order,
|
||||
unsigned long balance_gap, int classzone_idx)
|
||||
{
|
||||
unsigned long mark = high_wmark_pages(zone) + balance_gap;
|
||||
|
||||
/*
|
||||
* When checking from pgdat_balanced(), kswapd should stop and sleep
|
||||
* when it reaches the high order-0 watermark and let kcompactd take
|
||||
* over. Other callers such as wakeup_kswapd() want to determine the
|
||||
* true high-order watermark.
|
||||
*/
|
||||
if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
|
||||
mark += (1UL << order);
|
||||
order = 0;
|
||||
}
|
||||
|
||||
return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
|
||||
}
|
||||
|
||||
/*
|
||||
* pgdat_balanced() is used when checking if a node is balanced.
|
||||
*
|
||||
* For order-0, all zones must be balanced!
|
||||
*
|
||||
* For high-order allocations only zones that meet watermarks and are in a
|
||||
* zone allowed by the callers classzone_idx are added to balanced_pages. The
|
||||
* total of balanced pages must be at least 25% of the zones allowed by
|
||||
* classzone_idx for the node to be considered balanced. Forcing all zones to
|
||||
* be balanced for high orders can cause excessive reclaim when there are
|
||||
* imbalanced zones.
|
||||
* The choice of 25% is due to
|
||||
* o a 16M DMA zone that is balanced will not balance a zone on any
|
||||
* reasonable sized machine
|
||||
* o On all other machines, the top zone must be at least a reasonable
|
||||
* percentage of the middle zones. For example, on 32-bit x86, highmem
|
||||
* would need to be at least 256M for it to be balance a whole node.
|
||||
* Similarly, on x86-64 the Normal zone would need to be at least 1G
|
||||
* to balance a node on its own. These seemed like reasonable ratios.
|
||||
*/
|
||||
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
|
||||
{
|
||||
unsigned long managed_pages = 0;
|
||||
unsigned long balanced_pages = 0;
|
||||
int i;
|
||||
|
||||
/* Check the watermark levels */
|
||||
for (i = 0; i <= classzone_idx; i++) {
|
||||
struct zone *zone = pgdat->node_zones + i;
|
||||
|
||||
if (!populated_zone(zone))
|
||||
continue;
|
||||
|
||||
managed_pages += zone->managed_pages;
|
||||
|
||||
/*
|
||||
* A special case here:
|
||||
*
|
||||
* balance_pgdat() skips over all_unreclaimable after
|
||||
* DEF_PRIORITY. Effectively, it considers them balanced so
|
||||
* they must be considered balanced here as well!
|
||||
*/
|
||||
if (!pgdat_reclaimable(zone->zone_pgdat)) {
|
||||
balanced_pages += zone->managed_pages;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (zone_balanced(zone, order, false, 0, i))
|
||||
balanced_pages += zone->managed_pages;
|
||||
else if (!order)
|
||||
return false;
|
||||
}
|
||||
|
||||
if (order)
|
||||
return balanced_pages >= (managed_pages >> 2);
|
||||
else
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Prepare kswapd for sleeping. This verifies that there are no processes
|
||||
* waiting in throttle_direct_reclaim() and that watermarks have been met.
|
||||
@ -3086,6 +3017,8 @@ static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
|
||||
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
|
||||
int classzone_idx)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
|
||||
if (remaining)
|
||||
return false;
|
||||
@ -3106,101 +3039,90 @@ static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
|
||||
if (waitqueue_active(&pgdat->pfmemalloc_wait))
|
||||
wake_up_all(&pgdat->pfmemalloc_wait);
|
||||
|
||||
return pgdat_balanced(pgdat, order, classzone_idx);
|
||||
for (i = 0; i <= classzone_idx; i++) {
|
||||
struct zone *zone = pgdat->node_zones + i;
|
||||
|
||||
if (!populated_zone(zone))
|
||||
continue;
|
||||
|
||||
if (zone_balanced(zone, order, 0, classzone_idx))
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* kswapd shrinks the zone by the number of pages required to reach
|
||||
* the high watermark.
|
||||
* kswapd shrinks a node of pages that are at or below the highest usable
|
||||
* zone that is currently unbalanced.
|
||||
*
|
||||
* Returns true if kswapd scanned at least the requested number of pages to
|
||||
* reclaim or if the lack of progress was due to pages under writeback.
|
||||
* This is used to determine if the scanning priority needs to be raised.
|
||||
*/
|
||||
static bool kswapd_shrink_zone(struct zone *zone,
|
||||
static bool kswapd_shrink_node(pg_data_t *pgdat,
|
||||
int classzone_idx,
|
||||
struct scan_control *sc)
|
||||
{
|
||||
unsigned long balance_gap;
|
||||
bool lowmem_pressure;
|
||||
struct pglist_data *pgdat = zone->zone_pgdat;
|
||||
struct zone *zone;
|
||||
int z;
|
||||
|
||||
/* Reclaim above the high watermark. */
|
||||
sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
|
||||
/* Reclaim a number of pages proportional to the number of zones */
|
||||
sc->nr_to_reclaim = 0;
|
||||
for (z = 0; z <= classzone_idx; z++) {
|
||||
zone = pgdat->node_zones + z;
|
||||
if (!populated_zone(zone))
|
||||
continue;
|
||||
|
||||
/*
|
||||
* We put equal pressure on every zone, unless one zone has way too
|
||||
* many pages free already. The "too many pages" is defined as the
|
||||
* high wmark plus a "gap" where the gap is either the low
|
||||
* watermark or 1% of the zone, whichever is smaller.
|
||||
*/
|
||||
balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
|
||||
zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
|
||||
|
||||
/*
|
||||
* If there is no low memory pressure or the zone is balanced then no
|
||||
* reclaim is necessary
|
||||
*/
|
||||
lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
|
||||
if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
|
||||
balance_gap, classzone_idx))
|
||||
return true;
|
||||
|
||||
shrink_node(zone->zone_pgdat, sc, classzone_idx);
|
||||
|
||||
/* TODO: ANOMALY */
|
||||
clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
|
||||
|
||||
/*
|
||||
* If a zone reaches its high watermark, consider it to be no longer
|
||||
* congested. It's possible there are dirty pages backed by congested
|
||||
* BDIs but as pressure is relieved, speculatively avoid congestion
|
||||
* waits.
|
||||
*/
|
||||
if (pgdat_reclaimable(zone->zone_pgdat) &&
|
||||
zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
|
||||
clear_bit(PGDAT_CONGESTED, &pgdat->flags);
|
||||
clear_bit(PGDAT_DIRTY, &pgdat->flags);
|
||||
sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
|
||||
}
|
||||
|
||||
/*
|
||||
* Historically care was taken to put equal pressure on all zones but
|
||||
* now pressure is applied based on node LRU order.
|
||||
*/
|
||||
shrink_node(pgdat, sc, classzone_idx);
|
||||
|
||||
/*
|
||||
* Fragmentation may mean that the system cannot be rebalanced for
|
||||
* high-order allocations. If twice the allocation size has been
|
||||
* reclaimed then recheck watermarks only at order-0 to prevent
|
||||
* excessive reclaim. Assume that a process requested a high-order
|
||||
* can direct reclaim/compact.
|
||||
*/
|
||||
if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
|
||||
sc->order = 0;
|
||||
|
||||
return sc->nr_scanned >= sc->nr_to_reclaim;
|
||||
}
|
||||
|
||||
/*
|
||||
* For kswapd, balance_pgdat() will work across all this node's zones until
|
||||
* they are all at high_wmark_pages(zone).
|
||||
* For kswapd, balance_pgdat() will reclaim pages across a node from zones
|
||||
* that are eligible for use by the caller until at least one zone is
|
||||
* balanced.
|
||||
*
|
||||
* Returns the highest zone idx kswapd was reclaiming at
|
||||
*
|
||||
* There is special handling here for zones which are full of pinned pages.
|
||||
* This can happen if the pages are all mlocked, or if they are all used by
|
||||
* device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
|
||||
* What we do is to detect the case where all pages in the zone have been
|
||||
* scanned twice and there has been zero successful reclaim. Mark the zone as
|
||||
* dead and from now on, only perform a short scan. Basically we're polling
|
||||
* the zone for when the problem goes away.
|
||||
* Returns the order kswapd finished reclaiming at.
|
||||
*
|
||||
* kswapd scans the zones in the highmem->normal->dma direction. It skips
|
||||
* zones which have free_pages > high_wmark_pages(zone), but once a zone is
|
||||
* found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
|
||||
* lower zones regardless of the number of free pages in the lower zones. This
|
||||
* interoperates with the page allocator fallback scheme to ensure that aging
|
||||
* of pages is balanced across the zones.
|
||||
* found to have free_pages <= high_wmark_pages(zone), any page is that zone
|
||||
* or lower is eligible for reclaim until at least one usable zone is
|
||||
* balanced.
|
||||
*/
|
||||
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
|
||||
{
|
||||
int i;
|
||||
int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
|
||||
unsigned long nr_soft_reclaimed;
|
||||
unsigned long nr_soft_scanned;
|
||||
struct zone *zone;
|
||||
struct scan_control sc = {
|
||||
.gfp_mask = GFP_KERNEL,
|
||||
.reclaim_idx = MAX_NR_ZONES - 1,
|
||||
.order = order,
|
||||
.priority = DEF_PRIORITY,
|
||||
.may_writepage = !laptop_mode,
|
||||
.may_unmap = 1,
|
||||
.may_swap = 1,
|
||||
.reclaim_idx = classzone_idx,
|
||||
};
|
||||
count_vm_event(PAGEOUTRUN);
|
||||
|
||||
@ -3211,21 +3133,10 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
|
||||
|
||||
/* Scan from the highest requested zone to dma */
|
||||
for (i = classzone_idx; i >= 0; i--) {
|
||||
struct zone *zone = pgdat->node_zones + i;
|
||||
|
||||
zone = pgdat->node_zones + i;
|
||||
if (!populated_zone(zone))
|
||||
continue;
|
||||
|
||||
if (sc.priority != DEF_PRIORITY &&
|
||||
!pgdat_reclaimable(zone->zone_pgdat))
|
||||
continue;
|
||||
|
||||
/*
|
||||
* Do some background aging of the anon list, to give
|
||||
* pages a chance to be referenced before reclaiming.
|
||||
*/
|
||||
age_active_anon(zone, &sc);
|
||||
|
||||
/*
|
||||
* If the number of buffer_heads in the machine
|
||||
* exceeds the maximum allowed level and this node
|
||||
@ -3233,19 +3144,17 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
|
||||
* it to relieve lowmem pressure.
|
||||
*/
|
||||
if (buffer_heads_over_limit && is_highmem_idx(i)) {
|
||||
end_zone = i;
|
||||
classzone_idx = i;
|
||||
break;
|
||||
}
|
||||
|
||||
if (!zone_balanced(zone, order, false, 0, 0)) {
|
||||
end_zone = i;
|
||||
if (!zone_balanced(zone, order, 0, 0)) {
|
||||
classzone_idx = i;
|
||||
break;
|
||||
} else {
|
||||
/*
|
||||
* If balanced, clear the dirty and congested
|
||||
* flags
|
||||
*
|
||||
* TODO: ANOMALY
|
||||
* If any eligible zone is balanced then the
|
||||
* node is not considered congested or dirty.
|
||||
*/
|
||||
clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
|
||||
clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
|
||||
@ -3255,52 +3164,35 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
|
||||
if (i < 0)
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* Do some background aging of the anon list, to give
|
||||
* pages a chance to be referenced before reclaiming. All
|
||||
* pages are rotated regardless of classzone as this is
|
||||
* about consistent aging.
|
||||
*/
|
||||
age_active_anon(pgdat, &pgdat->node_zones[MAX_NR_ZONES - 1], &sc);
|
||||
|
||||
/*
|
||||
* If we're getting trouble reclaiming, start doing writepage
|
||||
* even in laptop mode.
|
||||
*/
|
||||
if (sc.priority < DEF_PRIORITY - 2)
|
||||
if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
|
||||
sc.may_writepage = 1;
|
||||
|
||||
/* Call soft limit reclaim before calling shrink_node. */
|
||||
sc.nr_scanned = 0;
|
||||
nr_soft_scanned = 0;
|
||||
nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, sc.order,
|
||||
sc.gfp_mask, &nr_soft_scanned);
|
||||
sc.nr_reclaimed += nr_soft_reclaimed;
|
||||
|
||||
/*
|
||||
* Continue scanning in the highmem->dma direction stopping at
|
||||
* the last zone which needs scanning. This may reclaim lowmem
|
||||
* pages that are not necessary for zone balancing but it
|
||||
* preserves LRU ordering. It is assumed that the bulk of
|
||||
* allocation requests can use arbitrary zones with the
|
||||
* possible exception of big highmem:lowmem configurations.
|
||||
* There should be no need to raise the scanning priority if
|
||||
* enough pages are already being scanned that that high
|
||||
* watermark would be met at 100% efficiency.
|
||||
*/
|
||||
for (i = end_zone; i >= 0; i--) {
|
||||
struct zone *zone = pgdat->node_zones + i;
|
||||
|
||||
if (!populated_zone(zone))
|
||||
continue;
|
||||
|
||||
if (sc.priority != DEF_PRIORITY &&
|
||||
!pgdat_reclaimable(zone->zone_pgdat))
|
||||
continue;
|
||||
|
||||
sc.nr_scanned = 0;
|
||||
sc.reclaim_idx = i;
|
||||
|
||||
nr_soft_scanned = 0;
|
||||
/*
|
||||
* Call soft limit reclaim before calling shrink_zone.
|
||||
*/
|
||||
nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
|
||||
order, sc.gfp_mask,
|
||||
&nr_soft_scanned);
|
||||
sc.nr_reclaimed += nr_soft_reclaimed;
|
||||
|
||||
/*
|
||||
* There should be no need to raise the scanning
|
||||
* priority if enough pages are already being scanned
|
||||
* that that high watermark would be met at 100%
|
||||
* efficiency.
|
||||
*/
|
||||
if (kswapd_shrink_zone(zone, end_zone, &sc))
|
||||
raise_priority = false;
|
||||
}
|
||||
if (kswapd_shrink_node(pgdat, classzone_idx, &sc))
|
||||
raise_priority = false;
|
||||
|
||||
/*
|
||||
* If the low watermark is met there is no need for processes
|
||||
@ -3315,21 +3207,38 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
|
||||
if (try_to_freeze() || kthread_should_stop())
|
||||
break;
|
||||
|
||||
/*
|
||||
* Stop reclaiming if any eligible zone is balanced and clear
|
||||
* node writeback or congested.
|
||||
*/
|
||||
for (i = 0; i <= classzone_idx; i++) {
|
||||
zone = pgdat->node_zones + i;
|
||||
if (!populated_zone(zone))
|
||||
continue;
|
||||
|
||||
if (zone_balanced(zone, sc.order, 0, classzone_idx)) {
|
||||
clear_bit(PGDAT_CONGESTED, &pgdat->flags);
|
||||
clear_bit(PGDAT_DIRTY, &pgdat->flags);
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Raise priority if scanning rate is too low or there was no
|
||||
* progress in reclaiming pages
|
||||
*/
|
||||
if (raise_priority || !sc.nr_reclaimed)
|
||||
sc.priority--;
|
||||
} while (sc.priority >= 1 &&
|
||||
!pgdat_balanced(pgdat, order, classzone_idx));
|
||||
} while (sc.priority >= 1);
|
||||
|
||||
out:
|
||||
/*
|
||||
* Return the highest zone idx we were reclaiming at so
|
||||
* prepare_kswapd_sleep() makes the same decisions as here.
|
||||
* Return the order kswapd stopped reclaiming at as
|
||||
* prepare_kswapd_sleep() takes it into account. If another caller
|
||||
* entered the allocator slow path while kswapd was awake, order will
|
||||
* remain at the higher level.
|
||||
*/
|
||||
return end_zone;
|
||||
return sc.order;
|
||||
}
|
||||
|
||||
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
|
||||
@ -3486,8 +3395,9 @@ static int kswapd(void *p)
|
||||
*/
|
||||
if (!ret) {
|
||||
trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
|
||||
balanced_classzone_idx = balance_pgdat(pgdat, order,
|
||||
classzone_idx);
|
||||
|
||||
/* return value ignored until next patch */
|
||||
balance_pgdat(pgdat, order, classzone_idx);
|
||||
}
|
||||
}
|
||||
|
||||
@ -3517,7 +3427,7 @@ void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
|
||||
}
|
||||
if (!waitqueue_active(&pgdat->kswapd_wait))
|
||||
return;
|
||||
if (zone_balanced(zone, order, true, 0, 0))
|
||||
if (zone_balanced(zone, order, 0, 0))
|
||||
return;
|
||||
|
||||
trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
|
||||
|
Loading…
Reference in New Issue
Block a user