crypto: marvell - Add a complete operation for async requests

So far, the 'process' operation was used to check if the current request
was correctly handled by the engine, if it was the case it copied
information from the SRAM to the main memory. Now, we split this
operation. We keep the 'process' operation, which still checks if the
request was correctly handled by the engine or not, then we add a new
operation for completion. The 'complete' method copies the content of
the SRAM to memory. This will soon become useful if we want to call
the process and the complete operations from different locations
depending on the type of the request (different cleanup logic).

Signed-off-by: Romain Perier <romain.perier@free-electrons.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Romain Perier 2016-06-21 10:08:36 +02:00 committed by Herbert Xu
parent 53da740fed
commit 1bf6682cb3
4 changed files with 39 additions and 15 deletions

View File

@ -98,6 +98,7 @@ static irqreturn_t mv_cesa_int(int irq, void *priv)
engine->req = NULL;
mv_cesa_dequeue_req_unlocked(engine);
spin_unlock_bh(&engine->lock);
ctx->ops->complete(req);
ctx->ops->cleanup(req);
local_bh_disable();
req->complete(req, res);

View File

@ -456,6 +456,8 @@ struct mv_cesa_engine {
* code)
* @step: launch the crypto operation on the next chunk
* @cleanup: cleanup the crypto request (release associated data)
* @complete: complete the request, i.e copy result or context from sram when
* needed.
*/
struct mv_cesa_req_ops {
void (*prepare)(struct crypto_async_request *req,
@ -463,6 +465,7 @@ struct mv_cesa_req_ops {
int (*process)(struct crypto_async_request *req, u32 status);
void (*step)(struct crypto_async_request *req);
void (*cleanup)(struct crypto_async_request *req);
void (*complete)(struct crypto_async_request *req);
};
/**

View File

@ -118,7 +118,6 @@ static int mv_cesa_ablkcipher_std_process(struct ablkcipher_request *req,
struct mv_cesa_ablkcipher_std_req *sreq = &creq->std;
struct mv_cesa_engine *engine = creq->base.engine;
size_t len;
unsigned int ivsize;
len = sg_pcopy_from_buffer(req->dst, creq->dst_nents,
engine->sram + CESA_SA_DATA_SRAM_OFFSET,
@ -128,10 +127,6 @@ static int mv_cesa_ablkcipher_std_process(struct ablkcipher_request *req,
if (sreq->offset < req->nbytes)
return -EINPROGRESS;
ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
memcpy_fromio(req->info,
engine->sram + CESA_SA_CRYPT_IV_SRAM_OFFSET, ivsize);
return 0;
}
@ -211,11 +206,34 @@ mv_cesa_ablkcipher_req_cleanup(struct crypto_async_request *req)
mv_cesa_ablkcipher_cleanup(ablkreq);
}
static void
mv_cesa_ablkcipher_complete(struct crypto_async_request *req)
{
struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(ablkreq);
struct mv_cesa_engine *engine = creq->base.engine;
unsigned int ivsize;
ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(ablkreq));
if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) {
struct mv_cesa_req *basereq;
basereq = &creq->base;
memcpy(ablkreq->info, basereq->chain.last->data, ivsize);
} else {
memcpy_fromio(ablkreq->info,
engine->sram + CESA_SA_CRYPT_IV_SRAM_OFFSET,
ivsize);
}
}
static const struct mv_cesa_req_ops mv_cesa_ablkcipher_req_ops = {
.step = mv_cesa_ablkcipher_step,
.process = mv_cesa_ablkcipher_process,
.prepare = mv_cesa_ablkcipher_prepare,
.cleanup = mv_cesa_ablkcipher_req_cleanup,
.complete = mv_cesa_ablkcipher_complete,
};
static int mv_cesa_ablkcipher_cra_init(struct crypto_tfm *tfm)

View File

@ -287,17 +287,20 @@ static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
{
struct ahash_request *ahashreq = ahash_request_cast(req);
struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
struct mv_cesa_engine *engine = creq->base.engine;
unsigned int digsize;
int ret, i;
if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
ret = mv_cesa_dma_process(&creq->base, status);
else
ret = mv_cesa_ahash_std_process(ahashreq, status);
return mv_cesa_dma_process(&creq->base, status);
if (ret == -EINPROGRESS)
return ret;
return mv_cesa_ahash_std_process(ahashreq, status);
}
static void mv_cesa_ahash_complete(struct crypto_async_request *req)
{
struct ahash_request *ahashreq = ahash_request_cast(req);
struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
struct mv_cesa_engine *engine = creq->base.engine;
unsigned int digsize;
int i;
digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
for (i = 0; i < digsize / 4; i++)
@ -326,8 +329,6 @@ static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
result[i] = cpu_to_be32(creq->state[i]);
}
}
return ret;
}
static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
@ -366,6 +367,7 @@ static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
.process = mv_cesa_ahash_process,
.prepare = mv_cesa_ahash_prepare,
.cleanup = mv_cesa_ahash_req_cleanup,
.complete = mv_cesa_ahash_complete,
};
static int mv_cesa_ahash_init(struct ahash_request *req,