Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx:
  dma: Add SoF and EoF debugging to ipu_idmac.c, minor cleanup
  dw_dmac: add cyclic API to DW DMA driver
  dmaengine: Add privatecnt to revert DMA_PRIVATE property
  dmatest: add dma interrupts and callbacks
  dmatest: add xor test
  dmaengine: allow dma support for async_tx to be toggled
  async_tx: provide __async_inline for HAS_DMA=n archs
  dmaengine: kill some unused headers
  dmaengine: initialize tx_list in dma_async_tx_descriptor_init
  dma: i.MX31 IPU DMA robustness improvements
  dma: improve section assignment in i.MX31 IPU DMA driver
  dma: ipu_idmac driver cosmetic clean-up
  dmaengine: fail device registration if channel registration fails
This commit is contained in:
Linus Torvalds 2009-04-03 12:13:45 -07:00
commit 133e2a3164
16 changed files with 928 additions and 244 deletions

View File

@ -30,7 +30,7 @@
#ifdef CONFIG_DMA_ENGINE #ifdef CONFIG_DMA_ENGINE
static int __init async_tx_init(void) static int __init async_tx_init(void)
{ {
dmaengine_get(); async_dmaengine_get();
printk(KERN_INFO "async_tx: api initialized (async)\n"); printk(KERN_INFO "async_tx: api initialized (async)\n");
@ -39,7 +39,7 @@ static int __init async_tx_init(void)
static void __exit async_tx_exit(void) static void __exit async_tx_exit(void)
{ {
dmaengine_put(); async_dmaengine_put();
} }
/** /**
@ -56,7 +56,7 @@ __async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx,
if (depend_tx && if (depend_tx &&
dma_has_cap(tx_type, depend_tx->chan->device->cap_mask)) dma_has_cap(tx_type, depend_tx->chan->device->cap_mask))
return depend_tx->chan; return depend_tx->chan;
return dma_find_channel(tx_type); return async_dma_find_channel(tx_type);
} }
EXPORT_SYMBOL_GPL(__async_tx_find_channel); EXPORT_SYMBOL_GPL(__async_tx_find_channel);
#else #else

View File

@ -30,11 +30,8 @@
#include <linux/raid/xor.h> #include <linux/raid/xor.h>
#include <linux/async_tx.h> #include <linux/async_tx.h>
/* do_async_xor - dma map the pages and perform the xor with an engine. /* do_async_xor - dma map the pages and perform the xor with an engine */
* This routine is marked __always_inline so it can be compiled away static __async_inline struct dma_async_tx_descriptor *
* when CONFIG_DMA_ENGINE=n
*/
static __always_inline struct dma_async_tx_descriptor *
do_async_xor(struct dma_chan *chan, struct page *dest, struct page **src_list, do_async_xor(struct dma_chan *chan, struct page *dest, struct page **src_list,
unsigned int offset, int src_cnt, size_t len, unsigned int offset, int src_cnt, size_t len,
enum async_tx_flags flags, enum async_tx_flags flags,

View File

@ -98,6 +98,17 @@ config NET_DMA
Say Y here if you enabled INTEL_IOATDMA or FSL_DMA, otherwise Say Y here if you enabled INTEL_IOATDMA or FSL_DMA, otherwise
say N. say N.
config ASYNC_TX_DMA
bool "Async_tx: Offload support for the async_tx api"
depends on DMA_ENGINE
help
This allows the async_tx api to take advantage of offload engines for
memcpy, memset, xor, and raid6 p+q operations. If your platform has
a dma engine that can perform raid operations and you have enabled
MD_RAID456 say Y.
If unsure, say N.
config DMATEST config DMATEST
tristate "DMA Test client" tristate "DMA Test client"
depends on DMA_ENGINE depends on DMA_ENGINE

View File

@ -507,6 +507,7 @@ struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, v
* published in the general-purpose allocator * published in the general-purpose allocator
*/ */
dma_cap_set(DMA_PRIVATE, device->cap_mask); dma_cap_set(DMA_PRIVATE, device->cap_mask);
device->privatecnt++;
err = dma_chan_get(chan); err = dma_chan_get(chan);
if (err == -ENODEV) { if (err == -ENODEV) {
@ -518,6 +519,8 @@ struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, v
dma_chan_name(chan), err); dma_chan_name(chan), err);
else else
break; break;
if (--device->privatecnt == 0)
dma_cap_clear(DMA_PRIVATE, device->cap_mask);
chan->private = NULL; chan->private = NULL;
chan = NULL; chan = NULL;
} }
@ -537,6 +540,9 @@ void dma_release_channel(struct dma_chan *chan)
WARN_ONCE(chan->client_count != 1, WARN_ONCE(chan->client_count != 1,
"chan reference count %d != 1\n", chan->client_count); "chan reference count %d != 1\n", chan->client_count);
dma_chan_put(chan); dma_chan_put(chan);
/* drop PRIVATE cap enabled by __dma_request_channel() */
if (--chan->device->privatecnt == 0)
dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
chan->private = NULL; chan->private = NULL;
mutex_unlock(&dma_list_mutex); mutex_unlock(&dma_list_mutex);
} }
@ -602,6 +608,24 @@ void dmaengine_put(void)
} }
EXPORT_SYMBOL(dmaengine_put); EXPORT_SYMBOL(dmaengine_put);
static int get_dma_id(struct dma_device *device)
{
int rc;
idr_retry:
if (!idr_pre_get(&dma_idr, GFP_KERNEL))
return -ENOMEM;
mutex_lock(&dma_list_mutex);
rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
mutex_unlock(&dma_list_mutex);
if (rc == -EAGAIN)
goto idr_retry;
else if (rc != 0)
return rc;
return 0;
}
/** /**
* dma_async_device_register - registers DMA devices found * dma_async_device_register - registers DMA devices found
* @device: &dma_device * @device: &dma_device
@ -640,27 +664,25 @@ int dma_async_device_register(struct dma_device *device)
idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL); idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
if (!idr_ref) if (!idr_ref)
return -ENOMEM; return -ENOMEM;
atomic_set(idr_ref, 0); rc = get_dma_id(device);
idr_retry: if (rc != 0) {
if (!idr_pre_get(&dma_idr, GFP_KERNEL)) kfree(idr_ref);
return -ENOMEM;
mutex_lock(&dma_list_mutex);
rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
mutex_unlock(&dma_list_mutex);
if (rc == -EAGAIN)
goto idr_retry;
else if (rc != 0)
return rc; return rc;
}
atomic_set(idr_ref, 0);
/* represent channels in sysfs. Probably want devs too */ /* represent channels in sysfs. Probably want devs too */
list_for_each_entry(chan, &device->channels, device_node) { list_for_each_entry(chan, &device->channels, device_node) {
rc = -ENOMEM;
chan->local = alloc_percpu(typeof(*chan->local)); chan->local = alloc_percpu(typeof(*chan->local));
if (chan->local == NULL) if (chan->local == NULL)
continue; goto err_out;
chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL); chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
if (chan->dev == NULL) { if (chan->dev == NULL) {
free_percpu(chan->local); free_percpu(chan->local);
continue; chan->local = NULL;
goto err_out;
} }
chan->chan_id = chancnt++; chan->chan_id = chancnt++;
@ -677,6 +699,8 @@ int dma_async_device_register(struct dma_device *device)
if (rc) { if (rc) {
free_percpu(chan->local); free_percpu(chan->local);
chan->local = NULL; chan->local = NULL;
kfree(chan->dev);
atomic_dec(idr_ref);
goto err_out; goto err_out;
} }
chan->client_count = 0; chan->client_count = 0;
@ -701,12 +725,23 @@ int dma_async_device_register(struct dma_device *device)
} }
} }
list_add_tail_rcu(&device->global_node, &dma_device_list); list_add_tail_rcu(&device->global_node, &dma_device_list);
if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
device->privatecnt++; /* Always private */
dma_channel_rebalance(); dma_channel_rebalance();
mutex_unlock(&dma_list_mutex); mutex_unlock(&dma_list_mutex);
return 0; return 0;
err_out: err_out:
/* if we never registered a channel just release the idr */
if (atomic_read(idr_ref) == 0) {
mutex_lock(&dma_list_mutex);
idr_remove(&dma_idr, device->dev_id);
mutex_unlock(&dma_list_mutex);
kfree(idr_ref);
return rc;
}
list_for_each_entry(chan, &device->channels, device_node) { list_for_each_entry(chan, &device->channels, device_node) {
if (chan->local == NULL) if (chan->local == NULL)
continue; continue;
@ -893,6 +928,7 @@ void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
{ {
tx->chan = chan; tx->chan = chan;
spin_lock_init(&tx->lock); spin_lock_init(&tx->lock);
INIT_LIST_HEAD(&tx->tx_list);
} }
EXPORT_SYMBOL(dma_async_tx_descriptor_init); EXPORT_SYMBOL(dma_async_tx_descriptor_init);

View File

@ -38,6 +38,11 @@ module_param(max_channels, uint, S_IRUGO);
MODULE_PARM_DESC(max_channels, MODULE_PARM_DESC(max_channels,
"Maximum number of channels to use (default: all)"); "Maximum number of channels to use (default: all)");
static unsigned int xor_sources = 3;
module_param(xor_sources, uint, S_IRUGO);
MODULE_PARM_DESC(xor_sources,
"Number of xor source buffers (default: 3)");
/* /*
* Initialization patterns. All bytes in the source buffer has bit 7 * Initialization patterns. All bytes in the source buffer has bit 7
* set, all bytes in the destination buffer has bit 7 cleared. * set, all bytes in the destination buffer has bit 7 cleared.
@ -59,8 +64,9 @@ struct dmatest_thread {
struct list_head node; struct list_head node;
struct task_struct *task; struct task_struct *task;
struct dma_chan *chan; struct dma_chan *chan;
u8 *srcbuf; u8 **srcs;
u8 *dstbuf; u8 **dsts;
enum dma_transaction_type type;
}; };
struct dmatest_chan { struct dmatest_chan {
@ -98,10 +104,12 @@ static unsigned long dmatest_random(void)
return buf; return buf;
} }
static void dmatest_init_srcbuf(u8 *buf, unsigned int start, unsigned int len) static void dmatest_init_srcs(u8 **bufs, unsigned int start, unsigned int len)
{ {
unsigned int i; unsigned int i;
u8 *buf;
for (; (buf = *bufs); bufs++) {
for (i = 0; i < start; i++) for (i = 0; i < start; i++)
buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK); buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK);
for ( ; i < start + len; i++) for ( ; i < start + len; i++)
@ -109,12 +117,16 @@ static void dmatest_init_srcbuf(u8 *buf, unsigned int start, unsigned int len)
| (~i & PATTERN_COUNT_MASK);; | (~i & PATTERN_COUNT_MASK);;
for ( ; i < test_buf_size; i++) for ( ; i < test_buf_size; i++)
buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK); buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK);
buf++;
}
} }
static void dmatest_init_dstbuf(u8 *buf, unsigned int start, unsigned int len) static void dmatest_init_dsts(u8 **bufs, unsigned int start, unsigned int len)
{ {
unsigned int i; unsigned int i;
u8 *buf;
for (; (buf = *bufs); bufs++) {
for (i = 0; i < start; i++) for (i = 0; i < start; i++)
buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK); buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK);
for ( ; i < start + len; i++) for ( ; i < start + len; i++)
@ -123,6 +135,7 @@ static void dmatest_init_dstbuf(u8 *buf, unsigned int start, unsigned int len)
for ( ; i < test_buf_size; i++) for ( ; i < test_buf_size; i++)
buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK); buf[i] = PATTERN_DST | (~i & PATTERN_COUNT_MASK);
} }
}
static void dmatest_mismatch(u8 actual, u8 pattern, unsigned int index, static void dmatest_mismatch(u8 actual, u8 pattern, unsigned int index,
unsigned int counter, bool is_srcbuf) unsigned int counter, bool is_srcbuf)
@ -150,24 +163,31 @@ static void dmatest_mismatch(u8 actual, u8 pattern, unsigned int index,
thread_name, index, expected, actual); thread_name, index, expected, actual);
} }
static unsigned int dmatest_verify(u8 *buf, unsigned int start, static unsigned int dmatest_verify(u8 **bufs, unsigned int start,
unsigned int end, unsigned int counter, u8 pattern, unsigned int end, unsigned int counter, u8 pattern,
bool is_srcbuf) bool is_srcbuf)
{ {
unsigned int i; unsigned int i;
unsigned int error_count = 0; unsigned int error_count = 0;
u8 actual; u8 actual;
u8 expected;
u8 *buf;
unsigned int counter_orig = counter;
for (; (buf = *bufs); bufs++) {
counter = counter_orig;
for (i = start; i < end; i++) { for (i = start; i < end; i++) {
actual = buf[i]; actual = buf[i];
if (actual != (pattern | (~counter & PATTERN_COUNT_MASK))) { expected = pattern | (~counter & PATTERN_COUNT_MASK);
if (actual != expected) {
if (error_count < 32) if (error_count < 32)
dmatest_mismatch(actual, pattern, i, counter, dmatest_mismatch(actual, pattern, i,
is_srcbuf); counter, is_srcbuf);
error_count++; error_count++;
} }
counter++; counter++;
} }
}
if (error_count > 32) if (error_count > 32)
pr_warning("%s: %u errors suppressed\n", pr_warning("%s: %u errors suppressed\n",
@ -176,12 +196,17 @@ static unsigned int dmatest_verify(u8 *buf, unsigned int start,
return error_count; return error_count;
} }
static void dmatest_callback(void *completion)
{
complete(completion);
}
/* /*
* This function repeatedly tests DMA transfers of various lengths and * This function repeatedly tests DMA transfers of various lengths and
* offsets until it is told to exit by kthread_stop(). There may be * offsets for a given operation type until it is told to exit by
* multiple threads running this function in parallel for a single * kthread_stop(). There may be multiple threads running this function
* channel, and there may be multiple channels being tested in * in parallel for a single channel, and there may be multiple channels
* parallel. * being tested in parallel.
* *
* Before each test, the source and destination buffer is initialized * Before each test, the source and destination buffer is initialized
* with a known pattern. This pattern is different depending on * with a known pattern. This pattern is different depending on
@ -201,25 +226,57 @@ static int dmatest_func(void *data)
unsigned int total_tests = 0; unsigned int total_tests = 0;
dma_cookie_t cookie; dma_cookie_t cookie;
enum dma_status status; enum dma_status status;
enum dma_ctrl_flags flags;
int ret; int ret;
int src_cnt;
int dst_cnt;
int i;
thread_name = current->comm; thread_name = current->comm;
ret = -ENOMEM; ret = -ENOMEM;
thread->srcbuf = kmalloc(test_buf_size, GFP_KERNEL);
if (!thread->srcbuf)
goto err_srcbuf;
thread->dstbuf = kmalloc(test_buf_size, GFP_KERNEL);
if (!thread->dstbuf)
goto err_dstbuf;
smp_rmb(); smp_rmb();
chan = thread->chan; chan = thread->chan;
if (thread->type == DMA_MEMCPY)
src_cnt = dst_cnt = 1;
else if (thread->type == DMA_XOR) {
src_cnt = xor_sources | 1; /* force odd to ensure dst = src */
dst_cnt = 1;
} else
goto err_srcs;
thread->srcs = kcalloc(src_cnt+1, sizeof(u8 *), GFP_KERNEL);
if (!thread->srcs)
goto err_srcs;
for (i = 0; i < src_cnt; i++) {
thread->srcs[i] = kmalloc(test_buf_size, GFP_KERNEL);
if (!thread->srcs[i])
goto err_srcbuf;
}
thread->srcs[i] = NULL;
thread->dsts = kcalloc(dst_cnt+1, sizeof(u8 *), GFP_KERNEL);
if (!thread->dsts)
goto err_dsts;
for (i = 0; i < dst_cnt; i++) {
thread->dsts[i] = kmalloc(test_buf_size, GFP_KERNEL);
if (!thread->dsts[i])
goto err_dstbuf;
}
thread->dsts[i] = NULL;
set_user_nice(current, 10);
flags = DMA_CTRL_ACK | DMA_COMPL_SKIP_DEST_UNMAP | DMA_PREP_INTERRUPT;
while (!kthread_should_stop()) { while (!kthread_should_stop()) {
struct dma_device *dev = chan->device; struct dma_device *dev = chan->device;
struct dma_async_tx_descriptor *tx; struct dma_async_tx_descriptor *tx = NULL;
dma_addr_t dma_src, dma_dest; dma_addr_t dma_srcs[src_cnt];
dma_addr_t dma_dsts[dst_cnt];
struct completion cmp;
unsigned long tmo = msecs_to_jiffies(3000);
total_tests++; total_tests++;
@ -227,22 +284,41 @@ static int dmatest_func(void *data)
src_off = dmatest_random() % (test_buf_size - len + 1); src_off = dmatest_random() % (test_buf_size - len + 1);
dst_off = dmatest_random() % (test_buf_size - len + 1); dst_off = dmatest_random() % (test_buf_size - len + 1);
dmatest_init_srcbuf(thread->srcbuf, src_off, len); dmatest_init_srcs(thread->srcs, src_off, len);
dmatest_init_dstbuf(thread->dstbuf, dst_off, len); dmatest_init_dsts(thread->dsts, dst_off, len);
dma_src = dma_map_single(dev->dev, thread->srcbuf + src_off, for (i = 0; i < src_cnt; i++) {
len, DMA_TO_DEVICE); u8 *buf = thread->srcs[i] + src_off;
dma_srcs[i] = dma_map_single(dev->dev, buf, len,
DMA_TO_DEVICE);
}
/* map with DMA_BIDIRECTIONAL to force writeback/invalidate */ /* map with DMA_BIDIRECTIONAL to force writeback/invalidate */
dma_dest = dma_map_single(dev->dev, thread->dstbuf, for (i = 0; i < dst_cnt; i++) {
test_buf_size, DMA_BIDIRECTIONAL); dma_dsts[i] = dma_map_single(dev->dev, thread->dsts[i],
test_buf_size,
DMA_BIDIRECTIONAL);
}
if (thread->type == DMA_MEMCPY)
tx = dev->device_prep_dma_memcpy(chan,
dma_dsts[0] + dst_off,
dma_srcs[0], len,
flags);
else if (thread->type == DMA_XOR)
tx = dev->device_prep_dma_xor(chan,
dma_dsts[0] + dst_off,
dma_srcs, xor_sources,
len, flags);
tx = dev->device_prep_dma_memcpy(chan, dma_dest + dst_off,
dma_src, len,
DMA_CTRL_ACK | DMA_COMPL_SKIP_DEST_UNMAP);
if (!tx) { if (!tx) {
dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE); for (i = 0; i < src_cnt; i++)
dma_unmap_single(dev->dev, dma_dest, dma_unmap_single(dev->dev, dma_srcs[i], len,
test_buf_size, DMA_BIDIRECTIONAL); DMA_TO_DEVICE);
for (i = 0; i < dst_cnt; i++)
dma_unmap_single(dev->dev, dma_dsts[i],
test_buf_size,
DMA_BIDIRECTIONAL);
pr_warning("%s: #%u: prep error with src_off=0x%x " pr_warning("%s: #%u: prep error with src_off=0x%x "
"dst_off=0x%x len=0x%x\n", "dst_off=0x%x len=0x%x\n",
thread_name, total_tests - 1, thread_name, total_tests - 1,
@ -251,7 +327,10 @@ static int dmatest_func(void *data)
failed_tests++; failed_tests++;
continue; continue;
} }
tx->callback = NULL;
init_completion(&cmp);
tx->callback = dmatest_callback;
tx->callback_param = &cmp;
cookie = tx->tx_submit(tx); cookie = tx->tx_submit(tx);
if (dma_submit_error(cookie)) { if (dma_submit_error(cookie)) {
@ -263,44 +342,50 @@ static int dmatest_func(void *data)
failed_tests++; failed_tests++;
continue; continue;
} }
dma_async_memcpy_issue_pending(chan); dma_async_issue_pending(chan);
do { tmo = wait_for_completion_timeout(&cmp, tmo);
msleep(1); status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
status = dma_async_memcpy_complete(
chan, cookie, NULL, NULL);
} while (status == DMA_IN_PROGRESS);
if (status == DMA_ERROR) { if (tmo == 0) {
pr_warning("%s: #%u: error during copy\n", pr_warning("%s: #%u: test timed out\n",
thread_name, total_tests - 1); thread_name, total_tests - 1);
failed_tests++; failed_tests++;
continue; continue;
} else if (status != DMA_SUCCESS) {
pr_warning("%s: #%u: got completion callback,"
" but status is \'%s\'\n",
thread_name, total_tests - 1,
status == DMA_ERROR ? "error" : "in progress");
failed_tests++;
continue;
} }
/* Unmap by myself (see DMA_COMPL_SKIP_DEST_UNMAP above) */ /* Unmap by myself (see DMA_COMPL_SKIP_DEST_UNMAP above) */
dma_unmap_single(dev->dev, dma_dest, for (i = 0; i < dst_cnt; i++)
test_buf_size, DMA_BIDIRECTIONAL); dma_unmap_single(dev->dev, dma_dsts[i], test_buf_size,
DMA_BIDIRECTIONAL);
error_count = 0; error_count = 0;
pr_debug("%s: verifying source buffer...\n", thread_name); pr_debug("%s: verifying source buffer...\n", thread_name);
error_count += dmatest_verify(thread->srcbuf, 0, src_off, error_count += dmatest_verify(thread->srcs, 0, src_off,
0, PATTERN_SRC, true); 0, PATTERN_SRC, true);
error_count += dmatest_verify(thread->srcbuf, src_off, error_count += dmatest_verify(thread->srcs, src_off,
src_off + len, src_off, src_off + len, src_off,
PATTERN_SRC | PATTERN_COPY, true); PATTERN_SRC | PATTERN_COPY, true);
error_count += dmatest_verify(thread->srcbuf, src_off + len, error_count += dmatest_verify(thread->srcs, src_off + len,
test_buf_size, src_off + len, test_buf_size, src_off + len,
PATTERN_SRC, true); PATTERN_SRC, true);
pr_debug("%s: verifying dest buffer...\n", pr_debug("%s: verifying dest buffer...\n",
thread->task->comm); thread->task->comm);
error_count += dmatest_verify(thread->dstbuf, 0, dst_off, error_count += dmatest_verify(thread->dsts, 0, dst_off,
0, PATTERN_DST, false); 0, PATTERN_DST, false);
error_count += dmatest_verify(thread->dstbuf, dst_off, error_count += dmatest_verify(thread->dsts, dst_off,
dst_off + len, src_off, dst_off + len, src_off,
PATTERN_SRC | PATTERN_COPY, false); PATTERN_SRC | PATTERN_COPY, false);
error_count += dmatest_verify(thread->dstbuf, dst_off + len, error_count += dmatest_verify(thread->dsts, dst_off + len,
test_buf_size, dst_off + len, test_buf_size, dst_off + len,
PATTERN_DST, false); PATTERN_DST, false);
@ -319,10 +404,16 @@ static int dmatest_func(void *data)
} }
ret = 0; ret = 0;
kfree(thread->dstbuf); for (i = 0; thread->dsts[i]; i++)
kfree(thread->dsts[i]);
err_dstbuf: err_dstbuf:
kfree(thread->srcbuf); kfree(thread->dsts);
err_dsts:
for (i = 0; thread->srcs[i]; i++)
kfree(thread->srcs[i]);
err_srcbuf: err_srcbuf:
kfree(thread->srcs);
err_srcs:
pr_notice("%s: terminating after %u tests, %u failures (status %d)\n", pr_notice("%s: terminating after %u tests, %u failures (status %d)\n",
thread_name, total_tests, failed_tests, ret); thread_name, total_tests, failed_tests, ret);
return ret; return ret;
@ -344,11 +435,54 @@ static void dmatest_cleanup_channel(struct dmatest_chan *dtc)
kfree(dtc); kfree(dtc);
} }
static int dmatest_add_threads(struct dmatest_chan *dtc, enum dma_transaction_type type)
{
struct dmatest_thread *thread;
struct dma_chan *chan = dtc->chan;
char *op;
unsigned int i;
if (type == DMA_MEMCPY)
op = "copy";
else if (type == DMA_XOR)
op = "xor";
else
return -EINVAL;
for (i = 0; i < threads_per_chan; i++) {
thread = kzalloc(sizeof(struct dmatest_thread), GFP_KERNEL);
if (!thread) {
pr_warning("dmatest: No memory for %s-%s%u\n",
dma_chan_name(chan), op, i);
break;
}
thread->chan = dtc->chan;
thread->type = type;
smp_wmb();
thread->task = kthread_run(dmatest_func, thread, "%s-%s%u",
dma_chan_name(chan), op, i);
if (IS_ERR(thread->task)) {
pr_warning("dmatest: Failed to run thread %s-%s%u\n",
dma_chan_name(chan), op, i);
kfree(thread);
break;
}
/* srcbuf and dstbuf are allocated by the thread itself */
list_add_tail(&thread->node, &dtc->threads);
}
return i;
}
static int dmatest_add_channel(struct dma_chan *chan) static int dmatest_add_channel(struct dma_chan *chan)
{ {
struct dmatest_chan *dtc; struct dmatest_chan *dtc;
struct dmatest_thread *thread; struct dma_device *dma_dev = chan->device;
unsigned int i; unsigned int thread_count = 0;
unsigned int cnt;
dtc = kmalloc(sizeof(struct dmatest_chan), GFP_KERNEL); dtc = kmalloc(sizeof(struct dmatest_chan), GFP_KERNEL);
if (!dtc) { if (!dtc) {
@ -359,30 +493,17 @@ static int dmatest_add_channel(struct dma_chan *chan)
dtc->chan = chan; dtc->chan = chan;
INIT_LIST_HEAD(&dtc->threads); INIT_LIST_HEAD(&dtc->threads);
for (i = 0; i < threads_per_chan; i++) { if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
thread = kzalloc(sizeof(struct dmatest_thread), GFP_KERNEL); cnt = dmatest_add_threads(dtc, DMA_MEMCPY);
if (!thread) { thread_count += cnt > 0 ?: 0;
pr_warning("dmatest: No memory for %s-test%u\n",
dma_chan_name(chan), i);
break;
} }
thread->chan = dtc->chan; if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
smp_wmb(); cnt = dmatest_add_threads(dtc, DMA_XOR);
thread->task = kthread_run(dmatest_func, thread, "%s-test%u", thread_count += cnt > 0 ?: 0;
dma_chan_name(chan), i);
if (IS_ERR(thread->task)) {
pr_warning("dmatest: Failed to run thread %s-test%u\n",
dma_chan_name(chan), i);
kfree(thread);
break;
} }
/* srcbuf and dstbuf are allocated by the thread itself */ pr_info("dmatest: Started %u threads using %s\n",
thread_count, dma_chan_name(chan));
list_add_tail(&thread->node, &dtc->threads);
}
pr_info("dmatest: Started %u threads using %s\n", i, dma_chan_name(chan));
list_add_tail(&dtc->node, &dmatest_channels); list_add_tail(&dtc->node, &dmatest_channels);
nr_channels++; nr_channels++;

View File

@ -363,6 +363,82 @@ static void dwc_handle_error(struct dw_dma *dw, struct dw_dma_chan *dwc)
dwc_descriptor_complete(dwc, bad_desc); dwc_descriptor_complete(dwc, bad_desc);
} }
/* --------------------- Cyclic DMA API extensions -------------------- */
inline dma_addr_t dw_dma_get_src_addr(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
return channel_readl(dwc, SAR);
}
EXPORT_SYMBOL(dw_dma_get_src_addr);
inline dma_addr_t dw_dma_get_dst_addr(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
return channel_readl(dwc, DAR);
}
EXPORT_SYMBOL(dw_dma_get_dst_addr);
/* called with dwc->lock held and all DMAC interrupts disabled */
static void dwc_handle_cyclic(struct dw_dma *dw, struct dw_dma_chan *dwc,
u32 status_block, u32 status_err, u32 status_xfer)
{
if (status_block & dwc->mask) {
void (*callback)(void *param);
void *callback_param;
dev_vdbg(chan2dev(&dwc->chan), "new cyclic period llp 0x%08x\n",
channel_readl(dwc, LLP));
dma_writel(dw, CLEAR.BLOCK, dwc->mask);
callback = dwc->cdesc->period_callback;
callback_param = dwc->cdesc->period_callback_param;
if (callback) {
spin_unlock(&dwc->lock);
callback(callback_param);
spin_lock(&dwc->lock);
}
}
/*
* Error and transfer complete are highly unlikely, and will most
* likely be due to a configuration error by the user.
*/
if (unlikely(status_err & dwc->mask) ||
unlikely(status_xfer & dwc->mask)) {
int i;
dev_err(chan2dev(&dwc->chan), "cyclic DMA unexpected %s "
"interrupt, stopping DMA transfer\n",
status_xfer ? "xfer" : "error");
dev_err(chan2dev(&dwc->chan),
" SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
channel_readl(dwc, SAR),
channel_readl(dwc, DAR),
channel_readl(dwc, LLP),
channel_readl(dwc, CTL_HI),
channel_readl(dwc, CTL_LO));
channel_clear_bit(dw, CH_EN, dwc->mask);
while (dma_readl(dw, CH_EN) & dwc->mask)
cpu_relax();
/* make sure DMA does not restart by loading a new list */
channel_writel(dwc, LLP, 0);
channel_writel(dwc, CTL_LO, 0);
channel_writel(dwc, CTL_HI, 0);
dma_writel(dw, CLEAR.BLOCK, dwc->mask);
dma_writel(dw, CLEAR.ERROR, dwc->mask);
dma_writel(dw, CLEAR.XFER, dwc->mask);
for (i = 0; i < dwc->cdesc->periods; i++)
dwc_dump_lli(dwc, &dwc->cdesc->desc[i]->lli);
}
}
/* ------------------------------------------------------------------------- */
static void dw_dma_tasklet(unsigned long data) static void dw_dma_tasklet(unsigned long data)
{ {
struct dw_dma *dw = (struct dw_dma *)data; struct dw_dma *dw = (struct dw_dma *)data;
@ -382,7 +458,10 @@ static void dw_dma_tasklet(unsigned long data)
for (i = 0; i < dw->dma.chancnt; i++) { for (i = 0; i < dw->dma.chancnt; i++) {
dwc = &dw->chan[i]; dwc = &dw->chan[i];
spin_lock(&dwc->lock); spin_lock(&dwc->lock);
if (status_err & (1 << i)) if (test_bit(DW_DMA_IS_CYCLIC, &dwc->flags))
dwc_handle_cyclic(dw, dwc, status_block, status_err,
status_xfer);
else if (status_err & (1 << i))
dwc_handle_error(dw, dwc); dwc_handle_error(dw, dwc);
else if ((status_block | status_xfer) & (1 << i)) else if ((status_block | status_xfer) & (1 << i))
dwc_scan_descriptors(dw, dwc); dwc_scan_descriptors(dw, dwc);
@ -826,7 +905,6 @@ static int dwc_alloc_chan_resources(struct dma_chan *chan)
dma_async_tx_descriptor_init(&desc->txd, chan); dma_async_tx_descriptor_init(&desc->txd, chan);
desc->txd.tx_submit = dwc_tx_submit; desc->txd.tx_submit = dwc_tx_submit;
desc->txd.flags = DMA_CTRL_ACK; desc->txd.flags = DMA_CTRL_ACK;
INIT_LIST_HEAD(&desc->txd.tx_list);
desc->txd.phys = dma_map_single(chan2parent(chan), &desc->lli, desc->txd.phys = dma_map_single(chan2parent(chan), &desc->lli,
sizeof(desc->lli), DMA_TO_DEVICE); sizeof(desc->lli), DMA_TO_DEVICE);
dwc_desc_put(dwc, desc); dwc_desc_put(dwc, desc);
@ -884,6 +962,257 @@ static void dwc_free_chan_resources(struct dma_chan *chan)
dev_vdbg(chan2dev(chan), "free_chan_resources done\n"); dev_vdbg(chan2dev(chan), "free_chan_resources done\n");
} }
/* --------------------- Cyclic DMA API extensions -------------------- */
/**
* dw_dma_cyclic_start - start the cyclic DMA transfer
* @chan: the DMA channel to start
*
* Must be called with soft interrupts disabled. Returns zero on success or
* -errno on failure.
*/
int dw_dma_cyclic_start(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
if (!test_bit(DW_DMA_IS_CYCLIC, &dwc->flags)) {
dev_err(chan2dev(&dwc->chan), "missing prep for cyclic DMA\n");
return -ENODEV;
}
spin_lock(&dwc->lock);
/* assert channel is idle */
if (dma_readl(dw, CH_EN) & dwc->mask) {
dev_err(chan2dev(&dwc->chan),
"BUG: Attempted to start non-idle channel\n");
dev_err(chan2dev(&dwc->chan),
" SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
channel_readl(dwc, SAR),
channel_readl(dwc, DAR),
channel_readl(dwc, LLP),
channel_readl(dwc, CTL_HI),
channel_readl(dwc, CTL_LO));
spin_unlock(&dwc->lock);
return -EBUSY;
}
dma_writel(dw, CLEAR.BLOCK, dwc->mask);
dma_writel(dw, CLEAR.ERROR, dwc->mask);
dma_writel(dw, CLEAR.XFER, dwc->mask);
/* setup DMAC channel registers */
channel_writel(dwc, LLP, dwc->cdesc->desc[0]->txd.phys);
channel_writel(dwc, CTL_LO, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
channel_writel(dwc, CTL_HI, 0);
channel_set_bit(dw, CH_EN, dwc->mask);
spin_unlock(&dwc->lock);
return 0;
}
EXPORT_SYMBOL(dw_dma_cyclic_start);
/**
* dw_dma_cyclic_stop - stop the cyclic DMA transfer
* @chan: the DMA channel to stop
*
* Must be called with soft interrupts disabled.
*/
void dw_dma_cyclic_stop(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
spin_lock(&dwc->lock);
channel_clear_bit(dw, CH_EN, dwc->mask);
while (dma_readl(dw, CH_EN) & dwc->mask)
cpu_relax();
spin_unlock(&dwc->lock);
}
EXPORT_SYMBOL(dw_dma_cyclic_stop);
/**
* dw_dma_cyclic_prep - prepare the cyclic DMA transfer
* @chan: the DMA channel to prepare
* @buf_addr: physical DMA address where the buffer starts
* @buf_len: total number of bytes for the entire buffer
* @period_len: number of bytes for each period
* @direction: transfer direction, to or from device
*
* Must be called before trying to start the transfer. Returns a valid struct
* dw_cyclic_desc if successful or an ERR_PTR(-errno) if not successful.
*/
struct dw_cyclic_desc *dw_dma_cyclic_prep(struct dma_chan *chan,
dma_addr_t buf_addr, size_t buf_len, size_t period_len,
enum dma_data_direction direction)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_cyclic_desc *cdesc;
struct dw_cyclic_desc *retval = NULL;
struct dw_desc *desc;
struct dw_desc *last = NULL;
struct dw_dma_slave *dws = chan->private;
unsigned long was_cyclic;
unsigned int reg_width;
unsigned int periods;
unsigned int i;
spin_lock_bh(&dwc->lock);
if (!list_empty(&dwc->queue) || !list_empty(&dwc->active_list)) {
spin_unlock_bh(&dwc->lock);
dev_dbg(chan2dev(&dwc->chan),
"queue and/or active list are not empty\n");
return ERR_PTR(-EBUSY);
}
was_cyclic = test_and_set_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
spin_unlock_bh(&dwc->lock);
if (was_cyclic) {
dev_dbg(chan2dev(&dwc->chan),
"channel already prepared for cyclic DMA\n");
return ERR_PTR(-EBUSY);
}
retval = ERR_PTR(-EINVAL);
reg_width = dws->reg_width;
periods = buf_len / period_len;
/* Check for too big/unaligned periods and unaligned DMA buffer. */
if (period_len > (DWC_MAX_COUNT << reg_width))
goto out_err;
if (unlikely(period_len & ((1 << reg_width) - 1)))
goto out_err;
if (unlikely(buf_addr & ((1 << reg_width) - 1)))
goto out_err;
if (unlikely(!(direction & (DMA_TO_DEVICE | DMA_FROM_DEVICE))))
goto out_err;
retval = ERR_PTR(-ENOMEM);
if (periods > NR_DESCS_PER_CHANNEL)
goto out_err;
cdesc = kzalloc(sizeof(struct dw_cyclic_desc), GFP_KERNEL);
if (!cdesc)
goto out_err;
cdesc->desc = kzalloc(sizeof(struct dw_desc *) * periods, GFP_KERNEL);
if (!cdesc->desc)
goto out_err_alloc;
for (i = 0; i < periods; i++) {
desc = dwc_desc_get(dwc);
if (!desc)
goto out_err_desc_get;
switch (direction) {
case DMA_TO_DEVICE:
desc->lli.dar = dws->tx_reg;
desc->lli.sar = buf_addr + (period_len * i);
desc->lli.ctllo = (DWC_DEFAULT_CTLLO
| DWC_CTLL_DST_WIDTH(reg_width)
| DWC_CTLL_SRC_WIDTH(reg_width)
| DWC_CTLL_DST_FIX
| DWC_CTLL_SRC_INC
| DWC_CTLL_FC_M2P
| DWC_CTLL_INT_EN);
break;
case DMA_FROM_DEVICE:
desc->lli.dar = buf_addr + (period_len * i);
desc->lli.sar = dws->rx_reg;
desc->lli.ctllo = (DWC_DEFAULT_CTLLO
| DWC_CTLL_SRC_WIDTH(reg_width)
| DWC_CTLL_DST_WIDTH(reg_width)
| DWC_CTLL_DST_INC
| DWC_CTLL_SRC_FIX
| DWC_CTLL_FC_P2M
| DWC_CTLL_INT_EN);
break;
default:
break;
}
desc->lli.ctlhi = (period_len >> reg_width);
cdesc->desc[i] = desc;
if (last) {
last->lli.llp = desc->txd.phys;
dma_sync_single_for_device(chan2parent(chan),
last->txd.phys, sizeof(last->lli),
DMA_TO_DEVICE);
}
last = desc;
}
/* lets make a cyclic list */
last->lli.llp = cdesc->desc[0]->txd.phys;
dma_sync_single_for_device(chan2parent(chan), last->txd.phys,
sizeof(last->lli), DMA_TO_DEVICE);
dev_dbg(chan2dev(&dwc->chan), "cyclic prepared buf 0x%08x len %zu "
"period %zu periods %d\n", buf_addr, buf_len,
period_len, periods);
cdesc->periods = periods;
dwc->cdesc = cdesc;
return cdesc;
out_err_desc_get:
while (i--)
dwc_desc_put(dwc, cdesc->desc[i]);
out_err_alloc:
kfree(cdesc);
out_err:
clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
return (struct dw_cyclic_desc *)retval;
}
EXPORT_SYMBOL(dw_dma_cyclic_prep);
/**
* dw_dma_cyclic_free - free a prepared cyclic DMA transfer
* @chan: the DMA channel to free
*/
void dw_dma_cyclic_free(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
struct dw_cyclic_desc *cdesc = dwc->cdesc;
int i;
dev_dbg(chan2dev(&dwc->chan), "cyclic free\n");
if (!cdesc)
return;
spin_lock_bh(&dwc->lock);
channel_clear_bit(dw, CH_EN, dwc->mask);
while (dma_readl(dw, CH_EN) & dwc->mask)
cpu_relax();
dma_writel(dw, CLEAR.BLOCK, dwc->mask);
dma_writel(dw, CLEAR.ERROR, dwc->mask);
dma_writel(dw, CLEAR.XFER, dwc->mask);
spin_unlock_bh(&dwc->lock);
for (i = 0; i < cdesc->periods; i++)
dwc_desc_put(dwc, cdesc->desc[i]);
kfree(cdesc->desc);
kfree(cdesc);
clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
}
EXPORT_SYMBOL(dw_dma_cyclic_free);
/*----------------------------------------------------------------------*/ /*----------------------------------------------------------------------*/
static void dw_dma_off(struct dw_dma *dw) static void dw_dma_off(struct dw_dma *dw)

View File

@ -126,6 +126,10 @@ struct dw_dma_regs {
#define DW_REGLEN 0x400 #define DW_REGLEN 0x400
enum dw_dmac_flags {
DW_DMA_IS_CYCLIC = 0,
};
struct dw_dma_chan { struct dw_dma_chan {
struct dma_chan chan; struct dma_chan chan;
void __iomem *ch_regs; void __iomem *ch_regs;
@ -134,10 +138,12 @@ struct dw_dma_chan {
spinlock_t lock; spinlock_t lock;
/* these other elements are all protected by lock */ /* these other elements are all protected by lock */
unsigned long flags;
dma_cookie_t completed; dma_cookie_t completed;
struct list_head active_list; struct list_head active_list;
struct list_head queue; struct list_head queue;
struct list_head free_list; struct list_head free_list;
struct dw_cyclic_desc *cdesc;
unsigned int descs_allocated; unsigned int descs_allocated;
}; };
@ -158,7 +164,6 @@ static inline struct dw_dma_chan *to_dw_dma_chan(struct dma_chan *chan)
return container_of(chan, struct dw_dma_chan, chan); return container_of(chan, struct dw_dma_chan, chan);
} }
struct dw_dma { struct dw_dma {
struct dma_device dma; struct dma_device dma;
void __iomem *regs; void __iomem *regs;

View File

@ -354,7 +354,6 @@ static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
dma_async_tx_descriptor_init(&desc_sw->async_tx, dma_async_tx_descriptor_init(&desc_sw->async_tx,
&fsl_chan->common); &fsl_chan->common);
desc_sw->async_tx.tx_submit = fsl_dma_tx_submit; desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
INIT_LIST_HEAD(&desc_sw->async_tx.tx_list);
desc_sw->async_tx.phys = pdesc; desc_sw->async_tx.phys = pdesc;
} }

View File

@ -693,7 +693,6 @@ static struct ioat_desc_sw *ioat_dma_alloc_descriptor(
desc_sw->async_tx.tx_submit = ioat2_tx_submit; desc_sw->async_tx.tx_submit = ioat2_tx_submit;
break; break;
} }
INIT_LIST_HEAD(&desc_sw->async_tx.tx_list);
desc_sw->hw = desc; desc_sw->hw = desc;
desc_sw->async_tx.phys = phys; desc_sw->async_tx.phys = phys;

View File

@ -498,7 +498,6 @@ static int iop_adma_alloc_chan_resources(struct dma_chan *chan)
slot->async_tx.tx_submit = iop_adma_tx_submit; slot->async_tx.tx_submit = iop_adma_tx_submit;
INIT_LIST_HEAD(&slot->chain_node); INIT_LIST_HEAD(&slot->chain_node);
INIT_LIST_HEAD(&slot->slot_node); INIT_LIST_HEAD(&slot->slot_node);
INIT_LIST_HEAD(&slot->async_tx.tx_list);
hw_desc = (char *) iop_chan->device->dma_desc_pool; hw_desc = (char *) iop_chan->device->dma_desc_pool;
slot->async_tx.phys = slot->async_tx.phys =
(dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE]; (dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];

View File

@ -28,6 +28,9 @@
#define FS_VF_IN_VALID 0x00000002 #define FS_VF_IN_VALID 0x00000002
#define FS_ENC_IN_VALID 0x00000001 #define FS_ENC_IN_VALID 0x00000001
static int ipu_disable_channel(struct idmac *idmac, struct idmac_channel *ichan,
bool wait_for_stop);
/* /*
* There can be only one, we could allocate it dynamically, but then we'd have * There can be only one, we could allocate it dynamically, but then we'd have
* to add an extra parameter to some functions, and use something as ugly as * to add an extra parameter to some functions, and use something as ugly as
@ -107,7 +110,7 @@ static uint32_t bytes_per_pixel(enum pixel_fmt fmt)
} }
} }
/* Enable / disable direct write to memory by the Camera Sensor Interface */ /* Enable direct write to memory by the Camera Sensor Interface */
static void ipu_ic_enable_task(struct ipu *ipu, enum ipu_channel channel) static void ipu_ic_enable_task(struct ipu *ipu, enum ipu_channel channel)
{ {
uint32_t ic_conf, mask; uint32_t ic_conf, mask;
@ -126,6 +129,7 @@ static void ipu_ic_enable_task(struct ipu *ipu, enum ipu_channel channel)
idmac_write_icreg(ipu, ic_conf, IC_CONF); idmac_write_icreg(ipu, ic_conf, IC_CONF);
} }
/* Called under spin_lock_irqsave(&ipu_data.lock) */
static void ipu_ic_disable_task(struct ipu *ipu, enum ipu_channel channel) static void ipu_ic_disable_task(struct ipu *ipu, enum ipu_channel channel)
{ {
uint32_t ic_conf, mask; uint32_t ic_conf, mask;
@ -422,7 +426,7 @@ static void ipu_ch_param_set_size(union chan_param_mem *params,
break; break;
default: default:
dev_err(ipu_data.dev, dev_err(ipu_data.dev,
"mxc ipu: unimplemented pixel format %d\n", pixel_fmt); "mx3 ipu: unimplemented pixel format %d\n", pixel_fmt);
break; break;
} }
@ -433,20 +437,20 @@ static void ipu_ch_param_set_burst_size(union chan_param_mem *params,
uint16_t burst_pixels) uint16_t burst_pixels)
{ {
params->pp.npb = burst_pixels - 1; params->pp.npb = burst_pixels - 1;
}; }
static void ipu_ch_param_set_buffer(union chan_param_mem *params, static void ipu_ch_param_set_buffer(union chan_param_mem *params,
dma_addr_t buf0, dma_addr_t buf1) dma_addr_t buf0, dma_addr_t buf1)
{ {
params->pp.eba0 = buf0; params->pp.eba0 = buf0;
params->pp.eba1 = buf1; params->pp.eba1 = buf1;
}; }
static void ipu_ch_param_set_rotation(union chan_param_mem *params, static void ipu_ch_param_set_rotation(union chan_param_mem *params,
enum ipu_rotate_mode rotate) enum ipu_rotate_mode rotate)
{ {
params->pp.bam = rotate; params->pp.bam = rotate;
}; }
static void ipu_write_param_mem(uint32_t addr, uint32_t *data, static void ipu_write_param_mem(uint32_t addr, uint32_t *data,
uint32_t num_words) uint32_t num_words)
@ -571,7 +575,7 @@ static uint32_t dma_param_addr(uint32_t dma_ch)
{ {
/* Channel Parameter Memory */ /* Channel Parameter Memory */
return 0x10000 | (dma_ch << 4); return 0x10000 | (dma_ch << 4);
}; }
static void ipu_channel_set_priority(struct ipu *ipu, enum ipu_channel channel, static void ipu_channel_set_priority(struct ipu *ipu, enum ipu_channel channel,
bool prio) bool prio)
@ -611,7 +615,8 @@ static uint32_t ipu_channel_conf_mask(enum ipu_channel channel)
/** /**
* ipu_enable_channel() - enable an IPU channel. * ipu_enable_channel() - enable an IPU channel.
* @channel: channel ID. * @idmac: IPU DMAC context.
* @ichan: IDMAC channel.
* @return: 0 on success or negative error code on failure. * @return: 0 on success or negative error code on failure.
*/ */
static int ipu_enable_channel(struct idmac *idmac, struct idmac_channel *ichan) static int ipu_enable_channel(struct idmac *idmac, struct idmac_channel *ichan)
@ -649,7 +654,7 @@ static int ipu_enable_channel(struct idmac *idmac, struct idmac_channel *ichan)
/** /**
* ipu_init_channel_buffer() - initialize a buffer for logical IPU channel. * ipu_init_channel_buffer() - initialize a buffer for logical IPU channel.
* @channel: channel ID. * @ichan: IDMAC channel.
* @pixel_fmt: pixel format of buffer. Pixel format is a FOURCC ASCII code. * @pixel_fmt: pixel format of buffer. Pixel format is a FOURCC ASCII code.
* @width: width of buffer in pixels. * @width: width of buffer in pixels.
* @height: height of buffer in pixels. * @height: height of buffer in pixels.
@ -687,7 +692,7 @@ static int ipu_init_channel_buffer(struct idmac_channel *ichan,
} }
/* IC channel's stride must be a multiple of 8 pixels */ /* IC channel's stride must be a multiple of 8 pixels */
if ((channel <= 13) && (stride % 8)) { if ((channel <= IDMAC_IC_13) && (stride % 8)) {
dev_err(ipu->dev, "Stride must be 8 pixel multiple\n"); dev_err(ipu->dev, "Stride must be 8 pixel multiple\n");
return -EINVAL; return -EINVAL;
} }
@ -752,7 +757,7 @@ static void ipu_select_buffer(enum ipu_channel channel, int buffer_n)
/** /**
* ipu_update_channel_buffer() - update physical address of a channel buffer. * ipu_update_channel_buffer() - update physical address of a channel buffer.
* @channel: channel ID. * @ichan: IDMAC channel.
* @buffer_n: buffer number to update. * @buffer_n: buffer number to update.
* 0 or 1 are the only valid values. * 0 or 1 are the only valid values.
* @phyaddr: buffer physical address. * @phyaddr: buffer physical address.
@ -760,9 +765,10 @@ static void ipu_select_buffer(enum ipu_channel channel, int buffer_n)
* function will fail if the buffer is set to ready. * function will fail if the buffer is set to ready.
*/ */
/* Called under spin_lock(_irqsave)(&ichan->lock) */ /* Called under spin_lock(_irqsave)(&ichan->lock) */
static int ipu_update_channel_buffer(enum ipu_channel channel, static int ipu_update_channel_buffer(struct idmac_channel *ichan,
int buffer_n, dma_addr_t phyaddr) int buffer_n, dma_addr_t phyaddr)
{ {
enum ipu_channel channel = ichan->dma_chan.chan_id;
uint32_t reg; uint32_t reg;
unsigned long flags; unsigned long flags;
@ -771,8 +777,8 @@ static int ipu_update_channel_buffer(enum ipu_channel channel,
if (buffer_n == 0) { if (buffer_n == 0) {
reg = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF0_RDY); reg = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF0_RDY);
if (reg & (1UL << channel)) { if (reg & (1UL << channel)) {
spin_unlock_irqrestore(&ipu_data.lock, flags); ipu_ic_disable_task(&ipu_data, channel);
return -EACCES; ichan->status = IPU_CHANNEL_READY;
} }
/* 44.3.3.1.9 - Row Number 1 (WORD1, offset 0) */ /* 44.3.3.1.9 - Row Number 1 (WORD1, offset 0) */
@ -782,8 +788,8 @@ static int ipu_update_channel_buffer(enum ipu_channel channel,
} else { } else {
reg = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF1_RDY); reg = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF1_RDY);
if (reg & (1UL << channel)) { if (reg & (1UL << channel)) {
spin_unlock_irqrestore(&ipu_data.lock, flags); ipu_ic_disable_task(&ipu_data, channel);
return -EACCES; ichan->status = IPU_CHANNEL_READY;
} }
/* Check if double-buffering is already enabled */ /* Check if double-buffering is already enabled */
@ -804,6 +810,39 @@ static int ipu_update_channel_buffer(enum ipu_channel channel,
return 0; return 0;
} }
/* Called under spin_lock_irqsave(&ichan->lock) */
static int ipu_submit_buffer(struct idmac_channel *ichan,
struct idmac_tx_desc *desc, struct scatterlist *sg, int buf_idx)
{
unsigned int chan_id = ichan->dma_chan.chan_id;
struct device *dev = &ichan->dma_chan.dev->device;
int ret;
if (async_tx_test_ack(&desc->txd))
return -EINTR;
/*
* On first invocation this shouldn't be necessary, the call to
* ipu_init_channel_buffer() above will set addresses for us, so we
* could make it conditional on status >= IPU_CHANNEL_ENABLED, but
* doing it again shouldn't hurt either.
*/
ret = ipu_update_channel_buffer(ichan, buf_idx,
sg_dma_address(sg));
if (ret < 0) {
dev_err(dev, "Updating sg %p on channel 0x%x buffer %d failed!\n",
sg, chan_id, buf_idx);
return ret;
}
ipu_select_buffer(chan_id, buf_idx);
dev_dbg(dev, "Updated sg %p on channel 0x%x buffer %d\n",
sg, chan_id, buf_idx);
return 0;
}
/* Called under spin_lock_irqsave(&ichan->lock) */ /* Called under spin_lock_irqsave(&ichan->lock) */
static int ipu_submit_channel_buffers(struct idmac_channel *ichan, static int ipu_submit_channel_buffers(struct idmac_channel *ichan,
struct idmac_tx_desc *desc) struct idmac_tx_desc *desc)
@ -815,20 +854,10 @@ static int ipu_submit_channel_buffers(struct idmac_channel *ichan,
if (!ichan->sg[i]) { if (!ichan->sg[i]) {
ichan->sg[i] = sg; ichan->sg[i] = sg;
/* ret = ipu_submit_buffer(ichan, desc, sg, i);
* On first invocation this shouldn't be necessary, the
* call to ipu_init_channel_buffer() above will set
* addresses for us, so we could make it conditional
* on status >= IPU_CHANNEL_ENABLED, but doing it again
* shouldn't hurt either.
*/
ret = ipu_update_channel_buffer(ichan->dma_chan.chan_id, i,
sg_dma_address(sg));
if (ret < 0) if (ret < 0)
return ret; return ret;
ipu_select_buffer(ichan->dma_chan.chan_id, i);
sg = sg_next(sg); sg = sg_next(sg);
} }
} }
@ -842,19 +871,22 @@ static dma_cookie_t idmac_tx_submit(struct dma_async_tx_descriptor *tx)
struct idmac_channel *ichan = to_idmac_chan(tx->chan); struct idmac_channel *ichan = to_idmac_chan(tx->chan);
struct idmac *idmac = to_idmac(tx->chan->device); struct idmac *idmac = to_idmac(tx->chan->device);
struct ipu *ipu = to_ipu(idmac); struct ipu *ipu = to_ipu(idmac);
struct device *dev = &ichan->dma_chan.dev->device;
dma_cookie_t cookie; dma_cookie_t cookie;
unsigned long flags; unsigned long flags;
int ret;
/* Sanity check */ /* Sanity check */
if (!list_empty(&desc->list)) { if (!list_empty(&desc->list)) {
/* The descriptor doesn't belong to client */ /* The descriptor doesn't belong to client */
dev_err(&ichan->dma_chan.dev->device, dev_err(dev, "Descriptor %p not prepared!\n", tx);
"Descriptor %p not prepared!\n", tx);
return -EBUSY; return -EBUSY;
} }
mutex_lock(&ichan->chan_mutex); mutex_lock(&ichan->chan_mutex);
async_tx_clear_ack(tx);
if (ichan->status < IPU_CHANNEL_READY) { if (ichan->status < IPU_CHANNEL_READY) {
struct idmac_video_param *video = &ichan->params.video; struct idmac_video_param *video = &ichan->params.video;
/* /*
@ -878,16 +910,7 @@ static dma_cookie_t idmac_tx_submit(struct dma_async_tx_descriptor *tx)
goto out; goto out;
} }
/* ipu->lock can be taken under ichan->lock, but not v.v. */ dev_dbg(dev, "Submitting sg %p\n", &desc->sg[0]);
spin_lock_irqsave(&ichan->lock, flags);
/* submit_buffers() atomically verifies and fills empty sg slots */
cookie = ipu_submit_channel_buffers(ichan, desc);
spin_unlock_irqrestore(&ichan->lock, flags);
if (cookie < 0)
goto out;
cookie = ichan->dma_chan.cookie; cookie = ichan->dma_chan.cookie;
@ -897,23 +920,39 @@ static dma_cookie_t idmac_tx_submit(struct dma_async_tx_descriptor *tx)
/* from dmaengine.h: "last cookie value returned to client" */ /* from dmaengine.h: "last cookie value returned to client" */
ichan->dma_chan.cookie = cookie; ichan->dma_chan.cookie = cookie;
tx->cookie = cookie; tx->cookie = cookie;
/* ipu->lock can be taken under ichan->lock, but not v.v. */
spin_lock_irqsave(&ichan->lock, flags); spin_lock_irqsave(&ichan->lock, flags);
list_add_tail(&desc->list, &ichan->queue); list_add_tail(&desc->list, &ichan->queue);
/* submit_buffers() atomically verifies and fills empty sg slots */
ret = ipu_submit_channel_buffers(ichan, desc);
spin_unlock_irqrestore(&ichan->lock, flags); spin_unlock_irqrestore(&ichan->lock, flags);
if (ichan->status < IPU_CHANNEL_ENABLED) {
int ret = ipu_enable_channel(idmac, ichan);
if (ret < 0) { if (ret < 0) {
cookie = ret; cookie = ret;
goto dequeue;
}
if (ichan->status < IPU_CHANNEL_ENABLED) {
ret = ipu_enable_channel(idmac, ichan);
if (ret < 0) {
cookie = ret;
goto dequeue;
}
}
dump_idmac_reg(ipu);
dequeue:
if (cookie < 0) {
spin_lock_irqsave(&ichan->lock, flags); spin_lock_irqsave(&ichan->lock, flags);
list_del_init(&desc->list); list_del_init(&desc->list);
spin_unlock_irqrestore(&ichan->lock, flags); spin_unlock_irqrestore(&ichan->lock, flags);
tx->cookie = cookie; tx->cookie = cookie;
ichan->dma_chan.cookie = cookie; ichan->dma_chan.cookie = cookie;
} }
}
dump_idmac_reg(ipu);
out: out:
mutex_unlock(&ichan->chan_mutex); mutex_unlock(&ichan->chan_mutex);
@ -944,8 +983,6 @@ static int idmac_desc_alloc(struct idmac_channel *ichan, int n)
memset(txd, 0, sizeof(*txd)); memset(txd, 0, sizeof(*txd));
dma_async_tx_descriptor_init(txd, &ichan->dma_chan); dma_async_tx_descriptor_init(txd, &ichan->dma_chan);
txd->tx_submit = idmac_tx_submit; txd->tx_submit = idmac_tx_submit;
txd->chan = &ichan->dma_chan;
INIT_LIST_HEAD(&txd->tx_list);
list_add(&desc->list, &ichan->free_list); list_add(&desc->list, &ichan->free_list);
@ -1161,6 +1198,24 @@ static int ipu_disable_channel(struct idmac *idmac, struct idmac_channel *ichan,
return 0; return 0;
} }
static struct scatterlist *idmac_sg_next(struct idmac_channel *ichan,
struct idmac_tx_desc **desc, struct scatterlist *sg)
{
struct scatterlist *sgnew = sg ? sg_next(sg) : NULL;
if (sgnew)
/* next sg-element in this list */
return sgnew;
if ((*desc)->list.next == &ichan->queue)
/* No more descriptors on the queue */
return NULL;
/* Fetch next descriptor */
*desc = list_entry((*desc)->list.next, struct idmac_tx_desc, list);
return (*desc)->sg;
}
/* /*
* We have several possibilities here: * We have several possibilities here:
* current BUF next BUF * current BUF next BUF
@ -1176,23 +1231,46 @@ static int ipu_disable_channel(struct idmac *idmac, struct idmac_channel *ichan,
static irqreturn_t idmac_interrupt(int irq, void *dev_id) static irqreturn_t idmac_interrupt(int irq, void *dev_id)
{ {
struct idmac_channel *ichan = dev_id; struct idmac_channel *ichan = dev_id;
struct device *dev = &ichan->dma_chan.dev->device;
unsigned int chan_id = ichan->dma_chan.chan_id; unsigned int chan_id = ichan->dma_chan.chan_id;
struct scatterlist **sg, *sgnext, *sgnew = NULL; struct scatterlist **sg, *sgnext, *sgnew = NULL;
/* Next transfer descriptor */ /* Next transfer descriptor */
struct idmac_tx_desc *desc = NULL, *descnew; struct idmac_tx_desc *desc, *descnew;
dma_async_tx_callback callback; dma_async_tx_callback callback;
void *callback_param; void *callback_param;
bool done = false; bool done = false;
u32 ready0 = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF0_RDY), u32 ready0, ready1, curbuf, err;
ready1 = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF1_RDY), unsigned long flags;
curbuf = idmac_read_ipureg(&ipu_data, IPU_CHA_CUR_BUF);
/* IDMAC has cleared the respective BUFx_RDY bit, we manage the buffer */ /* IDMAC has cleared the respective BUFx_RDY bit, we manage the buffer */
pr_debug("IDMAC irq %d\n", irq); dev_dbg(dev, "IDMAC irq %d, buf %d\n", irq, ichan->active_buffer);
spin_lock_irqsave(&ipu_data.lock, flags);
ready0 = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF0_RDY);
ready1 = idmac_read_ipureg(&ipu_data, IPU_CHA_BUF1_RDY);
curbuf = idmac_read_ipureg(&ipu_data, IPU_CHA_CUR_BUF);
err = idmac_read_ipureg(&ipu_data, IPU_INT_STAT_4);
if (err & (1 << chan_id)) {
idmac_write_ipureg(&ipu_data, 1 << chan_id, IPU_INT_STAT_4);
spin_unlock_irqrestore(&ipu_data.lock, flags);
/*
* Doing this
* ichan->sg[0] = ichan->sg[1] = NULL;
* you can force channel re-enable on the next tx_submit(), but
* this is dirty - think about descriptors with multiple
* sg elements.
*/
dev_warn(dev, "NFB4EOF on channel %d, ready %x, %x, cur %x\n",
chan_id, ready0, ready1, curbuf);
return IRQ_HANDLED;
}
spin_unlock_irqrestore(&ipu_data.lock, flags);
/* Other interrupts do not interfere with this channel */ /* Other interrupts do not interfere with this channel */
spin_lock(&ichan->lock); spin_lock(&ichan->lock);
if (unlikely(chan_id != IDMAC_SDC_0 && chan_id != IDMAC_SDC_1 && if (unlikely(chan_id != IDMAC_SDC_0 && chan_id != IDMAC_SDC_1 &&
((curbuf >> chan_id) & 1) == ichan->active_buffer)) { ((curbuf >> chan_id) & 1) == ichan->active_buffer)) {
int i = 100; int i = 100;
@ -1207,19 +1285,23 @@ static irqreturn_t idmac_interrupt(int irq, void *dev_id)
if (!i) { if (!i) {
spin_unlock(&ichan->lock); spin_unlock(&ichan->lock);
dev_dbg(ichan->dma_chan.device->dev, dev_dbg(dev,
"IRQ on active buffer on channel %x, active " "IRQ on active buffer on channel %x, active "
"%d, ready %x, %x, current %x!\n", chan_id, "%d, ready %x, %x, current %x!\n", chan_id,
ichan->active_buffer, ready0, ready1, curbuf); ichan->active_buffer, ready0, ready1, curbuf);
return IRQ_NONE; return IRQ_NONE;
} } else
dev_dbg(dev,
"Buffer deactivated on channel %x, active "
"%d, ready %x, %x, current %x, rest %d!\n", chan_id,
ichan->active_buffer, ready0, ready1, curbuf, i);
} }
if (unlikely((ichan->active_buffer && (ready1 >> chan_id) & 1) || if (unlikely((ichan->active_buffer && (ready1 >> chan_id) & 1) ||
(!ichan->active_buffer && (ready0 >> chan_id) & 1) (!ichan->active_buffer && (ready0 >> chan_id) & 1)
)) { )) {
spin_unlock(&ichan->lock); spin_unlock(&ichan->lock);
dev_dbg(ichan->dma_chan.device->dev, dev_dbg(dev,
"IRQ with active buffer still ready on channel %x, " "IRQ with active buffer still ready on channel %x, "
"active %d, ready %x, %x!\n", chan_id, "active %d, ready %x, %x!\n", chan_id,
ichan->active_buffer, ready0, ready1); ichan->active_buffer, ready0, ready1);
@ -1227,8 +1309,9 @@ static irqreturn_t idmac_interrupt(int irq, void *dev_id)
} }
if (unlikely(list_empty(&ichan->queue))) { if (unlikely(list_empty(&ichan->queue))) {
ichan->sg[ichan->active_buffer] = NULL;
spin_unlock(&ichan->lock); spin_unlock(&ichan->lock);
dev_err(ichan->dma_chan.device->dev, dev_err(dev,
"IRQ without queued buffers on channel %x, active %d, " "IRQ without queued buffers on channel %x, active %d, "
"ready %x, %x!\n", chan_id, "ready %x, %x!\n", chan_id,
ichan->active_buffer, ready0, ready1); ichan->active_buffer, ready0, ready1);
@ -1243,40 +1326,44 @@ static irqreturn_t idmac_interrupt(int irq, void *dev_id)
sg = &ichan->sg[ichan->active_buffer]; sg = &ichan->sg[ichan->active_buffer];
sgnext = ichan->sg[!ichan->active_buffer]; sgnext = ichan->sg[!ichan->active_buffer];
if (!*sg) {
spin_unlock(&ichan->lock);
return IRQ_HANDLED;
}
desc = list_entry(ichan->queue.next, struct idmac_tx_desc, list);
descnew = desc;
dev_dbg(dev, "IDMAC irq %d, dma 0x%08x, next dma 0x%08x, current %d, curbuf 0x%08x\n",
irq, sg_dma_address(*sg), sgnext ? sg_dma_address(sgnext) : 0, ichan->active_buffer, curbuf);
/* Find the descriptor of sgnext */
sgnew = idmac_sg_next(ichan, &descnew, *sg);
if (sgnext != sgnew)
dev_err(dev, "Submitted buffer %p, next buffer %p\n", sgnext, sgnew);
/* /*
* if sgnext == NULL sg must be the last element in a scatterlist and * if sgnext == NULL sg must be the last element in a scatterlist and
* queue must be empty * queue must be empty
*/ */
if (unlikely(!sgnext)) { if (unlikely(!sgnext)) {
if (unlikely(sg_next(*sg))) { if (!WARN_ON(sg_next(*sg)))
dev_err(ichan->dma_chan.device->dev, dev_dbg(dev, "Underrun on channel %x\n", chan_id);
"Broken buffer-update locking on channel %x!\n", ichan->sg[!ichan->active_buffer] = sgnew;
chan_id);
/* We'll let the user catch up */ if (unlikely(sgnew)) {
ipu_submit_buffer(ichan, descnew, sgnew, !ichan->active_buffer);
} else { } else {
/* Underrun */ spin_lock_irqsave(&ipu_data.lock, flags);
ipu_ic_disable_task(&ipu_data, chan_id); ipu_ic_disable_task(&ipu_data, chan_id);
dev_dbg(ichan->dma_chan.device->dev, spin_unlock_irqrestore(&ipu_data.lock, flags);
"Underrun on channel %x\n", chan_id);
ichan->status = IPU_CHANNEL_READY; ichan->status = IPU_CHANNEL_READY;
/* Continue to check for complete descriptor */ /* Continue to check for complete descriptor */
} }
} }
desc = list_entry(ichan->queue.next, struct idmac_tx_desc, list); /* Calculate and submit the next sg element */
sgnew = idmac_sg_next(ichan, &descnew, sgnew);
/* First calculate and submit the next sg element */
if (likely(sgnext))
sgnew = sg_next(sgnext);
if (unlikely(!sgnew)) {
/* Start a new scatterlist, if any queued */
if (likely(desc->list.next != &ichan->queue)) {
descnew = list_entry(desc->list.next,
struct idmac_tx_desc, list);
sgnew = &descnew->sg[0];
}
}
if (unlikely(!sg_next(*sg)) || !sgnext) { if (unlikely(!sg_next(*sg)) || !sgnext) {
/* /*
@ -1289,17 +1376,13 @@ static irqreturn_t idmac_interrupt(int irq, void *dev_id)
*sg = sgnew; *sg = sgnew;
if (likely(sgnew)) { if (likely(sgnew) &&
int ret; ipu_submit_buffer(ichan, descnew, sgnew, ichan->active_buffer) < 0) {
callback = desc->txd.callback;
ret = ipu_update_channel_buffer(chan_id, ichan->active_buffer, callback_param = desc->txd.callback_param;
sg_dma_address(*sg)); spin_unlock(&ichan->lock);
if (ret < 0) callback(callback_param);
dev_err(ichan->dma_chan.device->dev, spin_lock(&ichan->lock);
"Failed to update buffer on channel %x buffer %d!\n",
chan_id, ichan->active_buffer);
else
ipu_select_buffer(chan_id, ichan->active_buffer);
} }
/* Flip the active buffer - even if update above failed */ /* Flip the active buffer - even if update above failed */
@ -1327,13 +1410,20 @@ static void ipu_gc_tasklet(unsigned long arg)
struct idmac_channel *ichan = ipu->channel + i; struct idmac_channel *ichan = ipu->channel + i;
struct idmac_tx_desc *desc; struct idmac_tx_desc *desc;
unsigned long flags; unsigned long flags;
int j; struct scatterlist *sg;
int j, k;
for (j = 0; j < ichan->n_tx_desc; j++) { for (j = 0; j < ichan->n_tx_desc; j++) {
desc = ichan->desc + j; desc = ichan->desc + j;
spin_lock_irqsave(&ichan->lock, flags); spin_lock_irqsave(&ichan->lock, flags);
if (async_tx_test_ack(&desc->txd)) { if (async_tx_test_ack(&desc->txd)) {
list_move(&desc->list, &ichan->free_list); list_move(&desc->list, &ichan->free_list);
for_each_sg(desc->sg, sg, desc->sg_len, k) {
if (ichan->sg[0] == sg)
ichan->sg[0] = NULL;
else if (ichan->sg[1] == sg)
ichan->sg[1] = NULL;
}
async_tx_clear_ack(&desc->txd); async_tx_clear_ack(&desc->txd);
} }
spin_unlock_irqrestore(&ichan->lock, flags); spin_unlock_irqrestore(&ichan->lock, flags);
@ -1341,13 +1431,7 @@ static void ipu_gc_tasklet(unsigned long arg)
} }
} }
/* /* Allocate and initialise a transfer descriptor. */
* At the time .device_alloc_chan_resources() method is called, we cannot know,
* whether the client will accept the channel. Thus we must only check, if we
* can satisfy client's request but the only real criterion to verify, whether
* the client has accepted our offer is the client_count. That's why we have to
* perform the rest of our allocation tasks on the first call to this function.
*/
static struct dma_async_tx_descriptor *idmac_prep_slave_sg(struct dma_chan *chan, static struct dma_async_tx_descriptor *idmac_prep_slave_sg(struct dma_chan *chan,
struct scatterlist *sgl, unsigned int sg_len, struct scatterlist *sgl, unsigned int sg_len,
enum dma_data_direction direction, unsigned long tx_flags) enum dma_data_direction direction, unsigned long tx_flags)
@ -1358,8 +1442,8 @@ static struct dma_async_tx_descriptor *idmac_prep_slave_sg(struct dma_chan *chan
unsigned long flags; unsigned long flags;
/* We only can handle these three channels so far */ /* We only can handle these three channels so far */
if (ichan->dma_chan.chan_id != IDMAC_SDC_0 && ichan->dma_chan.chan_id != IDMAC_SDC_1 && if (chan->chan_id != IDMAC_SDC_0 && chan->chan_id != IDMAC_SDC_1 &&
ichan->dma_chan.chan_id != IDMAC_IC_7) chan->chan_id != IDMAC_IC_7)
return NULL; return NULL;
if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE) { if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE) {
@ -1400,7 +1484,7 @@ static void idmac_issue_pending(struct dma_chan *chan)
/* This is not always needed, but doesn't hurt either */ /* This is not always needed, but doesn't hurt either */
spin_lock_irqsave(&ipu->lock, flags); spin_lock_irqsave(&ipu->lock, flags);
ipu_select_buffer(ichan->dma_chan.chan_id, ichan->active_buffer); ipu_select_buffer(chan->chan_id, ichan->active_buffer);
spin_unlock_irqrestore(&ipu->lock, flags); spin_unlock_irqrestore(&ipu->lock, flags);
/* /*
@ -1432,8 +1516,7 @@ static void __idmac_terminate_all(struct dma_chan *chan)
struct idmac_tx_desc *desc = ichan->desc + i; struct idmac_tx_desc *desc = ichan->desc + i;
if (list_empty(&desc->list)) if (list_empty(&desc->list))
/* Descriptor was prepared, but not submitted */ /* Descriptor was prepared, but not submitted */
list_add(&desc->list, list_add(&desc->list, &ichan->free_list);
&ichan->free_list);
async_tx_clear_ack(&desc->txd); async_tx_clear_ack(&desc->txd);
} }
@ -1458,6 +1541,28 @@ static void idmac_terminate_all(struct dma_chan *chan)
mutex_unlock(&ichan->chan_mutex); mutex_unlock(&ichan->chan_mutex);
} }
#ifdef DEBUG
static irqreturn_t ic_sof_irq(int irq, void *dev_id)
{
struct idmac_channel *ichan = dev_id;
printk(KERN_DEBUG "Got SOF IRQ %d on Channel %d\n",
irq, ichan->dma_chan.chan_id);
disable_irq(irq);
return IRQ_HANDLED;
}
static irqreturn_t ic_eof_irq(int irq, void *dev_id)
{
struct idmac_channel *ichan = dev_id;
printk(KERN_DEBUG "Got EOF IRQ %d on Channel %d\n",
irq, ichan->dma_chan.chan_id);
disable_irq(irq);
return IRQ_HANDLED;
}
static int ic_sof = -EINVAL, ic_eof = -EINVAL;
#endif
static int idmac_alloc_chan_resources(struct dma_chan *chan) static int idmac_alloc_chan_resources(struct dma_chan *chan)
{ {
struct idmac_channel *ichan = to_idmac_chan(chan); struct idmac_channel *ichan = to_idmac_chan(chan);
@ -1471,31 +1576,49 @@ static int idmac_alloc_chan_resources(struct dma_chan *chan)
chan->cookie = 1; chan->cookie = 1;
ichan->completed = -ENXIO; ichan->completed = -ENXIO;
ret = ipu_irq_map(ichan->dma_chan.chan_id); ret = ipu_irq_map(chan->chan_id);
if (ret < 0) if (ret < 0)
goto eimap; goto eimap;
ichan->eof_irq = ret; ichan->eof_irq = ret;
ret = request_irq(ichan->eof_irq, idmac_interrupt, 0,
ichan->eof_name, ichan); /*
if (ret < 0) * Important to first disable the channel, because maybe someone
goto erirq; * used it before us, e.g., the bootloader
*/
ipu_disable_channel(idmac, ichan, true);
ret = ipu_init_channel(idmac, ichan); ret = ipu_init_channel(idmac, ichan);
if (ret < 0) if (ret < 0)
goto eichan; goto eichan;
ret = request_irq(ichan->eof_irq, idmac_interrupt, 0,
ichan->eof_name, ichan);
if (ret < 0)
goto erirq;
#ifdef DEBUG
if (chan->chan_id == IDMAC_IC_7) {
ic_sof = ipu_irq_map(69);
if (ic_sof > 0)
request_irq(ic_sof, ic_sof_irq, 0, "IC SOF", ichan);
ic_eof = ipu_irq_map(70);
if (ic_eof > 0)
request_irq(ic_eof, ic_eof_irq, 0, "IC EOF", ichan);
}
#endif
ichan->status = IPU_CHANNEL_INITIALIZED; ichan->status = IPU_CHANNEL_INITIALIZED;
dev_dbg(&ichan->dma_chan.dev->device, "Found channel 0x%x, irq %d\n", dev_dbg(&chan->dev->device, "Found channel 0x%x, irq %d\n",
ichan->dma_chan.chan_id, ichan->eof_irq); chan->chan_id, ichan->eof_irq);
return ret; return ret;
eichan:
free_irq(ichan->eof_irq, ichan);
erirq: erirq:
ipu_irq_unmap(ichan->dma_chan.chan_id); ipu_uninit_channel(idmac, ichan);
eichan:
ipu_irq_unmap(chan->chan_id);
eimap: eimap:
return ret; return ret;
} }
@ -1510,8 +1633,22 @@ static void idmac_free_chan_resources(struct dma_chan *chan)
__idmac_terminate_all(chan); __idmac_terminate_all(chan);
if (ichan->status > IPU_CHANNEL_FREE) { if (ichan->status > IPU_CHANNEL_FREE) {
#ifdef DEBUG
if (chan->chan_id == IDMAC_IC_7) {
if (ic_sof > 0) {
free_irq(ic_sof, ichan);
ipu_irq_unmap(69);
ic_sof = -EINVAL;
}
if (ic_eof > 0) {
free_irq(ic_eof, ichan);
ipu_irq_unmap(70);
ic_eof = -EINVAL;
}
}
#endif
free_irq(ichan->eof_irq, ichan); free_irq(ichan->eof_irq, ichan);
ipu_irq_unmap(ichan->dma_chan.chan_id); ipu_irq_unmap(chan->chan_id);
} }
ichan->status = IPU_CHANNEL_FREE; ichan->status = IPU_CHANNEL_FREE;
@ -1573,7 +1710,7 @@ static int __init ipu_idmac_init(struct ipu *ipu)
dma_chan->device = &idmac->dma; dma_chan->device = &idmac->dma;
dma_chan->cookie = 1; dma_chan->cookie = 1;
dma_chan->chan_id = i; dma_chan->chan_id = i;
list_add_tail(&ichan->dma_chan.device_node, &dma->channels); list_add_tail(&dma_chan->device_node, &dma->channels);
} }
idmac_write_icreg(ipu, 0x00000070, IDMAC_CONF); idmac_write_icreg(ipu, 0x00000070, IDMAC_CONF);
@ -1581,7 +1718,7 @@ static int __init ipu_idmac_init(struct ipu *ipu)
return dma_async_device_register(&idmac->dma); return dma_async_device_register(&idmac->dma);
} }
static void ipu_idmac_exit(struct ipu *ipu) static void __exit ipu_idmac_exit(struct ipu *ipu)
{ {
int i; int i;
struct idmac *idmac = &ipu->idmac; struct idmac *idmac = &ipu->idmac;
@ -1600,7 +1737,7 @@ static void ipu_idmac_exit(struct ipu *ipu)
* IPU common probe / remove * IPU common probe / remove
*/ */
static int ipu_probe(struct platform_device *pdev) static int __init ipu_probe(struct platform_device *pdev)
{ {
struct ipu_platform_data *pdata = pdev->dev.platform_data; struct ipu_platform_data *pdata = pdev->dev.platform_data;
struct resource *mem_ipu, *mem_ic; struct resource *mem_ipu, *mem_ic;
@ -1700,7 +1837,7 @@ err_noirq:
return ret; return ret;
} }
static int ipu_remove(struct platform_device *pdev) static int __exit ipu_remove(struct platform_device *pdev)
{ {
struct ipu *ipu = platform_get_drvdata(pdev); struct ipu *ipu = platform_get_drvdata(pdev);
@ -1725,7 +1862,7 @@ static struct platform_driver ipu_platform_driver = {
.name = "ipu-core", .name = "ipu-core",
.owner = THIS_MODULE, .owner = THIS_MODULE,
}, },
.remove = ipu_remove, .remove = __exit_p(ipu_remove),
}; };
static int __init ipu_init(void) static int __init ipu_init(void)

View File

@ -352,7 +352,7 @@ static struct irq_chip ipu_irq_chip = {
}; };
/* Install the IRQ handler */ /* Install the IRQ handler */
int ipu_irq_attach_irq(struct ipu *ipu, struct platform_device *dev) int __init ipu_irq_attach_irq(struct ipu *ipu, struct platform_device *dev)
{ {
struct ipu_platform_data *pdata = dev->dev.platform_data; struct ipu_platform_data *pdata = dev->dev.platform_data;
unsigned int irq, irq_base, i; unsigned int irq, irq_base, i;

View File

@ -632,7 +632,6 @@ static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
slot->async_tx.tx_submit = mv_xor_tx_submit; slot->async_tx.tx_submit = mv_xor_tx_submit;
INIT_LIST_HEAD(&slot->chain_node); INIT_LIST_HEAD(&slot->chain_node);
INIT_LIST_HEAD(&slot->slot_node); INIT_LIST_HEAD(&slot->slot_node);
INIT_LIST_HEAD(&slot->async_tx.tx_list);
hw_desc = (char *) mv_chan->device->dma_desc_pool; hw_desc = (char *) mv_chan->device->dma_desc_pool;
slot->async_tx.phys = slot->async_tx.phys =
(dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE]; (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];

View File

@ -21,6 +21,15 @@
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
/* on architectures without dma-mapping capabilities we need to ensure
* that the asynchronous path compiles away
*/
#ifdef CONFIG_HAS_DMA
#define __async_inline
#else
#define __async_inline __always_inline
#endif
/** /**
* dma_chan_ref - object used to manage dma channels received from the * dma_chan_ref - object used to manage dma channels received from the
* dmaengine core. * dmaengine core.

View File

@ -23,9 +23,6 @@
#include <linux/device.h> #include <linux/device.h>
#include <linux/uio.h> #include <linux/uio.h>
#include <linux/kref.h>
#include <linux/completion.h>
#include <linux/rcupdate.h>
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
/** /**
@ -205,6 +202,7 @@ struct dma_async_tx_descriptor {
/** /**
* struct dma_device - info on the entity supplying DMA services * struct dma_device - info on the entity supplying DMA services
* @chancnt: how many DMA channels are supported * @chancnt: how many DMA channels are supported
* @privatecnt: how many DMA channels are requested by dma_request_channel
* @channels: the list of struct dma_chan * @channels: the list of struct dma_chan
* @global_node: list_head for global dma_device_list * @global_node: list_head for global dma_device_list
* @cap_mask: one or more dma_capability flags * @cap_mask: one or more dma_capability flags
@ -227,6 +225,7 @@ struct dma_async_tx_descriptor {
struct dma_device { struct dma_device {
unsigned int chancnt; unsigned int chancnt;
unsigned int privatecnt;
struct list_head channels; struct list_head channels;
struct list_head global_node; struct list_head global_node;
dma_cap_mask_t cap_mask; dma_cap_mask_t cap_mask;
@ -291,6 +290,24 @@ static inline void net_dmaengine_put(void)
} }
#endif #endif
#ifdef CONFIG_ASYNC_TX_DMA
#define async_dmaengine_get() dmaengine_get()
#define async_dmaengine_put() dmaengine_put()
#define async_dma_find_channel(type) dma_find_channel(type)
#else
static inline void async_dmaengine_get(void)
{
}
static inline void async_dmaengine_put(void)
{
}
static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)
{
return NULL;
}
#endif
dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
void *dest, void *src, size_t len); void *dest, void *src, size_t len);
dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
@ -337,6 +354,13 @@ __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
set_bit(tx_type, dstp->bits); set_bit(tx_type, dstp->bits);
} }
#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
static inline void
__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
{
clear_bit(tx_type, dstp->bits);
}
#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
static inline void __dma_cap_zero(dma_cap_mask_t *dstp) static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
{ {

View File

@ -74,4 +74,23 @@ struct dw_dma_slave {
#define DWC_CFGL_HS_DST_POL (1 << 18) /* dst handshake active low */ #define DWC_CFGL_HS_DST_POL (1 << 18) /* dst handshake active low */
#define DWC_CFGL_HS_SRC_POL (1 << 19) /* src handshake active low */ #define DWC_CFGL_HS_SRC_POL (1 << 19) /* src handshake active low */
/* DMA API extensions */
struct dw_cyclic_desc {
struct dw_desc **desc;
unsigned long periods;
void (*period_callback)(void *param);
void *period_callback_param;
};
struct dw_cyclic_desc *dw_dma_cyclic_prep(struct dma_chan *chan,
dma_addr_t buf_addr, size_t buf_len, size_t period_len,
enum dma_data_direction direction);
void dw_dma_cyclic_free(struct dma_chan *chan);
int dw_dma_cyclic_start(struct dma_chan *chan);
void dw_dma_cyclic_stop(struct dma_chan *chan);
dma_addr_t dw_dma_get_src_addr(struct dma_chan *chan);
dma_addr_t dw_dma_get_dst_addr(struct dma_chan *chan);
#endif /* DW_DMAC_H */ #endif /* DW_DMAC_H */