mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 06:01:57 +00:00
fs crypto: move per-file encryption from f2fs tree to fs/crypto
This patch adds the renamed functions moved from the f2fs crypto files. 1. definitions for per-file encryption used by ext4 and f2fs. 2. crypto.c for encrypt/decrypt functions a. IO preparation: - fscrypt_get_ctx / fscrypt_release_ctx b. before IOs: - fscrypt_encrypt_page - fscrypt_decrypt_page - fscrypt_zeroout_range c. after IOs: - fscrypt_decrypt_bio_pages - fscrypt_pullback_bio_page - fscrypt_restore_control_page 3. policy.c supporting context management. a. For ioctls: - fscrypt_process_policy - fscrypt_get_policy b. For context permission - fscrypt_has_permitted_context - fscrypt_inherit_context 4. keyinfo.c to handle permissions - fscrypt_get_encryption_info - fscrypt_free_encryption_info 5. fname.c to support filename encryption a. general wrapper functions - fscrypt_fname_disk_to_usr - fscrypt_fname_usr_to_disk - fscrypt_setup_filename - fscrypt_free_filename b. specific filename handling functions - fscrypt_fname_alloc_buffer - fscrypt_fname_free_buffer 6. Makefile and Kconfig Cc: Al Viro <viro@ftp.linux.org.uk> Signed-off-by: Michael Halcrow <mhalcrow@google.com> Signed-off-by: Ildar Muslukhov <ildarm@google.com> Signed-off-by: Uday Savagaonkar <savagaon@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This commit is contained in:
parent
59692b7c71
commit
0b81d07790
@ -84,6 +84,8 @@ config MANDATORY_FILE_LOCKING
|
||||
|
||||
To the best of my knowledge this is dead code that no one cares about.
|
||||
|
||||
source "fs/crypto/Kconfig"
|
||||
|
||||
source "fs/notify/Kconfig"
|
||||
|
||||
source "fs/quota/Kconfig"
|
||||
|
@ -30,6 +30,7 @@ obj-$(CONFIG_EVENTFD) += eventfd.o
|
||||
obj-$(CONFIG_USERFAULTFD) += userfaultfd.o
|
||||
obj-$(CONFIG_AIO) += aio.o
|
||||
obj-$(CONFIG_FS_DAX) += dax.o
|
||||
obj-$(CONFIG_FS_ENCRYPTION) += crypto/
|
||||
obj-$(CONFIG_FILE_LOCKING) += locks.o
|
||||
obj-$(CONFIG_COMPAT) += compat.o compat_ioctl.o
|
||||
obj-$(CONFIG_BINFMT_AOUT) += binfmt_aout.o
|
||||
|
18
fs/crypto/Kconfig
Normal file
18
fs/crypto/Kconfig
Normal file
@ -0,0 +1,18 @@
|
||||
config FS_ENCRYPTION
|
||||
tristate "FS Encryption (Per-file encryption)"
|
||||
depends on BLOCK
|
||||
select CRYPTO
|
||||
select CRYPTO_AES
|
||||
select CRYPTO_CBC
|
||||
select CRYPTO_ECB
|
||||
select CRYPTO_XTS
|
||||
select CRYPTO_CTS
|
||||
select CRYPTO_CTR
|
||||
select CRYPTO_SHA256
|
||||
select KEYS
|
||||
select ENCRYPTED_KEYS
|
||||
help
|
||||
Enable encryption of files and directories. This
|
||||
feature is similar to ecryptfs, but it is more memory
|
||||
efficient since it avoids caching the encrypted and
|
||||
decrypted pages in the page cache.
|
3
fs/crypto/Makefile
Normal file
3
fs/crypto/Makefile
Normal file
@ -0,0 +1,3 @@
|
||||
obj-$(CONFIG_FS_ENCRYPTION) += fscrypto.o
|
||||
|
||||
fscrypto-y := crypto.o fname.o policy.o keyinfo.o
|
556
fs/crypto/crypto.c
Normal file
556
fs/crypto/crypto.c
Normal file
@ -0,0 +1,556 @@
|
||||
/*
|
||||
* This contains encryption functions for per-file encryption.
|
||||
*
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* Copyright (C) 2015, Motorola Mobility
|
||||
*
|
||||
* Written by Michael Halcrow, 2014.
|
||||
*
|
||||
* Filename encryption additions
|
||||
* Uday Savagaonkar, 2014
|
||||
* Encryption policy handling additions
|
||||
* Ildar Muslukhov, 2014
|
||||
* Add fscrypt_pullback_bio_page()
|
||||
* Jaegeuk Kim, 2015.
|
||||
*
|
||||
* This has not yet undergone a rigorous security audit.
|
||||
*
|
||||
* The usage of AES-XTS should conform to recommendations in NIST
|
||||
* Special Publication 800-38E and IEEE P1619/D16.
|
||||
*/
|
||||
|
||||
#include <linux/crypto.h>
|
||||
#include <linux/ecryptfs.h>
|
||||
#include <linux/pagemap.h>
|
||||
#include <linux/mempool.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/ratelimit.h>
|
||||
#include <linux/bio.h>
|
||||
#include <linux/dcache.h>
|
||||
#include <linux/fscrypto.h>
|
||||
|
||||
static unsigned int num_prealloc_crypto_pages = 32;
|
||||
static unsigned int num_prealloc_crypto_ctxs = 128;
|
||||
|
||||
module_param(num_prealloc_crypto_pages, uint, 0444);
|
||||
MODULE_PARM_DESC(num_prealloc_crypto_pages,
|
||||
"Number of crypto pages to preallocate");
|
||||
module_param(num_prealloc_crypto_ctxs, uint, 0444);
|
||||
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
|
||||
"Number of crypto contexts to preallocate");
|
||||
|
||||
static mempool_t *fscrypt_bounce_page_pool = NULL;
|
||||
|
||||
static LIST_HEAD(fscrypt_free_ctxs);
|
||||
static DEFINE_SPINLOCK(fscrypt_ctx_lock);
|
||||
|
||||
static struct workqueue_struct *fscrypt_read_workqueue;
|
||||
static DEFINE_MUTEX(fscrypt_init_mutex);
|
||||
|
||||
static struct kmem_cache *fscrypt_ctx_cachep;
|
||||
struct kmem_cache *fscrypt_info_cachep;
|
||||
|
||||
/**
|
||||
* fscrypt_release_ctx() - Releases an encryption context
|
||||
* @ctx: The encryption context to release.
|
||||
*
|
||||
* If the encryption context was allocated from the pre-allocated pool, returns
|
||||
* it to that pool. Else, frees it.
|
||||
*
|
||||
* If there's a bounce page in the context, this frees that.
|
||||
*/
|
||||
void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
|
||||
mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
|
||||
ctx->w.bounce_page = NULL;
|
||||
}
|
||||
ctx->w.control_page = NULL;
|
||||
if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
|
||||
kmem_cache_free(fscrypt_ctx_cachep, ctx);
|
||||
} else {
|
||||
spin_lock_irqsave(&fscrypt_ctx_lock, flags);
|
||||
list_add(&ctx->free_list, &fscrypt_free_ctxs);
|
||||
spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_release_ctx);
|
||||
|
||||
/**
|
||||
* fscrypt_get_ctx() - Gets an encryption context
|
||||
* @inode: The inode for which we are doing the crypto
|
||||
*
|
||||
* Allocates and initializes an encryption context.
|
||||
*
|
||||
* Return: An allocated and initialized encryption context on success; error
|
||||
* value or NULL otherwise.
|
||||
*/
|
||||
struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode)
|
||||
{
|
||||
struct fscrypt_ctx *ctx = NULL;
|
||||
struct fscrypt_info *ci = inode->i_crypt_info;
|
||||
unsigned long flags;
|
||||
|
||||
if (ci == NULL)
|
||||
return ERR_PTR(-ENOKEY);
|
||||
|
||||
/*
|
||||
* We first try getting the ctx from a free list because in
|
||||
* the common case the ctx will have an allocated and
|
||||
* initialized crypto tfm, so it's probably a worthwhile
|
||||
* optimization. For the bounce page, we first try getting it
|
||||
* from the kernel allocator because that's just about as fast
|
||||
* as getting it from a list and because a cache of free pages
|
||||
* should generally be a "last resort" option for a filesystem
|
||||
* to be able to do its job.
|
||||
*/
|
||||
spin_lock_irqsave(&fscrypt_ctx_lock, flags);
|
||||
ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
|
||||
struct fscrypt_ctx, free_list);
|
||||
if (ctx)
|
||||
list_del(&ctx->free_list);
|
||||
spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
|
||||
if (!ctx) {
|
||||
ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
|
||||
if (!ctx)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
||||
} else {
|
||||
ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
||||
}
|
||||
ctx->flags &= ~FS_WRITE_PATH_FL;
|
||||
return ctx;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_get_ctx);
|
||||
|
||||
/**
|
||||
* fscrypt_complete() - The completion callback for page encryption
|
||||
* @req: The asynchronous encryption request context
|
||||
* @res: The result of the encryption operation
|
||||
*/
|
||||
static void fscrypt_complete(struct crypto_async_request *req, int res)
|
||||
{
|
||||
struct fscrypt_completion_result *ecr = req->data;
|
||||
|
||||
if (res == -EINPROGRESS)
|
||||
return;
|
||||
ecr->res = res;
|
||||
complete(&ecr->completion);
|
||||
}
|
||||
|
||||
typedef enum {
|
||||
FS_DECRYPT = 0,
|
||||
FS_ENCRYPT,
|
||||
} fscrypt_direction_t;
|
||||
|
||||
static int do_page_crypto(struct inode *inode,
|
||||
fscrypt_direction_t rw, pgoff_t index,
|
||||
struct page *src_page, struct page *dest_page)
|
||||
{
|
||||
u8 xts_tweak[FS_XTS_TWEAK_SIZE];
|
||||
struct ablkcipher_request *req = NULL;
|
||||
DECLARE_FS_COMPLETION_RESULT(ecr);
|
||||
struct scatterlist dst, src;
|
||||
struct fscrypt_info *ci = inode->i_crypt_info;
|
||||
struct crypto_ablkcipher *tfm = ci->ci_ctfm;
|
||||
int res = 0;
|
||||
|
||||
req = ablkcipher_request_alloc(tfm, GFP_NOFS);
|
||||
if (!req) {
|
||||
printk_ratelimited(KERN_ERR
|
||||
"%s: crypto_request_alloc() failed\n",
|
||||
__func__);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
ablkcipher_request_set_callback(
|
||||
req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
||||
fscrypt_complete, &ecr);
|
||||
|
||||
BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index));
|
||||
memcpy(xts_tweak, &inode->i_ino, sizeof(index));
|
||||
memset(&xts_tweak[sizeof(index)], 0,
|
||||
FS_XTS_TWEAK_SIZE - sizeof(index));
|
||||
|
||||
sg_init_table(&dst, 1);
|
||||
sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
|
||||
sg_init_table(&src, 1);
|
||||
sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
|
||||
ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
|
||||
xts_tweak);
|
||||
if (rw == FS_DECRYPT)
|
||||
res = crypto_ablkcipher_decrypt(req);
|
||||
else
|
||||
res = crypto_ablkcipher_encrypt(req);
|
||||
if (res == -EINPROGRESS || res == -EBUSY) {
|
||||
BUG_ON(req->base.data != &ecr);
|
||||
wait_for_completion(&ecr.completion);
|
||||
res = ecr.res;
|
||||
}
|
||||
ablkcipher_request_free(req);
|
||||
if (res) {
|
||||
printk_ratelimited(KERN_ERR
|
||||
"%s: crypto_ablkcipher_encrypt() returned %d\n",
|
||||
__func__, res);
|
||||
return res;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx)
|
||||
{
|
||||
ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool,
|
||||
GFP_NOWAIT);
|
||||
if (ctx->w.bounce_page == NULL)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
ctx->flags |= FS_WRITE_PATH_FL;
|
||||
return ctx->w.bounce_page;
|
||||
}
|
||||
|
||||
/**
|
||||
* fscypt_encrypt_page() - Encrypts a page
|
||||
* @inode: The inode for which the encryption should take place
|
||||
* @plaintext_page: The page to encrypt. Must be locked.
|
||||
*
|
||||
* Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
|
||||
* encryption context.
|
||||
*
|
||||
* Called on the page write path. The caller must call
|
||||
* fscrypt_restore_control_page() on the returned ciphertext page to
|
||||
* release the bounce buffer and the encryption context.
|
||||
*
|
||||
* Return: An allocated page with the encrypted content on success. Else, an
|
||||
* error value or NULL.
|
||||
*/
|
||||
struct page *fscrypt_encrypt_page(struct inode *inode,
|
||||
struct page *plaintext_page)
|
||||
{
|
||||
struct fscrypt_ctx *ctx;
|
||||
struct page *ciphertext_page = NULL;
|
||||
int err;
|
||||
|
||||
BUG_ON(!PageLocked(plaintext_page));
|
||||
|
||||
ctx = fscrypt_get_ctx(inode);
|
||||
if (IS_ERR(ctx))
|
||||
return (struct page *)ctx;
|
||||
|
||||
/* The encryption operation will require a bounce page. */
|
||||
ciphertext_page = alloc_bounce_page(ctx);
|
||||
if (IS_ERR(ciphertext_page))
|
||||
goto errout;
|
||||
|
||||
ctx->w.control_page = plaintext_page;
|
||||
err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
|
||||
plaintext_page, ciphertext_page);
|
||||
if (err) {
|
||||
ciphertext_page = ERR_PTR(err);
|
||||
goto errout;
|
||||
}
|
||||
SetPagePrivate(ciphertext_page);
|
||||
set_page_private(ciphertext_page, (unsigned long)ctx);
|
||||
lock_page(ciphertext_page);
|
||||
return ciphertext_page;
|
||||
|
||||
errout:
|
||||
fscrypt_release_ctx(ctx);
|
||||
return ciphertext_page;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_encrypt_page);
|
||||
|
||||
/**
|
||||
* f2crypt_decrypt_page() - Decrypts a page in-place
|
||||
* @page: The page to decrypt. Must be locked.
|
||||
*
|
||||
* Decrypts page in-place using the ctx encryption context.
|
||||
*
|
||||
* Called from the read completion callback.
|
||||
*
|
||||
* Return: Zero on success, non-zero otherwise.
|
||||
*/
|
||||
int fscrypt_decrypt_page(struct page *page)
|
||||
{
|
||||
BUG_ON(!PageLocked(page));
|
||||
|
||||
return do_page_crypto(page->mapping->host,
|
||||
FS_DECRYPT, page->index, page, page);
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_decrypt_page);
|
||||
|
||||
int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
|
||||
sector_t pblk, unsigned int len)
|
||||
{
|
||||
struct fscrypt_ctx *ctx;
|
||||
struct page *ciphertext_page = NULL;
|
||||
struct bio *bio;
|
||||
int ret, err = 0;
|
||||
|
||||
BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
|
||||
|
||||
ctx = fscrypt_get_ctx(inode);
|
||||
if (IS_ERR(ctx))
|
||||
return PTR_ERR(ctx);
|
||||
|
||||
ciphertext_page = alloc_bounce_page(ctx);
|
||||
if (IS_ERR(ciphertext_page)) {
|
||||
err = PTR_ERR(ciphertext_page);
|
||||
goto errout;
|
||||
}
|
||||
|
||||
while (len--) {
|
||||
err = do_page_crypto(inode, FS_ENCRYPT, lblk,
|
||||
ZERO_PAGE(0), ciphertext_page);
|
||||
if (err)
|
||||
goto errout;
|
||||
|
||||
bio = bio_alloc(GFP_KERNEL, 1);
|
||||
if (!bio) {
|
||||
err = -ENOMEM;
|
||||
goto errout;
|
||||
}
|
||||
bio->bi_bdev = inode->i_sb->s_bdev;
|
||||
bio->bi_iter.bi_sector =
|
||||
pblk << (inode->i_sb->s_blocksize_bits - 9);
|
||||
ret = bio_add_page(bio, ciphertext_page,
|
||||
inode->i_sb->s_blocksize, 0);
|
||||
if (ret != inode->i_sb->s_blocksize) {
|
||||
/* should never happen! */
|
||||
WARN_ON(1);
|
||||
bio_put(bio);
|
||||
err = -EIO;
|
||||
goto errout;
|
||||
}
|
||||
err = submit_bio_wait(WRITE, bio);
|
||||
if ((err == 0) && bio->bi_error)
|
||||
err = -EIO;
|
||||
bio_put(bio);
|
||||
if (err)
|
||||
goto errout;
|
||||
lblk++;
|
||||
pblk++;
|
||||
}
|
||||
err = 0;
|
||||
errout:
|
||||
fscrypt_release_ctx(ctx);
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_zeroout_range);
|
||||
|
||||
/*
|
||||
* Validate dentries for encrypted directories to make sure we aren't
|
||||
* potentially caching stale data after a key has been added or
|
||||
* removed.
|
||||
*/
|
||||
static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
|
||||
{
|
||||
struct inode *dir = d_inode(dentry->d_parent);
|
||||
struct fscrypt_info *ci = dir->i_crypt_info;
|
||||
int dir_has_key, cached_with_key;
|
||||
|
||||
if (!dir->i_sb->s_cop->is_encrypted(dir))
|
||||
return 0;
|
||||
|
||||
if (ci && ci->ci_keyring_key &&
|
||||
(ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
|
||||
(1 << KEY_FLAG_REVOKED) |
|
||||
(1 << KEY_FLAG_DEAD))))
|
||||
ci = NULL;
|
||||
|
||||
/* this should eventually be an flag in d_flags */
|
||||
spin_lock(&dentry->d_lock);
|
||||
cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
|
||||
spin_unlock(&dentry->d_lock);
|
||||
dir_has_key = (ci != NULL);
|
||||
|
||||
/*
|
||||
* If the dentry was cached without the key, and it is a
|
||||
* negative dentry, it might be a valid name. We can't check
|
||||
* if the key has since been made available due to locking
|
||||
* reasons, so we fail the validation so ext4_lookup() can do
|
||||
* this check.
|
||||
*
|
||||
* We also fail the validation if the dentry was created with
|
||||
* the key present, but we no longer have the key, or vice versa.
|
||||
*/
|
||||
if ((!cached_with_key && d_is_negative(dentry)) ||
|
||||
(!cached_with_key && dir_has_key) ||
|
||||
(cached_with_key && !dir_has_key))
|
||||
return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
const struct dentry_operations fscrypt_d_ops = {
|
||||
.d_revalidate = fscrypt_d_revalidate,
|
||||
};
|
||||
EXPORT_SYMBOL(fscrypt_d_ops);
|
||||
|
||||
/*
|
||||
* Call fscrypt_decrypt_page on every single page, reusing the encryption
|
||||
* context.
|
||||
*/
|
||||
static void completion_pages(struct work_struct *work)
|
||||
{
|
||||
struct fscrypt_ctx *ctx =
|
||||
container_of(work, struct fscrypt_ctx, r.work);
|
||||
struct bio *bio = ctx->r.bio;
|
||||
struct bio_vec *bv;
|
||||
int i;
|
||||
|
||||
bio_for_each_segment_all(bv, bio, i) {
|
||||
struct page *page = bv->bv_page;
|
||||
int ret = fscrypt_decrypt_page(page);
|
||||
|
||||
if (ret) {
|
||||
WARN_ON_ONCE(1);
|
||||
SetPageError(page);
|
||||
} else {
|
||||
SetPageUptodate(page);
|
||||
}
|
||||
unlock_page(page);
|
||||
}
|
||||
fscrypt_release_ctx(ctx);
|
||||
bio_put(bio);
|
||||
}
|
||||
|
||||
void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
|
||||
{
|
||||
INIT_WORK(&ctx->r.work, completion_pages);
|
||||
ctx->r.bio = bio;
|
||||
queue_work(fscrypt_read_workqueue, &ctx->r.work);
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
|
||||
|
||||
void fscrypt_pullback_bio_page(struct page **page, bool restore)
|
||||
{
|
||||
struct fscrypt_ctx *ctx;
|
||||
struct page *bounce_page;
|
||||
|
||||
/* The bounce data pages are unmapped. */
|
||||
if ((*page)->mapping)
|
||||
return;
|
||||
|
||||
/* The bounce data page is unmapped. */
|
||||
bounce_page = *page;
|
||||
ctx = (struct fscrypt_ctx *)page_private(bounce_page);
|
||||
|
||||
/* restore control page */
|
||||
*page = ctx->w.control_page;
|
||||
|
||||
if (restore)
|
||||
fscrypt_restore_control_page(bounce_page);
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_pullback_bio_page);
|
||||
|
||||
void fscrypt_restore_control_page(struct page *page)
|
||||
{
|
||||
struct fscrypt_ctx *ctx;
|
||||
|
||||
ctx = (struct fscrypt_ctx *)page_private(page);
|
||||
set_page_private(page, (unsigned long)NULL);
|
||||
ClearPagePrivate(page);
|
||||
unlock_page(page);
|
||||
fscrypt_release_ctx(ctx);
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_restore_control_page);
|
||||
|
||||
static void fscrypt_destroy(void)
|
||||
{
|
||||
struct fscrypt_ctx *pos, *n;
|
||||
|
||||
list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
|
||||
kmem_cache_free(fscrypt_ctx_cachep, pos);
|
||||
INIT_LIST_HEAD(&fscrypt_free_ctxs);
|
||||
mempool_destroy(fscrypt_bounce_page_pool);
|
||||
fscrypt_bounce_page_pool = NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* fscrypt_initialize() - allocate major buffers for fs encryption.
|
||||
*
|
||||
* We only call this when we start accessing encrypted files, since it
|
||||
* results in memory getting allocated that wouldn't otherwise be used.
|
||||
*
|
||||
* Return: Zero on success, non-zero otherwise.
|
||||
*/
|
||||
int fscrypt_initialize(void)
|
||||
{
|
||||
int i, res = -ENOMEM;
|
||||
|
||||
if (fscrypt_bounce_page_pool)
|
||||
return 0;
|
||||
|
||||
mutex_lock(&fscrypt_init_mutex);
|
||||
if (fscrypt_bounce_page_pool)
|
||||
goto already_initialized;
|
||||
|
||||
for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
|
||||
struct fscrypt_ctx *ctx;
|
||||
|
||||
ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
|
||||
if (!ctx)
|
||||
goto fail;
|
||||
list_add(&ctx->free_list, &fscrypt_free_ctxs);
|
||||
}
|
||||
|
||||
fscrypt_bounce_page_pool =
|
||||
mempool_create_page_pool(num_prealloc_crypto_pages, 0);
|
||||
if (!fscrypt_bounce_page_pool)
|
||||
goto fail;
|
||||
|
||||
already_initialized:
|
||||
mutex_unlock(&fscrypt_init_mutex);
|
||||
return 0;
|
||||
fail:
|
||||
fscrypt_destroy();
|
||||
mutex_unlock(&fscrypt_init_mutex);
|
||||
return res;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_initialize);
|
||||
|
||||
/**
|
||||
* fscrypt_init() - Set up for fs encryption.
|
||||
*/
|
||||
static int __init fscrypt_init(void)
|
||||
{
|
||||
fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
|
||||
WQ_HIGHPRI, 0);
|
||||
if (!fscrypt_read_workqueue)
|
||||
goto fail;
|
||||
|
||||
fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
|
||||
if (!fscrypt_ctx_cachep)
|
||||
goto fail_free_queue;
|
||||
|
||||
fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
|
||||
if (!fscrypt_info_cachep)
|
||||
goto fail_free_ctx;
|
||||
|
||||
return 0;
|
||||
|
||||
fail_free_ctx:
|
||||
kmem_cache_destroy(fscrypt_ctx_cachep);
|
||||
fail_free_queue:
|
||||
destroy_workqueue(fscrypt_read_workqueue);
|
||||
fail:
|
||||
return -ENOMEM;
|
||||
}
|
||||
module_init(fscrypt_init)
|
||||
|
||||
/**
|
||||
* fscrypt_exit() - Shutdown the fs encryption system
|
||||
*/
|
||||
static void __exit fscrypt_exit(void)
|
||||
{
|
||||
fscrypt_destroy();
|
||||
|
||||
if (fscrypt_read_workqueue)
|
||||
destroy_workqueue(fscrypt_read_workqueue);
|
||||
kmem_cache_destroy(fscrypt_ctx_cachep);
|
||||
kmem_cache_destroy(fscrypt_info_cachep);
|
||||
}
|
||||
module_exit(fscrypt_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
@ -1,46 +1,35 @@
|
||||
/*
|
||||
* linux/fs/f2fs/crypto_fname.c
|
||||
*
|
||||
* Copied from linux/fs/ext4/crypto.c
|
||||
* This contains functions for filename crypto management
|
||||
*
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* Copyright (C) 2015, Motorola Mobility
|
||||
*
|
||||
* This contains functions for filename crypto management in f2fs
|
||||
*
|
||||
* Written by Uday Savagaonkar, 2014.
|
||||
*
|
||||
* Adjust f2fs dentry structure
|
||||
* Jaegeuk Kim, 2015.
|
||||
* Modified by Jaegeuk Kim, 2015.
|
||||
*
|
||||
* This has not yet undergone a rigorous security audit.
|
||||
*/
|
||||
|
||||
#include <crypto/hash.h>
|
||||
#include <crypto/sha.h>
|
||||
#include <keys/encrypted-type.h>
|
||||
#include <keys/user-type.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <linux/gfp.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/key.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/mempool.h>
|
||||
#include <linux/random.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/spinlock_types.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include <linux/ratelimit.h>
|
||||
#include <linux/fscrypto.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "f2fs_crypto.h"
|
||||
#include "xattr.h"
|
||||
static u32 size_round_up(size_t size, size_t blksize)
|
||||
{
|
||||
return ((size + blksize - 1) / blksize) * blksize;
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_dir_crypt_complete() -
|
||||
* dir_crypt_complete() -
|
||||
*/
|
||||
static void f2fs_dir_crypt_complete(struct crypto_async_request *req, int res)
|
||||
static void dir_crypt_complete(struct crypto_async_request *req, int res)
|
||||
{
|
||||
struct f2fs_completion_result *ecr = req->data;
|
||||
struct fscrypt_completion_result *ecr = req->data;
|
||||
|
||||
if (res == -EINPROGRESS)
|
||||
return;
|
||||
@ -48,45 +37,35 @@ static void f2fs_dir_crypt_complete(struct crypto_async_request *req, int res)
|
||||
complete(&ecr->completion);
|
||||
}
|
||||
|
||||
bool f2fs_valid_filenames_enc_mode(uint32_t mode)
|
||||
{
|
||||
return (mode == F2FS_ENCRYPTION_MODE_AES_256_CTS);
|
||||
}
|
||||
|
||||
static unsigned max_name_len(struct inode *inode)
|
||||
{
|
||||
return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
|
||||
F2FS_NAME_LEN;
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_fname_encrypt() -
|
||||
* fname_encrypt() -
|
||||
*
|
||||
* This function encrypts the input filename, and returns the length of the
|
||||
* ciphertext. Errors are returned as negative numbers. We trust the caller to
|
||||
* allocate sufficient memory to oname string.
|
||||
*/
|
||||
static int f2fs_fname_encrypt(struct inode *inode,
|
||||
const struct qstr *iname, struct f2fs_str *oname)
|
||||
static int fname_encrypt(struct inode *inode,
|
||||
const struct qstr *iname, struct fscrypt_str *oname)
|
||||
{
|
||||
u32 ciphertext_len;
|
||||
struct ablkcipher_request *req = NULL;
|
||||
DECLARE_F2FS_COMPLETION_RESULT(ecr);
|
||||
struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
|
||||
DECLARE_FS_COMPLETION_RESULT(ecr);
|
||||
struct fscrypt_info *ci = inode->i_crypt_info;
|
||||
struct crypto_ablkcipher *tfm = ci->ci_ctfm;
|
||||
int res = 0;
|
||||
char iv[F2FS_CRYPTO_BLOCK_SIZE];
|
||||
char iv[FS_CRYPTO_BLOCK_SIZE];
|
||||
struct scatterlist src_sg, dst_sg;
|
||||
int padding = 4 << (ci->ci_flags & F2FS_POLICY_FLAGS_PAD_MASK);
|
||||
int padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
|
||||
char *workbuf, buf[32], *alloc_buf = NULL;
|
||||
unsigned lim = max_name_len(inode);
|
||||
unsigned lim;
|
||||
|
||||
lim = inode->i_sb->s_cop->max_namelen(inode);
|
||||
if (iname->len <= 0 || iname->len > lim)
|
||||
return -EIO;
|
||||
|
||||
ciphertext_len = (iname->len < F2FS_CRYPTO_BLOCK_SIZE) ?
|
||||
F2FS_CRYPTO_BLOCK_SIZE : iname->len;
|
||||
ciphertext_len = f2fs_fname_crypto_round_up(ciphertext_len, padding);
|
||||
ciphertext_len = (iname->len < FS_CRYPTO_BLOCK_SIZE) ?
|
||||
FS_CRYPTO_BLOCK_SIZE : iname->len;
|
||||
ciphertext_len = size_round_up(ciphertext_len, padding);
|
||||
ciphertext_len = (ciphertext_len > lim) ? lim : ciphertext_len;
|
||||
|
||||
if (ciphertext_len <= sizeof(buf)) {
|
||||
@ -108,7 +87,7 @@ static int f2fs_fname_encrypt(struct inode *inode,
|
||||
}
|
||||
ablkcipher_request_set_callback(req,
|
||||
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
||||
f2fs_dir_crypt_complete, &ecr);
|
||||
dir_crypt_complete, &ecr);
|
||||
|
||||
/* Copy the input */
|
||||
memcpy(workbuf, iname->name, iname->len);
|
||||
@ -116,7 +95,7 @@ static int f2fs_fname_encrypt(struct inode *inode,
|
||||
memset(workbuf + iname->len, 0, ciphertext_len - iname->len);
|
||||
|
||||
/* Initialize IV */
|
||||
memset(iv, 0, F2FS_CRYPTO_BLOCK_SIZE);
|
||||
memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
|
||||
|
||||
/* Create encryption request */
|
||||
sg_init_one(&src_sg, workbuf, ciphertext_len);
|
||||
@ -129,33 +108,35 @@ static int f2fs_fname_encrypt(struct inode *inode,
|
||||
}
|
||||
kfree(alloc_buf);
|
||||
ablkcipher_request_free(req);
|
||||
if (res < 0) {
|
||||
if (res < 0)
|
||||
printk_ratelimited(KERN_ERR
|
||||
"%s: Error (error code %d)\n", __func__, res);
|
||||
}
|
||||
|
||||
oname->len = ciphertext_len;
|
||||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
* f2fs_fname_decrypt()
|
||||
* fname_decrypt()
|
||||
* This function decrypts the input filename, and returns
|
||||
* the length of the plaintext.
|
||||
* Errors are returned as negative numbers.
|
||||
* We trust the caller to allocate sufficient memory to oname string.
|
||||
*/
|
||||
static int f2fs_fname_decrypt(struct inode *inode,
|
||||
const struct f2fs_str *iname, struct f2fs_str *oname)
|
||||
static int fname_decrypt(struct inode *inode,
|
||||
const struct fscrypt_str *iname,
|
||||
struct fscrypt_str *oname)
|
||||
{
|
||||
struct ablkcipher_request *req = NULL;
|
||||
DECLARE_F2FS_COMPLETION_RESULT(ecr);
|
||||
DECLARE_FS_COMPLETION_RESULT(ecr);
|
||||
struct scatterlist src_sg, dst_sg;
|
||||
struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
|
||||
struct fscrypt_info *ci = inode->i_crypt_info;
|
||||
struct crypto_ablkcipher *tfm = ci->ci_ctfm;
|
||||
int res = 0;
|
||||
char iv[F2FS_CRYPTO_BLOCK_SIZE];
|
||||
unsigned lim = max_name_len(inode);
|
||||
char iv[FS_CRYPTO_BLOCK_SIZE];
|
||||
unsigned lim;
|
||||
|
||||
lim = inode->i_sb->s_cop->max_namelen(inode);
|
||||
if (iname->len <= 0 || iname->len > lim)
|
||||
return -EIO;
|
||||
|
||||
@ -168,10 +149,10 @@ static int f2fs_fname_decrypt(struct inode *inode,
|
||||
}
|
||||
ablkcipher_request_set_callback(req,
|
||||
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
||||
f2fs_dir_crypt_complete, &ecr);
|
||||
dir_crypt_complete, &ecr);
|
||||
|
||||
/* Initialize IV */
|
||||
memset(iv, 0, F2FS_CRYPTO_BLOCK_SIZE);
|
||||
memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
|
||||
|
||||
/* Create decryption request */
|
||||
sg_init_one(&src_sg, iname->name, iname->len);
|
||||
@ -185,8 +166,7 @@ static int f2fs_fname_decrypt(struct inode *inode,
|
||||
ablkcipher_request_free(req);
|
||||
if (res < 0) {
|
||||
printk_ratelimited(KERN_ERR
|
||||
"%s: Error in f2fs_fname_decrypt (error code %d)\n",
|
||||
__func__, res);
|
||||
"%s: Error (error code %d)\n", __func__, res);
|
||||
return res;
|
||||
}
|
||||
|
||||
@ -198,7 +178,7 @@ static const char *lookup_table =
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
|
||||
|
||||
/**
|
||||
* f2fs_fname_encode_digest() -
|
||||
* digest_encode() -
|
||||
*
|
||||
* Encodes the input digest using characters from the set [a-zA-Z0-9_+].
|
||||
* The encoded string is roughly 4/3 times the size of the input string.
|
||||
@ -247,156 +227,152 @@ static int digest_decode(const char *src, int len, char *dst)
|
||||
return cp - dst;
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_fname_crypto_round_up() -
|
||||
*
|
||||
* Return: The next multiple of block size
|
||||
*/
|
||||
u32 f2fs_fname_crypto_round_up(u32 size, u32 blksize)
|
||||
u32 fscrypt_fname_encrypted_size(struct inode *inode, u32 ilen)
|
||||
{
|
||||
return ((size + blksize - 1) / blksize) * blksize;
|
||||
}
|
||||
|
||||
unsigned f2fs_fname_encrypted_size(struct inode *inode, u32 ilen)
|
||||
{
|
||||
struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
|
||||
int padding = 32;
|
||||
struct fscrypt_info *ci = inode->i_crypt_info;
|
||||
|
||||
if (ci)
|
||||
padding = 4 << (ci->ci_flags & F2FS_POLICY_FLAGS_PAD_MASK);
|
||||
if (ilen < F2FS_CRYPTO_BLOCK_SIZE)
|
||||
ilen = F2FS_CRYPTO_BLOCK_SIZE;
|
||||
return f2fs_fname_crypto_round_up(ilen, padding);
|
||||
padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
|
||||
if (ilen < FS_CRYPTO_BLOCK_SIZE)
|
||||
ilen = FS_CRYPTO_BLOCK_SIZE;
|
||||
return size_round_up(ilen, padding);
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_fname_encrypted_size);
|
||||
|
||||
/**
|
||||
* f2fs_fname_crypto_alloc_obuff() -
|
||||
* fscrypt_fname_crypto_alloc_obuff() -
|
||||
*
|
||||
* Allocates an output buffer that is sufficient for the crypto operation
|
||||
* specified by the context and the direction.
|
||||
*/
|
||||
int f2fs_fname_crypto_alloc_buffer(struct inode *inode,
|
||||
u32 ilen, struct f2fs_str *crypto_str)
|
||||
int fscrypt_fname_alloc_buffer(struct inode *inode,
|
||||
u32 ilen, struct fscrypt_str *crypto_str)
|
||||
{
|
||||
unsigned int olen = f2fs_fname_encrypted_size(inode, ilen);
|
||||
unsigned int olen = fscrypt_fname_encrypted_size(inode, ilen);
|
||||
|
||||
crypto_str->len = olen;
|
||||
if (olen < F2FS_FNAME_CRYPTO_DIGEST_SIZE * 2)
|
||||
olen = F2FS_FNAME_CRYPTO_DIGEST_SIZE * 2;
|
||||
/* Allocated buffer can hold one more character to null-terminate the
|
||||
* string */
|
||||
if (olen < FS_FNAME_CRYPTO_DIGEST_SIZE * 2)
|
||||
olen = FS_FNAME_CRYPTO_DIGEST_SIZE * 2;
|
||||
/*
|
||||
* Allocated buffer can hold one more character to null-terminate the
|
||||
* string
|
||||
*/
|
||||
crypto_str->name = kmalloc(olen + 1, GFP_NOFS);
|
||||
if (!(crypto_str->name))
|
||||
return -ENOMEM;
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
|
||||
|
||||
/**
|
||||
* f2fs_fname_crypto_free_buffer() -
|
||||
* fscrypt_fname_crypto_free_buffer() -
|
||||
*
|
||||
* Frees the buffer allocated for crypto operation.
|
||||
*/
|
||||
void f2fs_fname_crypto_free_buffer(struct f2fs_str *crypto_str)
|
||||
void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
|
||||
{
|
||||
if (!crypto_str)
|
||||
return;
|
||||
kfree(crypto_str->name);
|
||||
crypto_str->name = NULL;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_fname_free_buffer);
|
||||
|
||||
/**
|
||||
* f2fs_fname_disk_to_usr() - converts a filename from disk space to user space
|
||||
* fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
|
||||
* space
|
||||
*/
|
||||
int f2fs_fname_disk_to_usr(struct inode *inode,
|
||||
f2fs_hash_t *hash,
|
||||
const struct f2fs_str *iname,
|
||||
struct f2fs_str *oname)
|
||||
int fscrypt_fname_disk_to_usr(struct inode *inode,
|
||||
u32 hash, u32 minor_hash,
|
||||
const struct fscrypt_str *iname,
|
||||
struct fscrypt_str *oname)
|
||||
{
|
||||
const struct qstr qname = FSTR_TO_QSTR(iname);
|
||||
char buf[24];
|
||||
int ret;
|
||||
|
||||
if (is_dot_dotdot(&qname)) {
|
||||
if (fscrypt_is_dot_dotdot(&qname)) {
|
||||
oname->name[0] = '.';
|
||||
oname->name[iname->len - 1] = '.';
|
||||
oname->len = iname->len;
|
||||
return oname->len;
|
||||
}
|
||||
if (iname->len < F2FS_CRYPTO_BLOCK_SIZE) {
|
||||
printk("encrypted inode too small");
|
||||
return -EUCLEAN;
|
||||
}
|
||||
if (F2FS_I(inode)->i_crypt_info)
|
||||
return f2fs_fname_decrypt(inode, iname, oname);
|
||||
|
||||
if (iname->len <= F2FS_FNAME_CRYPTO_DIGEST_SIZE) {
|
||||
if (iname->len < FS_CRYPTO_BLOCK_SIZE)
|
||||
return -EUCLEAN;
|
||||
|
||||
if (inode->i_crypt_info)
|
||||
return fname_decrypt(inode, iname, oname);
|
||||
|
||||
if (iname->len <= FS_FNAME_CRYPTO_DIGEST_SIZE) {
|
||||
ret = digest_encode(iname->name, iname->len, oname->name);
|
||||
oname->len = ret;
|
||||
return ret;
|
||||
}
|
||||
if (hash) {
|
||||
memcpy(buf, hash, 4);
|
||||
memset(buf + 4, 0, 4);
|
||||
} else
|
||||
memcpy(buf, &hash, 4);
|
||||
memcpy(buf + 4, &minor_hash, 4);
|
||||
} else {
|
||||
memset(buf, 0, 8);
|
||||
}
|
||||
memcpy(buf + 8, iname->name + iname->len - 16, 16);
|
||||
oname->name[0] = '_';
|
||||
ret = digest_encode(buf, 24, oname->name + 1);
|
||||
oname->len = ret + 1;
|
||||
return ret + 1;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
|
||||
|
||||
/**
|
||||
* f2fs_fname_usr_to_disk() - converts a filename from user space to disk space
|
||||
* fscrypt_fname_usr_to_disk() - converts a filename from user space to disk
|
||||
* space
|
||||
*/
|
||||
int f2fs_fname_usr_to_disk(struct inode *inode,
|
||||
int fscrypt_fname_usr_to_disk(struct inode *inode,
|
||||
const struct qstr *iname,
|
||||
struct f2fs_str *oname)
|
||||
struct fscrypt_str *oname)
|
||||
{
|
||||
int res;
|
||||
struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
|
||||
|
||||
if (is_dot_dotdot(iname)) {
|
||||
if (fscrypt_is_dot_dotdot(iname)) {
|
||||
oname->name[0] = '.';
|
||||
oname->name[iname->len - 1] = '.';
|
||||
oname->len = iname->len;
|
||||
return oname->len;
|
||||
}
|
||||
|
||||
if (ci) {
|
||||
res = f2fs_fname_encrypt(inode, iname, oname);
|
||||
return res;
|
||||
}
|
||||
/* Without a proper key, a user is not allowed to modify the filenames
|
||||
if (inode->i_crypt_info)
|
||||
return fname_encrypt(inode, iname, oname);
|
||||
/*
|
||||
* Without a proper key, a user is not allowed to modify the filenames
|
||||
* in a directory. Consequently, a user space name cannot be mapped to
|
||||
* a disk-space name */
|
||||
* a disk-space name
|
||||
*/
|
||||
return -EACCES;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_fname_usr_to_disk);
|
||||
|
||||
int f2fs_fname_setup_filename(struct inode *dir, const struct qstr *iname,
|
||||
int lookup, struct f2fs_filename *fname)
|
||||
int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
|
||||
int lookup, struct fscrypt_name *fname)
|
||||
{
|
||||
struct f2fs_crypt_info *ci;
|
||||
int ret = 0, bigname = 0;
|
||||
|
||||
memset(fname, 0, sizeof(struct f2fs_filename));
|
||||
memset(fname, 0, sizeof(struct fscrypt_name));
|
||||
fname->usr_fname = iname;
|
||||
|
||||
if (!f2fs_encrypted_inode(dir) || is_dot_dotdot(iname)) {
|
||||
if (!dir->i_sb->s_cop->is_encrypted(dir) ||
|
||||
fscrypt_is_dot_dotdot(iname)) {
|
||||
fname->disk_name.name = (unsigned char *)iname->name;
|
||||
fname->disk_name.len = iname->len;
|
||||
return 0;
|
||||
}
|
||||
ret = f2fs_get_encryption_info(dir);
|
||||
if (ret)
|
||||
ret = get_crypt_info(dir);
|
||||
if (ret && ret != -EOPNOTSUPP)
|
||||
return ret;
|
||||
ci = F2FS_I(dir)->i_crypt_info;
|
||||
if (ci) {
|
||||
ret = f2fs_fname_crypto_alloc_buffer(dir, iname->len,
|
||||
&fname->crypto_buf);
|
||||
|
||||
if (dir->i_crypt_info) {
|
||||
ret = fscrypt_fname_alloc_buffer(dir, iname->len,
|
||||
&fname->crypto_buf);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
ret = f2fs_fname_encrypt(dir, iname, &fname->crypto_buf);
|
||||
ret = fname_encrypt(dir, iname, &fname->crypto_buf);
|
||||
if (ret < 0)
|
||||
goto errout;
|
||||
fname->disk_name.name = fname->crypto_buf.name;
|
||||
@ -406,18 +382,19 @@ int f2fs_fname_setup_filename(struct inode *dir, const struct qstr *iname,
|
||||
if (!lookup)
|
||||
return -EACCES;
|
||||
|
||||
/* We don't have the key and we are doing a lookup; decode the
|
||||
/*
|
||||
* We don't have the key and we are doing a lookup; decode the
|
||||
* user-supplied name
|
||||
*/
|
||||
if (iname->name[0] == '_')
|
||||
bigname = 1;
|
||||
if ((bigname && (iname->len != 33)) ||
|
||||
(!bigname && (iname->len > 43)))
|
||||
if ((bigname && (iname->len != 33)) || (!bigname && (iname->len > 43)))
|
||||
return -ENOENT;
|
||||
|
||||
fname->crypto_buf.name = kmalloc(32, GFP_KERNEL);
|
||||
if (fname->crypto_buf.name == NULL)
|
||||
return -ENOMEM;
|
||||
|
||||
ret = digest_decode(iname->name + bigname, iname->len - bigname,
|
||||
fname->crypto_buf.name);
|
||||
if (ret < 0) {
|
||||
@ -427,20 +404,24 @@ int f2fs_fname_setup_filename(struct inode *dir, const struct qstr *iname,
|
||||
fname->crypto_buf.len = ret;
|
||||
if (bigname) {
|
||||
memcpy(&fname->hash, fname->crypto_buf.name, 4);
|
||||
memcpy(&fname->minor_hash, fname->crypto_buf.name + 4, 4);
|
||||
} else {
|
||||
fname->disk_name.name = fname->crypto_buf.name;
|
||||
fname->disk_name.len = fname->crypto_buf.len;
|
||||
}
|
||||
return 0;
|
||||
|
||||
errout:
|
||||
f2fs_fname_crypto_free_buffer(&fname->crypto_buf);
|
||||
fscrypt_fname_free_buffer(&fname->crypto_buf);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_setup_filename);
|
||||
|
||||
void f2fs_fname_free_filename(struct f2fs_filename *fname)
|
||||
void fscrypt_free_filename(struct fscrypt_name *fname)
|
||||
{
|
||||
kfree(fname->crypto_buf.name);
|
||||
fname->crypto_buf.name = NULL;
|
||||
fname->usr_fname = NULL;
|
||||
fname->disk_name.name = NULL;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_free_filename);
|
@ -1,28 +1,24 @@
|
||||
/*
|
||||
* linux/fs/f2fs/crypto_key.c
|
||||
*
|
||||
* Copied from linux/fs/f2fs/crypto_key.c
|
||||
* key management facility for FS encryption support.
|
||||
*
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
*
|
||||
* This contains encryption key functions for f2fs
|
||||
* This contains encryption key functions.
|
||||
*
|
||||
* Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015.
|
||||
*/
|
||||
|
||||
#include <keys/encrypted-type.h>
|
||||
#include <keys/user-type.h>
|
||||
#include <linux/random.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <uapi/linux/keyctl.h>
|
||||
#include <crypto/hash.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "xattr.h"
|
||||
#include <linux/fscrypto.h>
|
||||
|
||||
static void derive_crypt_complete(struct crypto_async_request *req, int rc)
|
||||
{
|
||||
struct f2fs_completion_result *ecr = req->data;
|
||||
struct fscrypt_completion_result *ecr = req->data;
|
||||
|
||||
if (rc == -EINPROGRESS)
|
||||
return;
|
||||
@ -32,20 +28,20 @@ static void derive_crypt_complete(struct crypto_async_request *req, int rc)
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_derive_key_aes() - Derive a key using AES-128-ECB
|
||||
* derive_key_aes() - Derive a key using AES-128-ECB
|
||||
* @deriving_key: Encryption key used for derivation.
|
||||
* @source_key: Source key to which to apply derivation.
|
||||
* @derived_key: Derived key.
|
||||
*
|
||||
* Return: Zero on success; non-zero otherwise.
|
||||
*/
|
||||
static int f2fs_derive_key_aes(char deriving_key[F2FS_AES_128_ECB_KEY_SIZE],
|
||||
char source_key[F2FS_AES_256_XTS_KEY_SIZE],
|
||||
char derived_key[F2FS_AES_256_XTS_KEY_SIZE])
|
||||
static int derive_key_aes(u8 deriving_key[FS_AES_128_ECB_KEY_SIZE],
|
||||
u8 source_key[FS_AES_256_XTS_KEY_SIZE],
|
||||
u8 derived_key[FS_AES_256_XTS_KEY_SIZE])
|
||||
{
|
||||
int res = 0;
|
||||
struct ablkcipher_request *req = NULL;
|
||||
DECLARE_F2FS_COMPLETION_RESULT(ecr);
|
||||
DECLARE_FS_COMPLETION_RESULT(ecr);
|
||||
struct scatterlist src_sg, dst_sg;
|
||||
struct crypto_ablkcipher *tfm = crypto_alloc_ablkcipher("ecb(aes)", 0,
|
||||
0);
|
||||
@ -65,14 +61,14 @@ static int f2fs_derive_key_aes(char deriving_key[F2FS_AES_128_ECB_KEY_SIZE],
|
||||
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
||||
derive_crypt_complete, &ecr);
|
||||
res = crypto_ablkcipher_setkey(tfm, deriving_key,
|
||||
F2FS_AES_128_ECB_KEY_SIZE);
|
||||
FS_AES_128_ECB_KEY_SIZE);
|
||||
if (res < 0)
|
||||
goto out;
|
||||
|
||||
sg_init_one(&src_sg, source_key, F2FS_AES_256_XTS_KEY_SIZE);
|
||||
sg_init_one(&dst_sg, derived_key, F2FS_AES_256_XTS_KEY_SIZE);
|
||||
sg_init_one(&src_sg, source_key, FS_AES_256_XTS_KEY_SIZE);
|
||||
sg_init_one(&dst_sg, derived_key, FS_AES_256_XTS_KEY_SIZE);
|
||||
ablkcipher_request_set_crypt(req, &src_sg, &dst_sg,
|
||||
F2FS_AES_256_XTS_KEY_SIZE, NULL);
|
||||
FS_AES_256_XTS_KEY_SIZE, NULL);
|
||||
res = crypto_ablkcipher_encrypt(req);
|
||||
if (res == -EINPROGRESS || res == -EBUSY) {
|
||||
wait_for_completion(&ecr.completion);
|
||||
@ -86,71 +82,61 @@ out:
|
||||
return res;
|
||||
}
|
||||
|
||||
static void f2fs_free_crypt_info(struct f2fs_crypt_info *ci)
|
||||
static void put_crypt_info(struct fscrypt_info *ci)
|
||||
{
|
||||
if (!ci)
|
||||
return;
|
||||
|
||||
key_put(ci->ci_keyring_key);
|
||||
if (ci->ci_keyring_key)
|
||||
key_put(ci->ci_keyring_key);
|
||||
crypto_free_ablkcipher(ci->ci_ctfm);
|
||||
kmem_cache_free(f2fs_crypt_info_cachep, ci);
|
||||
kmem_cache_free(fscrypt_info_cachep, ci);
|
||||
}
|
||||
|
||||
void f2fs_free_encryption_info(struct inode *inode, struct f2fs_crypt_info *ci)
|
||||
int get_crypt_info(struct inode *inode)
|
||||
{
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
struct f2fs_crypt_info *prev;
|
||||
|
||||
if (ci == NULL)
|
||||
ci = ACCESS_ONCE(fi->i_crypt_info);
|
||||
if (ci == NULL)
|
||||
return;
|
||||
prev = cmpxchg(&fi->i_crypt_info, ci, NULL);
|
||||
if (prev != ci)
|
||||
return;
|
||||
|
||||
f2fs_free_crypt_info(ci);
|
||||
}
|
||||
|
||||
int _f2fs_get_encryption_info(struct inode *inode)
|
||||
{
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
struct f2fs_crypt_info *crypt_info;
|
||||
char full_key_descriptor[F2FS_KEY_DESC_PREFIX_SIZE +
|
||||
(F2FS_KEY_DESCRIPTOR_SIZE * 2) + 1];
|
||||
struct fscrypt_info *crypt_info;
|
||||
u8 full_key_descriptor[FS_KEY_DESC_PREFIX_SIZE +
|
||||
(FS_KEY_DESCRIPTOR_SIZE * 2) + 1];
|
||||
struct key *keyring_key = NULL;
|
||||
struct f2fs_encryption_key *master_key;
|
||||
struct f2fs_encryption_context ctx;
|
||||
struct fscrypt_key *master_key;
|
||||
struct fscrypt_context ctx;
|
||||
const struct user_key_payload *ukp;
|
||||
struct crypto_ablkcipher *ctfm;
|
||||
const char *cipher_str;
|
||||
char raw_key[F2FS_MAX_KEY_SIZE];
|
||||
char mode;
|
||||
u8 raw_key[FS_MAX_KEY_SIZE];
|
||||
u8 mode;
|
||||
int res;
|
||||
|
||||
res = f2fs_crypto_initialize();
|
||||
res = fscrypt_initialize();
|
||||
if (res)
|
||||
return res;
|
||||
|
||||
if (!inode->i_sb->s_cop->get_context)
|
||||
return -EOPNOTSUPP;
|
||||
retry:
|
||||
crypt_info = ACCESS_ONCE(fi->i_crypt_info);
|
||||
crypt_info = ACCESS_ONCE(inode->i_crypt_info);
|
||||
if (crypt_info) {
|
||||
if (!crypt_info->ci_keyring_key ||
|
||||
key_validate(crypt_info->ci_keyring_key) == 0)
|
||||
return 0;
|
||||
f2fs_free_encryption_info(inode, crypt_info);
|
||||
fscrypt_put_encryption_info(inode, crypt_info);
|
||||
goto retry;
|
||||
}
|
||||
|
||||
res = f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
||||
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
|
||||
&ctx, sizeof(ctx), NULL);
|
||||
if (res < 0)
|
||||
return res;
|
||||
else if (res != sizeof(ctx))
|
||||
res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
|
||||
if (res < 0) {
|
||||
if (!fscrypt_dummy_context_enabled(inode))
|
||||
return res;
|
||||
ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS;
|
||||
ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS;
|
||||
ctx.flags = 0;
|
||||
} else if (res != sizeof(ctx)) {
|
||||
return -EINVAL;
|
||||
}
|
||||
res = 0;
|
||||
|
||||
crypt_info = kmem_cache_alloc(f2fs_crypt_info_cachep, GFP_NOFS);
|
||||
crypt_info = kmem_cache_alloc(fscrypt_info_cachep, GFP_NOFS);
|
||||
if (!crypt_info)
|
||||
return -ENOMEM;
|
||||
|
||||
@ -169,27 +155,30 @@ retry:
|
||||
BUG();
|
||||
|
||||
switch (mode) {
|
||||
case F2FS_ENCRYPTION_MODE_AES_256_XTS:
|
||||
case FS_ENCRYPTION_MODE_AES_256_XTS:
|
||||
cipher_str = "xts(aes)";
|
||||
break;
|
||||
case F2FS_ENCRYPTION_MODE_AES_256_CTS:
|
||||
case FS_ENCRYPTION_MODE_AES_256_CTS:
|
||||
cipher_str = "cts(cbc(aes))";
|
||||
break;
|
||||
default:
|
||||
printk_once(KERN_WARNING
|
||||
"f2fs: unsupported key mode %d (ino %u)\n",
|
||||
mode, (unsigned) inode->i_ino);
|
||||
"%s: unsupported key mode %d (ino %u)\n",
|
||||
__func__, mode, (unsigned) inode->i_ino);
|
||||
res = -ENOKEY;
|
||||
goto out;
|
||||
}
|
||||
|
||||
memcpy(full_key_descriptor, F2FS_KEY_DESC_PREFIX,
|
||||
F2FS_KEY_DESC_PREFIX_SIZE);
|
||||
sprintf(full_key_descriptor + F2FS_KEY_DESC_PREFIX_SIZE,
|
||||
"%*phN", F2FS_KEY_DESCRIPTOR_SIZE,
|
||||
if (fscrypt_dummy_context_enabled(inode)) {
|
||||
memset(raw_key, 0x42, FS_AES_256_XTS_KEY_SIZE);
|
||||
goto got_key;
|
||||
}
|
||||
memcpy(full_key_descriptor, FS_KEY_DESC_PREFIX,
|
||||
FS_KEY_DESC_PREFIX_SIZE);
|
||||
sprintf(full_key_descriptor + FS_KEY_DESC_PREFIX_SIZE,
|
||||
"%*phN", FS_KEY_DESCRIPTOR_SIZE,
|
||||
ctx.master_key_descriptor);
|
||||
full_key_descriptor[F2FS_KEY_DESC_PREFIX_SIZE +
|
||||
(2 * F2FS_KEY_DESCRIPTOR_SIZE)] = '\0';
|
||||
full_key_descriptor[FS_KEY_DESC_PREFIX_SIZE +
|
||||
(2 * FS_KEY_DESCRIPTOR_SIZE)] = '\0';
|
||||
keyring_key = request_key(&key_type_logon, full_key_descriptor, NULL);
|
||||
if (IS_ERR(keyring_key)) {
|
||||
res = PTR_ERR(keyring_key);
|
||||
@ -198,34 +187,34 @@ retry:
|
||||
}
|
||||
crypt_info->ci_keyring_key = keyring_key;
|
||||
if (keyring_key->type != &key_type_logon) {
|
||||
printk_once(KERN_WARNING "f2fs: key type must be logon\n");
|
||||
printk_once(KERN_WARNING
|
||||
"%s: key type must be logon\n", __func__);
|
||||
res = -ENOKEY;
|
||||
goto out;
|
||||
}
|
||||
down_read(&keyring_key->sem);
|
||||
ukp = user_key_payload(keyring_key);
|
||||
if (ukp->datalen != sizeof(struct f2fs_encryption_key)) {
|
||||
if (ukp->datalen != sizeof(struct fscrypt_key)) {
|
||||
res = -EINVAL;
|
||||
up_read(&keyring_key->sem);
|
||||
goto out;
|
||||
}
|
||||
master_key = (struct f2fs_encryption_key *)ukp->data;
|
||||
BUILD_BUG_ON(F2FS_AES_128_ECB_KEY_SIZE !=
|
||||
F2FS_KEY_DERIVATION_NONCE_SIZE);
|
||||
if (master_key->size != F2FS_AES_256_XTS_KEY_SIZE) {
|
||||
master_key = (struct fscrypt_key *)ukp->data;
|
||||
BUILD_BUG_ON(FS_AES_128_ECB_KEY_SIZE != FS_KEY_DERIVATION_NONCE_SIZE);
|
||||
|
||||
if (master_key->size != FS_AES_256_XTS_KEY_SIZE) {
|
||||
printk_once(KERN_WARNING
|
||||
"f2fs: key size incorrect: %d\n",
|
||||
master_key->size);
|
||||
"%s: key size incorrect: %d\n",
|
||||
__func__, master_key->size);
|
||||
res = -ENOKEY;
|
||||
up_read(&keyring_key->sem);
|
||||
goto out;
|
||||
}
|
||||
res = f2fs_derive_key_aes(ctx.nonce, master_key->raw,
|
||||
raw_key);
|
||||
res = derive_key_aes(ctx.nonce, master_key->raw, raw_key);
|
||||
up_read(&keyring_key->sem);
|
||||
if (res)
|
||||
goto out;
|
||||
|
||||
got_key:
|
||||
ctfm = crypto_alloc_ablkcipher(cipher_str, 0, 0);
|
||||
if (!ctfm || IS_ERR(ctfm)) {
|
||||
res = ctfm ? PTR_ERR(ctfm) : -ENOMEM;
|
||||
@ -237,31 +226,53 @@ retry:
|
||||
crypt_info->ci_ctfm = ctfm;
|
||||
crypto_ablkcipher_clear_flags(ctfm, ~0);
|
||||
crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctfm),
|
||||
CRYPTO_TFM_REQ_WEAK_KEY);
|
||||
res = crypto_ablkcipher_setkey(ctfm, raw_key,
|
||||
f2fs_encryption_key_size(mode));
|
||||
CRYPTO_TFM_REQ_WEAK_KEY);
|
||||
res = crypto_ablkcipher_setkey(ctfm, raw_key, fscrypt_key_size(mode));
|
||||
if (res)
|
||||
goto out;
|
||||
|
||||
memzero_explicit(raw_key, sizeof(raw_key));
|
||||
if (cmpxchg(&fi->i_crypt_info, NULL, crypt_info) != NULL) {
|
||||
f2fs_free_crypt_info(crypt_info);
|
||||
if (cmpxchg(&inode->i_crypt_info, NULL, crypt_info) != NULL) {
|
||||
put_crypt_info(crypt_info);
|
||||
goto retry;
|
||||
}
|
||||
return 0;
|
||||
|
||||
out:
|
||||
if (res == -ENOKEY && !S_ISREG(inode->i_mode))
|
||||
if (res == -ENOKEY)
|
||||
res = 0;
|
||||
|
||||
f2fs_free_crypt_info(crypt_info);
|
||||
put_crypt_info(crypt_info);
|
||||
memzero_explicit(raw_key, sizeof(raw_key));
|
||||
return res;
|
||||
}
|
||||
|
||||
int f2fs_has_encryption_key(struct inode *inode)
|
||||
void fscrypt_put_encryption_info(struct inode *inode, struct fscrypt_info *ci)
|
||||
{
|
||||
struct f2fs_inode_info *fi = F2FS_I(inode);
|
||||
struct fscrypt_info *prev;
|
||||
|
||||
return (fi->i_crypt_info != NULL);
|
||||
if (ci == NULL)
|
||||
ci = ACCESS_ONCE(inode->i_crypt_info);
|
||||
if (ci == NULL)
|
||||
return;
|
||||
|
||||
prev = cmpxchg(&inode->i_crypt_info, ci, NULL);
|
||||
if (prev != ci)
|
||||
return;
|
||||
|
||||
put_crypt_info(ci);
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_put_encryption_info);
|
||||
|
||||
int fscrypt_get_encryption_info(struct inode *inode)
|
||||
{
|
||||
struct fscrypt_info *ci = inode->i_crypt_info;
|
||||
|
||||
if (!ci ||
|
||||
(ci->ci_keyring_key &&
|
||||
(ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
|
||||
(1 << KEY_FLAG_REVOKED) |
|
||||
(1 << KEY_FLAG_DEAD)))))
|
||||
return get_crypt_info(inode);
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_get_encryption_info);
|
229
fs/crypto/policy.c
Normal file
229
fs/crypto/policy.c
Normal file
@ -0,0 +1,229 @@
|
||||
/*
|
||||
* Encryption policy functions for per-file encryption support.
|
||||
*
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* Copyright (C) 2015, Motorola Mobility.
|
||||
*
|
||||
* Written by Michael Halcrow, 2015.
|
||||
* Modified by Jaegeuk Kim, 2015.
|
||||
*/
|
||||
|
||||
#include <linux/random.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/fscrypto.h>
|
||||
|
||||
static int inode_has_encryption_context(struct inode *inode)
|
||||
{
|
||||
if (!inode->i_sb->s_cop->get_context)
|
||||
return 0;
|
||||
return (inode->i_sb->s_cop->get_context(inode, NULL, 0L) > 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* check whether the policy is consistent with the encryption context
|
||||
* for the inode
|
||||
*/
|
||||
static int is_encryption_context_consistent_with_policy(struct inode *inode,
|
||||
const struct fscrypt_policy *policy)
|
||||
{
|
||||
struct fscrypt_context ctx;
|
||||
int res;
|
||||
|
||||
if (!inode->i_sb->s_cop->get_context)
|
||||
return 0;
|
||||
|
||||
res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
|
||||
if (res != sizeof(ctx))
|
||||
return 0;
|
||||
|
||||
return (memcmp(ctx.master_key_descriptor, policy->master_key_descriptor,
|
||||
FS_KEY_DESCRIPTOR_SIZE) == 0 &&
|
||||
(ctx.flags == policy->flags) &&
|
||||
(ctx.contents_encryption_mode ==
|
||||
policy->contents_encryption_mode) &&
|
||||
(ctx.filenames_encryption_mode ==
|
||||
policy->filenames_encryption_mode));
|
||||
}
|
||||
|
||||
static int create_encryption_context_from_policy(struct inode *inode,
|
||||
const struct fscrypt_policy *policy)
|
||||
{
|
||||
struct fscrypt_context ctx;
|
||||
int res;
|
||||
|
||||
if (!inode->i_sb->s_cop->set_context)
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
if (inode->i_sb->s_cop->prepare_context) {
|
||||
res = inode->i_sb->s_cop->prepare_context(inode);
|
||||
if (res)
|
||||
return res;
|
||||
}
|
||||
|
||||
ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1;
|
||||
memcpy(ctx.master_key_descriptor, policy->master_key_descriptor,
|
||||
FS_KEY_DESCRIPTOR_SIZE);
|
||||
|
||||
if (!fscrypt_valid_contents_enc_mode(
|
||||
policy->contents_encryption_mode)) {
|
||||
printk(KERN_WARNING
|
||||
"%s: Invalid contents encryption mode %d\n", __func__,
|
||||
policy->contents_encryption_mode);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (!fscrypt_valid_filenames_enc_mode(
|
||||
policy->filenames_encryption_mode)) {
|
||||
printk(KERN_WARNING
|
||||
"%s: Invalid filenames encryption mode %d\n", __func__,
|
||||
policy->filenames_encryption_mode);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (policy->flags & ~FS_POLICY_FLAGS_VALID)
|
||||
return -EINVAL;
|
||||
|
||||
ctx.contents_encryption_mode = policy->contents_encryption_mode;
|
||||
ctx.filenames_encryption_mode = policy->filenames_encryption_mode;
|
||||
ctx.flags = policy->flags;
|
||||
BUILD_BUG_ON(sizeof(ctx.nonce) != FS_KEY_DERIVATION_NONCE_SIZE);
|
||||
get_random_bytes(ctx.nonce, FS_KEY_DERIVATION_NONCE_SIZE);
|
||||
|
||||
return inode->i_sb->s_cop->set_context(inode, &ctx, sizeof(ctx), NULL);
|
||||
}
|
||||
|
||||
int fscrypt_process_policy(struct inode *inode,
|
||||
const struct fscrypt_policy *policy)
|
||||
{
|
||||
if (policy->version != 0)
|
||||
return -EINVAL;
|
||||
|
||||
if (!inode_has_encryption_context(inode)) {
|
||||
if (!inode->i_sb->s_cop->empty_dir)
|
||||
return -EOPNOTSUPP;
|
||||
if (!inode->i_sb->s_cop->empty_dir(inode))
|
||||
return -ENOTEMPTY;
|
||||
return create_encryption_context_from_policy(inode, policy);
|
||||
}
|
||||
|
||||
if (is_encryption_context_consistent_with_policy(inode, policy))
|
||||
return 0;
|
||||
|
||||
printk(KERN_WARNING "%s: Policy inconsistent with encryption context\n",
|
||||
__func__);
|
||||
return -EINVAL;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_process_policy);
|
||||
|
||||
int fscrypt_get_policy(struct inode *inode, struct fscrypt_policy *policy)
|
||||
{
|
||||
struct fscrypt_context ctx;
|
||||
int res;
|
||||
|
||||
if (!inode->i_sb->s_cop->get_context ||
|
||||
!inode->i_sb->s_cop->is_encrypted(inode))
|
||||
return -ENODATA;
|
||||
|
||||
res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
|
||||
if (res != sizeof(ctx))
|
||||
return -ENODATA;
|
||||
if (ctx.format != FS_ENCRYPTION_CONTEXT_FORMAT_V1)
|
||||
return -EINVAL;
|
||||
|
||||
policy->version = 0;
|
||||
policy->contents_encryption_mode = ctx.contents_encryption_mode;
|
||||
policy->filenames_encryption_mode = ctx.filenames_encryption_mode;
|
||||
policy->flags = ctx.flags;
|
||||
memcpy(&policy->master_key_descriptor, ctx.master_key_descriptor,
|
||||
FS_KEY_DESCRIPTOR_SIZE);
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_get_policy);
|
||||
|
||||
int fscrypt_has_permitted_context(struct inode *parent, struct inode *child)
|
||||
{
|
||||
struct fscrypt_info *parent_ci, *child_ci;
|
||||
int res;
|
||||
|
||||
if ((parent == NULL) || (child == NULL)) {
|
||||
printk(KERN_ERR "parent %p child %p\n", parent, child);
|
||||
BUG_ON(1);
|
||||
}
|
||||
|
||||
/* no restrictions if the parent directory is not encrypted */
|
||||
if (!parent->i_sb->s_cop->is_encrypted(parent))
|
||||
return 1;
|
||||
/* if the child directory is not encrypted, this is always a problem */
|
||||
if (!parent->i_sb->s_cop->is_encrypted(child))
|
||||
return 0;
|
||||
res = fscrypt_get_encryption_info(parent);
|
||||
if (res)
|
||||
return 0;
|
||||
res = fscrypt_get_encryption_info(child);
|
||||
if (res)
|
||||
return 0;
|
||||
parent_ci = parent->i_crypt_info;
|
||||
child_ci = child->i_crypt_info;
|
||||
if (!parent_ci && !child_ci)
|
||||
return 1;
|
||||
if (!parent_ci || !child_ci)
|
||||
return 0;
|
||||
|
||||
return (memcmp(parent_ci->ci_master_key,
|
||||
child_ci->ci_master_key,
|
||||
FS_KEY_DESCRIPTOR_SIZE) == 0 &&
|
||||
(parent_ci->ci_data_mode == child_ci->ci_data_mode) &&
|
||||
(parent_ci->ci_filename_mode == child_ci->ci_filename_mode) &&
|
||||
(parent_ci->ci_flags == child_ci->ci_flags));
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_has_permitted_context);
|
||||
|
||||
/**
|
||||
* fscrypt_inherit_context() - Sets a child context from its parent
|
||||
* @parent: Parent inode from which the context is inherited.
|
||||
* @child: Child inode that inherits the context from @parent.
|
||||
* @fs_data: private data given by FS.
|
||||
* @preload: preload child i_crypt_info
|
||||
*
|
||||
* Return: Zero on success, non-zero otherwise
|
||||
*/
|
||||
int fscrypt_inherit_context(struct inode *parent, struct inode *child,
|
||||
void *fs_data, bool preload)
|
||||
{
|
||||
struct fscrypt_context ctx;
|
||||
struct fscrypt_info *ci;
|
||||
int res;
|
||||
|
||||
if (!parent->i_sb->s_cop->set_context)
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
res = fscrypt_get_encryption_info(parent);
|
||||
if (res < 0)
|
||||
return res;
|
||||
|
||||
ci = parent->i_crypt_info;
|
||||
if (ci == NULL)
|
||||
return -ENOKEY;
|
||||
|
||||
ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1;
|
||||
if (fscrypt_dummy_context_enabled(parent)) {
|
||||
ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS;
|
||||
ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS;
|
||||
ctx.flags = 0;
|
||||
memset(ctx.master_key_descriptor, 0x42, FS_KEY_DESCRIPTOR_SIZE);
|
||||
res = 0;
|
||||
} else {
|
||||
ctx.contents_encryption_mode = ci->ci_data_mode;
|
||||
ctx.filenames_encryption_mode = ci->ci_filename_mode;
|
||||
ctx.flags = ci->ci_flags;
|
||||
memcpy(ctx.master_key_descriptor, ci->ci_master_key,
|
||||
FS_KEY_DESCRIPTOR_SIZE);
|
||||
}
|
||||
get_random_bytes(ctx.nonce, FS_KEY_DERIVATION_NONCE_SIZE);
|
||||
res = parent->i_sb->s_cop->set_context(child, &ctx,
|
||||
sizeof(ctx), fs_data);
|
||||
if (res)
|
||||
return res;
|
||||
return preload ? fscrypt_get_encryption_info(child): 0;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_inherit_context);
|
@ -76,15 +76,7 @@ config F2FS_FS_ENCRYPTION
|
||||
bool "F2FS Encryption"
|
||||
depends on F2FS_FS
|
||||
depends on F2FS_FS_XATTR
|
||||
select CRYPTO_AES
|
||||
select CRYPTO_CBC
|
||||
select CRYPTO_ECB
|
||||
select CRYPTO_XTS
|
||||
select CRYPTO_CTS
|
||||
select CRYPTO_CTR
|
||||
select CRYPTO_SHA256
|
||||
select KEYS
|
||||
select ENCRYPTED_KEYS
|
||||
select FS_ENCRYPTION
|
||||
help
|
||||
Enable encryption of f2fs files and directories. This
|
||||
feature is similar to ecryptfs, but it is more memory
|
||||
|
@ -7,5 +7,3 @@ f2fs-$(CONFIG_F2FS_STAT_FS) += debug.o
|
||||
f2fs-$(CONFIG_F2FS_FS_XATTR) += xattr.o
|
||||
f2fs-$(CONFIG_F2FS_FS_POSIX_ACL) += acl.o
|
||||
f2fs-$(CONFIG_F2FS_IO_TRACE) += trace.o
|
||||
f2fs-$(CONFIG_F2FS_FS_ENCRYPTION) += crypto_policy.o crypto.o \
|
||||
crypto_key.o crypto_fname.o
|
||||
|
473
fs/f2fs/crypto.c
473
fs/f2fs/crypto.c
@ -1,473 +0,0 @@
|
||||
/*
|
||||
* linux/fs/f2fs/crypto.c
|
||||
*
|
||||
* Copied from linux/fs/ext4/crypto.c
|
||||
*
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* Copyright (C) 2015, Motorola Mobility
|
||||
*
|
||||
* This contains encryption functions for f2fs
|
||||
*
|
||||
* Written by Michael Halcrow, 2014.
|
||||
*
|
||||
* Filename encryption additions
|
||||
* Uday Savagaonkar, 2014
|
||||
* Encryption policy handling additions
|
||||
* Ildar Muslukhov, 2014
|
||||
* Remove ext4_encrypted_zeroout(),
|
||||
* add f2fs_restore_and_release_control_page()
|
||||
* Jaegeuk Kim, 2015.
|
||||
*
|
||||
* This has not yet undergone a rigorous security audit.
|
||||
*
|
||||
* The usage of AES-XTS should conform to recommendations in NIST
|
||||
* Special Publication 800-38E and IEEE P1619/D16.
|
||||
*/
|
||||
#include <crypto/hash.h>
|
||||
#include <crypto/sha.h>
|
||||
#include <keys/user-type.h>
|
||||
#include <keys/encrypted-type.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <linux/ecryptfs.h>
|
||||
#include <linux/gfp.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/key.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/mempool.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/random.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/spinlock_types.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
#include <linux/ratelimit.h>
|
||||
#include <linux/bio.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "xattr.h"
|
||||
|
||||
/* Encryption added and removed here! (L: */
|
||||
|
||||
static unsigned int num_prealloc_crypto_pages = 32;
|
||||
static unsigned int num_prealloc_crypto_ctxs = 128;
|
||||
|
||||
module_param(num_prealloc_crypto_pages, uint, 0444);
|
||||
MODULE_PARM_DESC(num_prealloc_crypto_pages,
|
||||
"Number of crypto pages to preallocate");
|
||||
module_param(num_prealloc_crypto_ctxs, uint, 0444);
|
||||
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
|
||||
"Number of crypto contexts to preallocate");
|
||||
|
||||
static mempool_t *f2fs_bounce_page_pool;
|
||||
|
||||
static LIST_HEAD(f2fs_free_crypto_ctxs);
|
||||
static DEFINE_SPINLOCK(f2fs_crypto_ctx_lock);
|
||||
|
||||
static struct workqueue_struct *f2fs_read_workqueue;
|
||||
static DEFINE_MUTEX(crypto_init);
|
||||
|
||||
static struct kmem_cache *f2fs_crypto_ctx_cachep;
|
||||
struct kmem_cache *f2fs_crypt_info_cachep;
|
||||
|
||||
/**
|
||||
* f2fs_release_crypto_ctx() - Releases an encryption context
|
||||
* @ctx: The encryption context to release.
|
||||
*
|
||||
* If the encryption context was allocated from the pre-allocated pool, returns
|
||||
* it to that pool. Else, frees it.
|
||||
*
|
||||
* If there's a bounce page in the context, this frees that.
|
||||
*/
|
||||
void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *ctx)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
if (ctx->flags & F2FS_WRITE_PATH_FL && ctx->w.bounce_page) {
|
||||
mempool_free(ctx->w.bounce_page, f2fs_bounce_page_pool);
|
||||
ctx->w.bounce_page = NULL;
|
||||
}
|
||||
ctx->w.control_page = NULL;
|
||||
if (ctx->flags & F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
|
||||
kmem_cache_free(f2fs_crypto_ctx_cachep, ctx);
|
||||
} else {
|
||||
spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags);
|
||||
list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);
|
||||
spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_get_crypto_ctx() - Gets an encryption context
|
||||
* @inode: The inode for which we are doing the crypto
|
||||
*
|
||||
* Allocates and initializes an encryption context.
|
||||
*
|
||||
* Return: An allocated and initialized encryption context on success; error
|
||||
* value or NULL otherwise.
|
||||
*/
|
||||
struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *inode)
|
||||
{
|
||||
struct f2fs_crypto_ctx *ctx = NULL;
|
||||
unsigned long flags;
|
||||
struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
|
||||
|
||||
if (ci == NULL)
|
||||
return ERR_PTR(-ENOKEY);
|
||||
|
||||
/*
|
||||
* We first try getting the ctx from a free list because in
|
||||
* the common case the ctx will have an allocated and
|
||||
* initialized crypto tfm, so it's probably a worthwhile
|
||||
* optimization. For the bounce page, we first try getting it
|
||||
* from the kernel allocator because that's just about as fast
|
||||
* as getting it from a list and because a cache of free pages
|
||||
* should generally be a "last resort" option for a filesystem
|
||||
* to be able to do its job.
|
||||
*/
|
||||
spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags);
|
||||
ctx = list_first_entry_or_null(&f2fs_free_crypto_ctxs,
|
||||
struct f2fs_crypto_ctx, free_list);
|
||||
if (ctx)
|
||||
list_del(&ctx->free_list);
|
||||
spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags);
|
||||
if (!ctx) {
|
||||
ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_NOFS);
|
||||
if (!ctx)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
ctx->flags |= F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
||||
} else {
|
||||
ctx->flags &= ~F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
||||
}
|
||||
ctx->flags &= ~F2FS_WRITE_PATH_FL;
|
||||
return ctx;
|
||||
}
|
||||
|
||||
/*
|
||||
* Call f2fs_decrypt on every single page, reusing the encryption
|
||||
* context.
|
||||
*/
|
||||
static void completion_pages(struct work_struct *work)
|
||||
{
|
||||
struct f2fs_crypto_ctx *ctx =
|
||||
container_of(work, struct f2fs_crypto_ctx, r.work);
|
||||
struct bio *bio = ctx->r.bio;
|
||||
struct bio_vec *bv;
|
||||
int i;
|
||||
|
||||
bio_for_each_segment_all(bv, bio, i) {
|
||||
struct page *page = bv->bv_page;
|
||||
int ret = f2fs_decrypt(page);
|
||||
|
||||
if (ret) {
|
||||
WARN_ON_ONCE(1);
|
||||
SetPageError(page);
|
||||
} else
|
||||
SetPageUptodate(page);
|
||||
unlock_page(page);
|
||||
}
|
||||
f2fs_release_crypto_ctx(ctx);
|
||||
bio_put(bio);
|
||||
}
|
||||
|
||||
void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *ctx, struct bio *bio)
|
||||
{
|
||||
INIT_WORK(&ctx->r.work, completion_pages);
|
||||
ctx->r.bio = bio;
|
||||
queue_work(f2fs_read_workqueue, &ctx->r.work);
|
||||
}
|
||||
|
||||
static void f2fs_crypto_destroy(void)
|
||||
{
|
||||
struct f2fs_crypto_ctx *pos, *n;
|
||||
|
||||
list_for_each_entry_safe(pos, n, &f2fs_free_crypto_ctxs, free_list)
|
||||
kmem_cache_free(f2fs_crypto_ctx_cachep, pos);
|
||||
INIT_LIST_HEAD(&f2fs_free_crypto_ctxs);
|
||||
if (f2fs_bounce_page_pool)
|
||||
mempool_destroy(f2fs_bounce_page_pool);
|
||||
f2fs_bounce_page_pool = NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_crypto_initialize() - Set up for f2fs encryption.
|
||||
*
|
||||
* We only call this when we start accessing encrypted files, since it
|
||||
* results in memory getting allocated that wouldn't otherwise be used.
|
||||
*
|
||||
* Return: Zero on success, non-zero otherwise.
|
||||
*/
|
||||
int f2fs_crypto_initialize(void)
|
||||
{
|
||||
int i, res = -ENOMEM;
|
||||
|
||||
if (f2fs_bounce_page_pool)
|
||||
return 0;
|
||||
|
||||
mutex_lock(&crypto_init);
|
||||
if (f2fs_bounce_page_pool)
|
||||
goto already_initialized;
|
||||
|
||||
for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
|
||||
struct f2fs_crypto_ctx *ctx;
|
||||
|
||||
ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_KERNEL);
|
||||
if (!ctx)
|
||||
goto fail;
|
||||
list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);
|
||||
}
|
||||
|
||||
/* must be allocated at the last step to avoid race condition above */
|
||||
f2fs_bounce_page_pool =
|
||||
mempool_create_page_pool(num_prealloc_crypto_pages, 0);
|
||||
if (!f2fs_bounce_page_pool)
|
||||
goto fail;
|
||||
|
||||
already_initialized:
|
||||
mutex_unlock(&crypto_init);
|
||||
return 0;
|
||||
fail:
|
||||
f2fs_crypto_destroy();
|
||||
mutex_unlock(&crypto_init);
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_exit_crypto() - Shutdown the f2fs encryption system
|
||||
*/
|
||||
void f2fs_exit_crypto(void)
|
||||
{
|
||||
f2fs_crypto_destroy();
|
||||
|
||||
if (f2fs_read_workqueue)
|
||||
destroy_workqueue(f2fs_read_workqueue);
|
||||
if (f2fs_crypto_ctx_cachep)
|
||||
kmem_cache_destroy(f2fs_crypto_ctx_cachep);
|
||||
if (f2fs_crypt_info_cachep)
|
||||
kmem_cache_destroy(f2fs_crypt_info_cachep);
|
||||
}
|
||||
|
||||
int __init f2fs_init_crypto(void)
|
||||
{
|
||||
int res = -ENOMEM;
|
||||
|
||||
f2fs_read_workqueue = alloc_workqueue("f2fs_crypto", WQ_HIGHPRI, 0);
|
||||
if (!f2fs_read_workqueue)
|
||||
goto fail;
|
||||
|
||||
f2fs_crypto_ctx_cachep = KMEM_CACHE(f2fs_crypto_ctx,
|
||||
SLAB_RECLAIM_ACCOUNT);
|
||||
if (!f2fs_crypto_ctx_cachep)
|
||||
goto fail;
|
||||
|
||||
f2fs_crypt_info_cachep = KMEM_CACHE(f2fs_crypt_info,
|
||||
SLAB_RECLAIM_ACCOUNT);
|
||||
if (!f2fs_crypt_info_cachep)
|
||||
goto fail;
|
||||
|
||||
return 0;
|
||||
fail:
|
||||
f2fs_exit_crypto();
|
||||
return res;
|
||||
}
|
||||
|
||||
void f2fs_restore_and_release_control_page(struct page **page)
|
||||
{
|
||||
struct f2fs_crypto_ctx *ctx;
|
||||
struct page *bounce_page;
|
||||
|
||||
/* The bounce data pages are unmapped. */
|
||||
if ((*page)->mapping)
|
||||
return;
|
||||
|
||||
/* The bounce data page is unmapped. */
|
||||
bounce_page = *page;
|
||||
ctx = (struct f2fs_crypto_ctx *)page_private(bounce_page);
|
||||
|
||||
/* restore control page */
|
||||
*page = ctx->w.control_page;
|
||||
|
||||
f2fs_restore_control_page(bounce_page);
|
||||
}
|
||||
|
||||
void f2fs_restore_control_page(struct page *data_page)
|
||||
{
|
||||
struct f2fs_crypto_ctx *ctx =
|
||||
(struct f2fs_crypto_ctx *)page_private(data_page);
|
||||
|
||||
set_page_private(data_page, (unsigned long)NULL);
|
||||
ClearPagePrivate(data_page);
|
||||
unlock_page(data_page);
|
||||
f2fs_release_crypto_ctx(ctx);
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_crypt_complete() - The completion callback for page encryption
|
||||
* @req: The asynchronous encryption request context
|
||||
* @res: The result of the encryption operation
|
||||
*/
|
||||
static void f2fs_crypt_complete(struct crypto_async_request *req, int res)
|
||||
{
|
||||
struct f2fs_completion_result *ecr = req->data;
|
||||
|
||||
if (res == -EINPROGRESS)
|
||||
return;
|
||||
ecr->res = res;
|
||||
complete(&ecr->completion);
|
||||
}
|
||||
|
||||
typedef enum {
|
||||
F2FS_DECRYPT = 0,
|
||||
F2FS_ENCRYPT,
|
||||
} f2fs_direction_t;
|
||||
|
||||
static int f2fs_page_crypto(struct inode *inode,
|
||||
f2fs_direction_t rw,
|
||||
pgoff_t index,
|
||||
struct page *src_page,
|
||||
struct page *dest_page)
|
||||
{
|
||||
u8 xts_tweak[F2FS_XTS_TWEAK_SIZE];
|
||||
struct ablkcipher_request *req = NULL;
|
||||
DECLARE_F2FS_COMPLETION_RESULT(ecr);
|
||||
struct scatterlist dst, src;
|
||||
struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
|
||||
struct crypto_ablkcipher *tfm = ci->ci_ctfm;
|
||||
int res = 0;
|
||||
|
||||
req = ablkcipher_request_alloc(tfm, GFP_NOFS);
|
||||
if (!req) {
|
||||
printk_ratelimited(KERN_ERR
|
||||
"%s: crypto_request_alloc() failed\n",
|
||||
__func__);
|
||||
return -ENOMEM;
|
||||
}
|
||||
ablkcipher_request_set_callback(
|
||||
req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
||||
f2fs_crypt_complete, &ecr);
|
||||
|
||||
BUILD_BUG_ON(F2FS_XTS_TWEAK_SIZE < sizeof(index));
|
||||
memcpy(xts_tweak, &index, sizeof(index));
|
||||
memset(&xts_tweak[sizeof(index)], 0,
|
||||
F2FS_XTS_TWEAK_SIZE - sizeof(index));
|
||||
|
||||
sg_init_table(&dst, 1);
|
||||
sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
|
||||
sg_init_table(&src, 1);
|
||||
sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
|
||||
ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
|
||||
xts_tweak);
|
||||
if (rw == F2FS_DECRYPT)
|
||||
res = crypto_ablkcipher_decrypt(req);
|
||||
else
|
||||
res = crypto_ablkcipher_encrypt(req);
|
||||
if (res == -EINPROGRESS || res == -EBUSY) {
|
||||
wait_for_completion(&ecr.completion);
|
||||
res = ecr.res;
|
||||
}
|
||||
ablkcipher_request_free(req);
|
||||
if (res) {
|
||||
printk_ratelimited(KERN_ERR
|
||||
"%s: crypto_ablkcipher_encrypt() returned %d\n",
|
||||
__func__, res);
|
||||
return res;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct page *alloc_bounce_page(struct f2fs_crypto_ctx *ctx)
|
||||
{
|
||||
ctx->w.bounce_page = mempool_alloc(f2fs_bounce_page_pool, GFP_NOWAIT);
|
||||
if (ctx->w.bounce_page == NULL)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
ctx->flags |= F2FS_WRITE_PATH_FL;
|
||||
return ctx->w.bounce_page;
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_encrypt() - Encrypts a page
|
||||
* @inode: The inode for which the encryption should take place
|
||||
* @plaintext_page: The page to encrypt. Must be locked.
|
||||
*
|
||||
* Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
|
||||
* encryption context.
|
||||
*
|
||||
* Called on the page write path. The caller must call
|
||||
* f2fs_restore_control_page() on the returned ciphertext page to
|
||||
* release the bounce buffer and the encryption context.
|
||||
*
|
||||
* Return: An allocated page with the encrypted content on success. Else, an
|
||||
* error value or NULL.
|
||||
*/
|
||||
struct page *f2fs_encrypt(struct inode *inode,
|
||||
struct page *plaintext_page)
|
||||
{
|
||||
struct f2fs_crypto_ctx *ctx;
|
||||
struct page *ciphertext_page = NULL;
|
||||
int err;
|
||||
|
||||
BUG_ON(!PageLocked(plaintext_page));
|
||||
|
||||
ctx = f2fs_get_crypto_ctx(inode);
|
||||
if (IS_ERR(ctx))
|
||||
return (struct page *)ctx;
|
||||
|
||||
/* The encryption operation will require a bounce page. */
|
||||
ciphertext_page = alloc_bounce_page(ctx);
|
||||
if (IS_ERR(ciphertext_page))
|
||||
goto err_out;
|
||||
|
||||
ctx->w.control_page = plaintext_page;
|
||||
err = f2fs_page_crypto(inode, F2FS_ENCRYPT, plaintext_page->index,
|
||||
plaintext_page, ciphertext_page);
|
||||
if (err) {
|
||||
ciphertext_page = ERR_PTR(err);
|
||||
goto err_out;
|
||||
}
|
||||
|
||||
SetPagePrivate(ciphertext_page);
|
||||
set_page_private(ciphertext_page, (unsigned long)ctx);
|
||||
lock_page(ciphertext_page);
|
||||
return ciphertext_page;
|
||||
|
||||
err_out:
|
||||
f2fs_release_crypto_ctx(ctx);
|
||||
return ciphertext_page;
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_decrypt() - Decrypts a page in-place
|
||||
* @ctx: The encryption context.
|
||||
* @page: The page to decrypt. Must be locked.
|
||||
*
|
||||
* Decrypts page in-place using the ctx encryption context.
|
||||
*
|
||||
* Called from the read completion callback.
|
||||
*
|
||||
* Return: Zero on success, non-zero otherwise.
|
||||
*/
|
||||
int f2fs_decrypt(struct page *page)
|
||||
{
|
||||
BUG_ON(!PageLocked(page));
|
||||
|
||||
return f2fs_page_crypto(page->mapping->host,
|
||||
F2FS_DECRYPT, page->index, page, page);
|
||||
}
|
||||
|
||||
bool f2fs_valid_contents_enc_mode(uint32_t mode)
|
||||
{
|
||||
return (mode == F2FS_ENCRYPTION_MODE_AES_256_XTS);
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_validate_encryption_key_size() - Validate the encryption key size
|
||||
* @mode: The key mode.
|
||||
* @size: The key size to validate.
|
||||
*
|
||||
* Return: The validated key size for @mode. Zero if invalid.
|
||||
*/
|
||||
uint32_t f2fs_validate_encryption_key_size(uint32_t mode, uint32_t size)
|
||||
{
|
||||
if (size == f2fs_encryption_key_size(mode))
|
||||
return size;
|
||||
return 0;
|
||||
}
|
@ -1,210 +0,0 @@
|
||||
/*
|
||||
* copied from linux/fs/ext4/crypto_policy.c
|
||||
*
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* Copyright (C) 2015, Motorola Mobility.
|
||||
*
|
||||
* This contains encryption policy functions for f2fs with some modifications
|
||||
* to support f2fs-specific xattr APIs.
|
||||
*
|
||||
* Written by Michael Halcrow, 2015.
|
||||
* Modified by Jaegeuk Kim, 2015.
|
||||
*/
|
||||
#include <linux/random.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/f2fs_fs.h>
|
||||
|
||||
#include "f2fs.h"
|
||||
#include "xattr.h"
|
||||
|
||||
static int f2fs_inode_has_encryption_context(struct inode *inode)
|
||||
{
|
||||
int res = f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
||||
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, NULL, 0, NULL);
|
||||
return (res > 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* check whether the policy is consistent with the encryption context
|
||||
* for the inode
|
||||
*/
|
||||
static int f2fs_is_encryption_context_consistent_with_policy(
|
||||
struct inode *inode, const struct f2fs_encryption_policy *policy)
|
||||
{
|
||||
struct f2fs_encryption_context ctx;
|
||||
int res = f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
||||
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, &ctx,
|
||||
sizeof(ctx), NULL);
|
||||
|
||||
if (res != sizeof(ctx))
|
||||
return 0;
|
||||
|
||||
return (memcmp(ctx.master_key_descriptor, policy->master_key_descriptor,
|
||||
F2FS_KEY_DESCRIPTOR_SIZE) == 0 &&
|
||||
(ctx.flags == policy->flags) &&
|
||||
(ctx.contents_encryption_mode ==
|
||||
policy->contents_encryption_mode) &&
|
||||
(ctx.filenames_encryption_mode ==
|
||||
policy->filenames_encryption_mode));
|
||||
}
|
||||
|
||||
static int f2fs_create_encryption_context_from_policy(
|
||||
struct inode *inode, const struct f2fs_encryption_policy *policy)
|
||||
{
|
||||
struct f2fs_encryption_context ctx;
|
||||
|
||||
ctx.format = F2FS_ENCRYPTION_CONTEXT_FORMAT_V1;
|
||||
memcpy(ctx.master_key_descriptor, policy->master_key_descriptor,
|
||||
F2FS_KEY_DESCRIPTOR_SIZE);
|
||||
|
||||
if (!f2fs_valid_contents_enc_mode(policy->contents_encryption_mode)) {
|
||||
printk(KERN_WARNING
|
||||
"%s: Invalid contents encryption mode %d\n", __func__,
|
||||
policy->contents_encryption_mode);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (!f2fs_valid_filenames_enc_mode(policy->filenames_encryption_mode)) {
|
||||
printk(KERN_WARNING
|
||||
"%s: Invalid filenames encryption mode %d\n", __func__,
|
||||
policy->filenames_encryption_mode);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (policy->flags & ~F2FS_POLICY_FLAGS_VALID)
|
||||
return -EINVAL;
|
||||
|
||||
ctx.contents_encryption_mode = policy->contents_encryption_mode;
|
||||
ctx.filenames_encryption_mode = policy->filenames_encryption_mode;
|
||||
ctx.flags = policy->flags;
|
||||
BUILD_BUG_ON(sizeof(ctx.nonce) != F2FS_KEY_DERIVATION_NONCE_SIZE);
|
||||
get_random_bytes(ctx.nonce, F2FS_KEY_DERIVATION_NONCE_SIZE);
|
||||
|
||||
return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
||||
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, &ctx,
|
||||
sizeof(ctx), NULL, XATTR_CREATE);
|
||||
}
|
||||
|
||||
int f2fs_process_policy(const struct f2fs_encryption_policy *policy,
|
||||
struct inode *inode)
|
||||
{
|
||||
if (policy->version != 0)
|
||||
return -EINVAL;
|
||||
|
||||
if (!S_ISDIR(inode->i_mode))
|
||||
return -EINVAL;
|
||||
|
||||
if (!f2fs_inode_has_encryption_context(inode)) {
|
||||
if (!f2fs_empty_dir(inode))
|
||||
return -ENOTEMPTY;
|
||||
return f2fs_create_encryption_context_from_policy(inode,
|
||||
policy);
|
||||
}
|
||||
|
||||
if (f2fs_is_encryption_context_consistent_with_policy(inode, policy))
|
||||
return 0;
|
||||
|
||||
printk(KERN_WARNING "%s: Policy inconsistent with encryption context\n",
|
||||
__func__);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
int f2fs_get_policy(struct inode *inode, struct f2fs_encryption_policy *policy)
|
||||
{
|
||||
struct f2fs_encryption_context ctx;
|
||||
int res;
|
||||
|
||||
if (!f2fs_encrypted_inode(inode))
|
||||
return -ENODATA;
|
||||
|
||||
res = f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
||||
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
|
||||
&ctx, sizeof(ctx), NULL);
|
||||
if (res != sizeof(ctx))
|
||||
return -ENODATA;
|
||||
if (ctx.format != F2FS_ENCRYPTION_CONTEXT_FORMAT_V1)
|
||||
return -EINVAL;
|
||||
|
||||
policy->version = 0;
|
||||
policy->contents_encryption_mode = ctx.contents_encryption_mode;
|
||||
policy->filenames_encryption_mode = ctx.filenames_encryption_mode;
|
||||
policy->flags = ctx.flags;
|
||||
memcpy(&policy->master_key_descriptor, ctx.master_key_descriptor,
|
||||
F2FS_KEY_DESCRIPTOR_SIZE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int f2fs_is_child_context_consistent_with_parent(struct inode *parent,
|
||||
struct inode *child)
|
||||
{
|
||||
struct f2fs_crypt_info *parent_ci, *child_ci;
|
||||
int res;
|
||||
|
||||
if ((parent == NULL) || (child == NULL)) {
|
||||
pr_err("parent %p child %p\n", parent, child);
|
||||
BUG_ON(1);
|
||||
}
|
||||
|
||||
/* no restrictions if the parent directory is not encrypted */
|
||||
if (!f2fs_encrypted_inode(parent))
|
||||
return 1;
|
||||
/* if the child directory is not encrypted, this is always a problem */
|
||||
if (!f2fs_encrypted_inode(child))
|
||||
return 0;
|
||||
res = f2fs_get_encryption_info(parent);
|
||||
if (res)
|
||||
return 0;
|
||||
res = f2fs_get_encryption_info(child);
|
||||
if (res)
|
||||
return 0;
|
||||
parent_ci = F2FS_I(parent)->i_crypt_info;
|
||||
child_ci = F2FS_I(child)->i_crypt_info;
|
||||
if (!parent_ci && !child_ci)
|
||||
return 1;
|
||||
if (!parent_ci || !child_ci)
|
||||
return 0;
|
||||
|
||||
return (memcmp(parent_ci->ci_master_key,
|
||||
child_ci->ci_master_key,
|
||||
F2FS_KEY_DESCRIPTOR_SIZE) == 0 &&
|
||||
(parent_ci->ci_data_mode == child_ci->ci_data_mode) &&
|
||||
(parent_ci->ci_filename_mode == child_ci->ci_filename_mode) &&
|
||||
(parent_ci->ci_flags == child_ci->ci_flags));
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_inherit_context() - Sets a child context from its parent
|
||||
* @parent: Parent inode from which the context is inherited.
|
||||
* @child: Child inode that inherits the context from @parent.
|
||||
*
|
||||
* Return: Zero on success, non-zero otherwise
|
||||
*/
|
||||
int f2fs_inherit_context(struct inode *parent, struct inode *child,
|
||||
struct page *ipage)
|
||||
{
|
||||
struct f2fs_encryption_context ctx;
|
||||
struct f2fs_crypt_info *ci;
|
||||
int res;
|
||||
|
||||
res = f2fs_get_encryption_info(parent);
|
||||
if (res < 0)
|
||||
return res;
|
||||
|
||||
ci = F2FS_I(parent)->i_crypt_info;
|
||||
if (ci == NULL)
|
||||
return -ENOKEY;
|
||||
|
||||
ctx.format = F2FS_ENCRYPTION_CONTEXT_FORMAT_V1;
|
||||
|
||||
ctx.contents_encryption_mode = ci->ci_data_mode;
|
||||
ctx.filenames_encryption_mode = ci->ci_filename_mode;
|
||||
ctx.flags = ci->ci_flags;
|
||||
memcpy(ctx.master_key_descriptor, ci->ci_master_key,
|
||||
F2FS_KEY_DESCRIPTOR_SIZE);
|
||||
|
||||
get_random_bytes(ctx.nonce, F2FS_KEY_DERIVATION_NONCE_SIZE);
|
||||
return f2fs_setxattr(child, F2FS_XATTR_INDEX_ENCRYPTION,
|
||||
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, &ctx,
|
||||
sizeof(ctx), ipage, XATTR_CREATE);
|
||||
}
|
@ -34,9 +34,9 @@ static void f2fs_read_end_io(struct bio *bio)
|
||||
|
||||
if (f2fs_bio_encrypted(bio)) {
|
||||
if (bio->bi_error) {
|
||||
f2fs_release_crypto_ctx(bio->bi_private);
|
||||
fscrypt_release_ctx(bio->bi_private);
|
||||
} else {
|
||||
f2fs_end_io_crypto_work(bio->bi_private, bio);
|
||||
fscrypt_decrypt_bio_pages(bio->bi_private, bio);
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -64,7 +64,7 @@ static void f2fs_write_end_io(struct bio *bio)
|
||||
bio_for_each_segment_all(bvec, bio, i) {
|
||||
struct page *page = bvec->bv_page;
|
||||
|
||||
f2fs_restore_and_release_control_page(&page);
|
||||
fscrypt_pullback_bio_page(&page, true);
|
||||
|
||||
if (unlikely(bio->bi_error)) {
|
||||
set_bit(AS_EIO, &page->mapping->flags);
|
||||
@ -129,16 +129,10 @@ static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
|
||||
|
||||
bio_for_each_segment_all(bvec, io->bio, i) {
|
||||
|
||||
if (bvec->bv_page->mapping) {
|
||||
if (bvec->bv_page->mapping)
|
||||
target = bvec->bv_page;
|
||||
} else {
|
||||
struct f2fs_crypto_ctx *ctx;
|
||||
|
||||
/* encrypted page */
|
||||
ctx = (struct f2fs_crypto_ctx *)page_private(
|
||||
bvec->bv_page);
|
||||
target = ctx->w.control_page;
|
||||
}
|
||||
else
|
||||
target = fscrypt_control_page(bvec->bv_page);
|
||||
|
||||
if (inode && inode == target->mapping->host)
|
||||
return true;
|
||||
@ -220,7 +214,8 @@ void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
|
||||
int f2fs_submit_page_bio(struct f2fs_io_info *fio)
|
||||
{
|
||||
struct bio *bio;
|
||||
struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
|
||||
struct page *page = fio->encrypted_page ?
|
||||
fio->encrypted_page : fio->page;
|
||||
|
||||
trace_f2fs_submit_page_bio(page, fio);
|
||||
f2fs_trace_ios(fio, 0);
|
||||
@ -992,12 +987,12 @@ submit_and_realloc:
|
||||
bio = NULL;
|
||||
}
|
||||
if (bio == NULL) {
|
||||
struct f2fs_crypto_ctx *ctx = NULL;
|
||||
struct fscrypt_ctx *ctx = NULL;
|
||||
|
||||
if (f2fs_encrypted_inode(inode) &&
|
||||
S_ISREG(inode->i_mode)) {
|
||||
|
||||
ctx = f2fs_get_crypto_ctx(inode);
|
||||
ctx = fscrypt_get_ctx(inode);
|
||||
if (IS_ERR(ctx))
|
||||
goto set_error_page;
|
||||
|
||||
@ -1010,7 +1005,7 @@ submit_and_realloc:
|
||||
min_t(int, nr_pages, BIO_MAX_PAGES));
|
||||
if (!bio) {
|
||||
if (ctx)
|
||||
f2fs_release_crypto_ctx(ctx);
|
||||
fscrypt_release_ctx(ctx);
|
||||
goto set_error_page;
|
||||
}
|
||||
bio->bi_bdev = bdev;
|
||||
@ -1102,7 +1097,7 @@ int do_write_data_page(struct f2fs_io_info *fio)
|
||||
f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
|
||||
fio->old_blkaddr);
|
||||
|
||||
fio->encrypted_page = f2fs_encrypt(inode, fio->page);
|
||||
fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page);
|
||||
if (IS_ERR(fio->encrypted_page)) {
|
||||
err = PTR_ERR(fio->encrypted_page);
|
||||
goto out_writepage;
|
||||
@ -1608,7 +1603,7 @@ repeat:
|
||||
|
||||
/* avoid symlink page */
|
||||
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
|
||||
err = f2fs_decrypt(page);
|
||||
err = fscrypt_decrypt_page(page);
|
||||
if (err)
|
||||
goto fail;
|
||||
}
|
||||
|
@ -77,7 +77,7 @@ static unsigned long dir_block_index(unsigned int level,
|
||||
}
|
||||
|
||||
static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
|
||||
struct f2fs_filename *fname,
|
||||
struct fscrypt_name *fname,
|
||||
f2fs_hash_t namehash,
|
||||
int *max_slots,
|
||||
struct page **res_page)
|
||||
@ -103,15 +103,15 @@ static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
|
||||
return de;
|
||||
}
|
||||
|
||||
struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *fname,
|
||||
struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
|
||||
f2fs_hash_t namehash, int *max_slots,
|
||||
struct f2fs_dentry_ptr *d)
|
||||
{
|
||||
struct f2fs_dir_entry *de;
|
||||
unsigned long bit_pos = 0;
|
||||
int max_len = 0;
|
||||
struct f2fs_str de_name = FSTR_INIT(NULL, 0);
|
||||
struct f2fs_str *name = &fname->disk_name;
|
||||
struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
|
||||
struct fscrypt_str *name = &fname->disk_name;
|
||||
|
||||
if (max_slots)
|
||||
*max_slots = 0;
|
||||
@ -157,7 +157,7 @@ found:
|
||||
|
||||
static struct f2fs_dir_entry *find_in_level(struct inode *dir,
|
||||
unsigned int level,
|
||||
struct f2fs_filename *fname,
|
||||
struct fscrypt_name *fname,
|
||||
struct page **res_page)
|
||||
{
|
||||
struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
|
||||
@ -218,12 +218,12 @@ struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
|
||||
struct f2fs_dir_entry *de = NULL;
|
||||
unsigned int max_depth;
|
||||
unsigned int level;
|
||||
struct f2fs_filename fname;
|
||||
struct fscrypt_name fname;
|
||||
int err;
|
||||
|
||||
*res_page = NULL;
|
||||
|
||||
err = f2fs_fname_setup_filename(dir, child, 1, &fname);
|
||||
err = fscrypt_setup_filename(dir, child, 1, &fname);
|
||||
if (err)
|
||||
return NULL;
|
||||
|
||||
@ -251,7 +251,7 @@ struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
|
||||
break;
|
||||
}
|
||||
out:
|
||||
f2fs_fname_free_filename(&fname);
|
||||
fscrypt_free_filename(&fname);
|
||||
return de;
|
||||
}
|
||||
|
||||
@ -413,7 +413,7 @@ struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
|
||||
goto put_error;
|
||||
|
||||
if (f2fs_encrypted_inode(dir) && f2fs_may_encrypt(inode)) {
|
||||
err = f2fs_inherit_context(dir, inode, page);
|
||||
err = fscrypt_inherit_context(dir, inode, page, false);
|
||||
if (err)
|
||||
goto put_error;
|
||||
}
|
||||
@ -536,11 +536,11 @@ int __f2fs_add_link(struct inode *dir, const struct qstr *name,
|
||||
struct f2fs_dentry_block *dentry_blk = NULL;
|
||||
struct f2fs_dentry_ptr d;
|
||||
struct page *page = NULL;
|
||||
struct f2fs_filename fname;
|
||||
struct fscrypt_name fname;
|
||||
struct qstr new_name;
|
||||
int slots, err;
|
||||
|
||||
err = f2fs_fname_setup_filename(dir, name, 0, &fname);
|
||||
err = fscrypt_setup_filename(dir, name, 0, &fname);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
@ -639,7 +639,7 @@ fail:
|
||||
kunmap(dentry_page);
|
||||
f2fs_put_page(dentry_page, 1);
|
||||
out:
|
||||
f2fs_fname_free_filename(&fname);
|
||||
fscrypt_free_filename(&fname);
|
||||
f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
|
||||
return err;
|
||||
}
|
||||
@ -781,12 +781,12 @@ bool f2fs_empty_dir(struct inode *dir)
|
||||
}
|
||||
|
||||
bool f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
|
||||
unsigned int start_pos, struct f2fs_str *fstr)
|
||||
unsigned int start_pos, struct fscrypt_str *fstr)
|
||||
{
|
||||
unsigned char d_type = DT_UNKNOWN;
|
||||
unsigned int bit_pos;
|
||||
struct f2fs_dir_entry *de = NULL;
|
||||
struct f2fs_str de_name = FSTR_INIT(NULL, 0);
|
||||
struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
|
||||
|
||||
bit_pos = ((unsigned long)ctx->pos % d->max);
|
||||
|
||||
@ -820,8 +820,9 @@ bool f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
|
||||
|
||||
memcpy(de_name.name, d->filename[bit_pos], de_name.len);
|
||||
|
||||
ret = f2fs_fname_disk_to_usr(d->inode, &de->hash_code,
|
||||
&de_name, fstr);
|
||||
ret = fscrypt_fname_disk_to_usr(d->inode,
|
||||
(u32)de->hash_code, 0,
|
||||
&de_name, fstr);
|
||||
kfree(de_name.name);
|
||||
if (ret < 0)
|
||||
return true;
|
||||
@ -849,16 +850,15 @@ static int f2fs_readdir(struct file *file, struct dir_context *ctx)
|
||||
struct file_ra_state *ra = &file->f_ra;
|
||||
unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
|
||||
struct f2fs_dentry_ptr d;
|
||||
struct f2fs_str fstr = FSTR_INIT(NULL, 0);
|
||||
struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
|
||||
int err = 0;
|
||||
|
||||
if (f2fs_encrypted_inode(inode)) {
|
||||
err = f2fs_get_encryption_info(inode);
|
||||
err = fscrypt_get_encryption_info(inode);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
err = f2fs_fname_crypto_alloc_buffer(inode, F2FS_NAME_LEN,
|
||||
&fstr);
|
||||
err = fscrypt_fname_alloc_buffer(inode, F2FS_NAME_LEN, &fstr);
|
||||
if (err < 0)
|
||||
return err;
|
||||
}
|
||||
@ -898,14 +898,14 @@ static int f2fs_readdir(struct file *file, struct dir_context *ctx)
|
||||
f2fs_put_page(dentry_page, 1);
|
||||
}
|
||||
out:
|
||||
f2fs_fname_crypto_free_buffer(&fstr);
|
||||
fscrypt_fname_free_buffer(&fstr);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int f2fs_dir_open(struct inode *inode, struct file *filp)
|
||||
{
|
||||
if (f2fs_encrypted_inode(inode))
|
||||
return f2fs_get_encryption_info(inode) ? -EACCES : 0;
|
||||
return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
172
fs/f2fs/f2fs.h
172
fs/f2fs/f2fs.h
@ -22,6 +22,7 @@
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/bio.h>
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/fscrypto.h>
|
||||
|
||||
#ifdef CONFIG_F2FS_CHECK_FS
|
||||
#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
|
||||
@ -231,12 +232,9 @@ static inline bool __has_cursum_space(struct f2fs_journal *journal,
|
||||
#define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
|
||||
#define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
|
||||
|
||||
#define F2FS_IOC_SET_ENCRYPTION_POLICY \
|
||||
_IOR('f', 19, struct f2fs_encryption_policy)
|
||||
#define F2FS_IOC_GET_ENCRYPTION_PWSALT \
|
||||
_IOW('f', 20, __u8[16])
|
||||
#define F2FS_IOC_GET_ENCRYPTION_POLICY \
|
||||
_IOW('f', 21, struct f2fs_encryption_policy)
|
||||
#define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
|
||||
#define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
|
||||
#define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
|
||||
|
||||
/*
|
||||
* should be same as XFS_IOC_GOINGDOWN.
|
||||
@ -266,25 +264,6 @@ struct f2fs_defragment {
|
||||
* For INODE and NODE manager
|
||||
*/
|
||||
/* for directory operations */
|
||||
struct f2fs_str {
|
||||
unsigned char *name;
|
||||
u32 len;
|
||||
};
|
||||
|
||||
struct f2fs_filename {
|
||||
const struct qstr *usr_fname;
|
||||
struct f2fs_str disk_name;
|
||||
f2fs_hash_t hash;
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
struct f2fs_str crypto_buf;
|
||||
#endif
|
||||
};
|
||||
|
||||
#define FSTR_INIT(n, l) { .name = n, .len = l }
|
||||
#define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
|
||||
#define fname_name(p) ((p)->disk_name.name)
|
||||
#define fname_len(p) ((p)->disk_name.len)
|
||||
|
||||
struct f2fs_dentry_ptr {
|
||||
struct inode *inode;
|
||||
const void *bitmap;
|
||||
@ -412,15 +391,6 @@ struct f2fs_map_blocks {
|
||||
#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
|
||||
#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
|
||||
|
||||
/* Encryption algorithms */
|
||||
#define F2FS_ENCRYPTION_MODE_INVALID 0
|
||||
#define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
|
||||
#define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
|
||||
#define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
|
||||
#define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
|
||||
|
||||
#include "f2fs_crypto.h"
|
||||
|
||||
#define DEF_DIR_LEVEL 0
|
||||
|
||||
struct f2fs_inode_info {
|
||||
@ -444,13 +414,7 @@ struct f2fs_inode_info {
|
||||
struct list_head dirty_list; /* linked in global dirty list */
|
||||
struct list_head inmem_pages; /* inmemory pages managed by f2fs */
|
||||
struct mutex inmem_lock; /* lock for inmemory pages */
|
||||
|
||||
struct extent_tree *extent_tree; /* cached extent_tree entry */
|
||||
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
/* Encryption params */
|
||||
struct f2fs_crypt_info *i_crypt_info;
|
||||
#endif
|
||||
};
|
||||
|
||||
static inline void get_extent_info(struct extent_info *ext,
|
||||
@ -1741,10 +1705,10 @@ struct dentry *f2fs_get_parent(struct dentry *child);
|
||||
extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
|
||||
void set_de_type(struct f2fs_dir_entry *, umode_t);
|
||||
|
||||
struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
|
||||
struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
|
||||
f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
|
||||
bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
|
||||
unsigned int, struct f2fs_str *);
|
||||
unsigned int, struct fscrypt_str *);
|
||||
void do_make_empty_dir(struct inode *, struct inode *,
|
||||
struct f2fs_dentry_ptr *);
|
||||
struct page *init_inode_metadata(struct inode *, struct inode *,
|
||||
@ -2120,7 +2084,7 @@ int f2fs_convert_inline_inode(struct inode *);
|
||||
int f2fs_write_inline_data(struct inode *, struct page *);
|
||||
bool recover_inline_data(struct inode *, struct page *);
|
||||
struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
|
||||
struct f2fs_filename *, struct page **);
|
||||
struct fscrypt_name *, struct page **);
|
||||
struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
|
||||
int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
|
||||
int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
|
||||
@ -2129,7 +2093,7 @@ void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
|
||||
struct inode *, struct inode *);
|
||||
bool f2fs_empty_inline_dir(struct inode *);
|
||||
int f2fs_read_inline_dir(struct file *, struct dir_context *,
|
||||
struct f2fs_str *);
|
||||
struct fscrypt_str *);
|
||||
int f2fs_inline_data_fiemap(struct inode *,
|
||||
struct fiemap_extent_info *, __u64, __u64);
|
||||
|
||||
@ -2159,13 +2123,9 @@ void destroy_extent_cache(void);
|
||||
/*
|
||||
* crypto support
|
||||
*/
|
||||
static inline int f2fs_encrypted_inode(struct inode *inode)
|
||||
static inline bool f2fs_encrypted_inode(struct inode *inode)
|
||||
{
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
return file_is_encrypt(inode);
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void f2fs_set_encrypted_inode(struct inode *inode)
|
||||
@ -2177,20 +2137,12 @@ static inline void f2fs_set_encrypted_inode(struct inode *inode)
|
||||
|
||||
static inline bool f2fs_bio_encrypted(struct bio *bio)
|
||||
{
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
return unlikely(bio->bi_private != NULL);
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
return bio->bi_private != NULL;
|
||||
}
|
||||
|
||||
static inline int f2fs_sb_has_crypto(struct super_block *sb)
|
||||
{
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline bool f2fs_may_encrypt(struct inode *inode)
|
||||
@ -2204,86 +2156,28 @@ static inline bool f2fs_may_encrypt(struct inode *inode)
|
||||
#endif
|
||||
}
|
||||
|
||||
/* crypto_policy.c */
|
||||
int f2fs_is_child_context_consistent_with_parent(struct inode *,
|
||||
struct inode *);
|
||||
int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
|
||||
int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
|
||||
int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
|
||||
|
||||
/* crypt.c */
|
||||
extern struct kmem_cache *f2fs_crypt_info_cachep;
|
||||
bool f2fs_valid_contents_enc_mode(uint32_t);
|
||||
uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
|
||||
struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
|
||||
void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
|
||||
struct page *f2fs_encrypt(struct inode *, struct page *);
|
||||
int f2fs_decrypt(struct page *);
|
||||
void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
|
||||
|
||||
/* crypto_key.c */
|
||||
void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
|
||||
int _f2fs_get_encryption_info(struct inode *inode);
|
||||
|
||||
/* crypto_fname.c */
|
||||
bool f2fs_valid_filenames_enc_mode(uint32_t);
|
||||
u32 f2fs_fname_crypto_round_up(u32, u32);
|
||||
unsigned f2fs_fname_encrypted_size(struct inode *, u32);
|
||||
int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
|
||||
int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
|
||||
const struct f2fs_str *, struct f2fs_str *);
|
||||
int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
|
||||
struct f2fs_str *);
|
||||
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
void f2fs_restore_and_release_control_page(struct page **);
|
||||
void f2fs_restore_control_page(struct page *);
|
||||
|
||||
int __init f2fs_init_crypto(void);
|
||||
int f2fs_crypto_initialize(void);
|
||||
void f2fs_exit_crypto(void);
|
||||
|
||||
int f2fs_has_encryption_key(struct inode *);
|
||||
|
||||
static inline int f2fs_get_encryption_info(struct inode *inode)
|
||||
{
|
||||
struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
|
||||
|
||||
if (!ci ||
|
||||
(ci->ci_keyring_key &&
|
||||
(ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
|
||||
(1 << KEY_FLAG_REVOKED) |
|
||||
(1 << KEY_FLAG_DEAD)))))
|
||||
return _f2fs_get_encryption_info(inode);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
|
||||
int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
|
||||
int lookup, struct f2fs_filename *);
|
||||
void f2fs_fname_free_filename(struct f2fs_filename *);
|
||||
#else
|
||||
static inline void f2fs_restore_and_release_control_page(struct page **p) { }
|
||||
static inline void f2fs_restore_control_page(struct page *p) { }
|
||||
|
||||
static inline int __init f2fs_init_crypto(void) { return 0; }
|
||||
static inline void f2fs_exit_crypto(void) { }
|
||||
|
||||
static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
|
||||
static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
|
||||
static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
|
||||
|
||||
static inline int f2fs_fname_setup_filename(struct inode *dir,
|
||||
const struct qstr *iname,
|
||||
int lookup, struct f2fs_filename *fname)
|
||||
{
|
||||
memset(fname, 0, sizeof(struct f2fs_filename));
|
||||
fname->usr_fname = iname;
|
||||
fname->disk_name.name = (unsigned char *)iname->name;
|
||||
fname->disk_name.len = iname->len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
|
||||
#ifndef CONFIG_F2FS_FS_ENCRYPTION
|
||||
#define fscrypt_set_d_op(i)
|
||||
#define fscrypt_get_ctx fscrypt_notsupp_get_ctx
|
||||
#define fscrypt_release_ctx fscrypt_notsupp_release_ctx
|
||||
#define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
|
||||
#define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
|
||||
#define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
|
||||
#define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
|
||||
#define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
|
||||
#define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
|
||||
#define fscrypt_process_policy fscrypt_notsupp_process_policy
|
||||
#define fscrypt_get_policy fscrypt_notsupp_get_policy
|
||||
#define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
|
||||
#define fscrypt_inherit_context fscrypt_notsupp_inherit_context
|
||||
#define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
|
||||
#define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
|
||||
#define fscrypt_setup_filename fscrypt_notsupp_setup_filename
|
||||
#define fscrypt_free_filename fscrypt_notsupp_free_filename
|
||||
#define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
|
||||
#define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
|
||||
#define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
|
||||
#define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
|
||||
#define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
|
||||
#endif
|
||||
#endif
|
||||
|
@ -1,151 +0,0 @@
|
||||
/*
|
||||
* linux/fs/f2fs/f2fs_crypto.h
|
||||
*
|
||||
* Copied from linux/fs/ext4/ext4_crypto.h
|
||||
*
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
*
|
||||
* This contains encryption header content for f2fs
|
||||
*
|
||||
* Written by Michael Halcrow, 2015.
|
||||
* Modified by Jaegeuk Kim, 2015.
|
||||
*/
|
||||
#ifndef _F2FS_CRYPTO_H
|
||||
#define _F2FS_CRYPTO_H
|
||||
|
||||
#include <linux/fs.h>
|
||||
|
||||
#define F2FS_KEY_DESCRIPTOR_SIZE 8
|
||||
|
||||
/* Policy provided via an ioctl on the topmost directory */
|
||||
struct f2fs_encryption_policy {
|
||||
char version;
|
||||
char contents_encryption_mode;
|
||||
char filenames_encryption_mode;
|
||||
char flags;
|
||||
char master_key_descriptor[F2FS_KEY_DESCRIPTOR_SIZE];
|
||||
} __attribute__((__packed__));
|
||||
|
||||
#define F2FS_ENCRYPTION_CONTEXT_FORMAT_V1 1
|
||||
#define F2FS_KEY_DERIVATION_NONCE_SIZE 16
|
||||
|
||||
#define F2FS_POLICY_FLAGS_PAD_4 0x00
|
||||
#define F2FS_POLICY_FLAGS_PAD_8 0x01
|
||||
#define F2FS_POLICY_FLAGS_PAD_16 0x02
|
||||
#define F2FS_POLICY_FLAGS_PAD_32 0x03
|
||||
#define F2FS_POLICY_FLAGS_PAD_MASK 0x03
|
||||
#define F2FS_POLICY_FLAGS_VALID 0x03
|
||||
|
||||
/**
|
||||
* Encryption context for inode
|
||||
*
|
||||
* Protector format:
|
||||
* 1 byte: Protector format (1 = this version)
|
||||
* 1 byte: File contents encryption mode
|
||||
* 1 byte: File names encryption mode
|
||||
* 1 byte: Flags
|
||||
* 8 bytes: Master Key descriptor
|
||||
* 16 bytes: Encryption Key derivation nonce
|
||||
*/
|
||||
struct f2fs_encryption_context {
|
||||
char format;
|
||||
char contents_encryption_mode;
|
||||
char filenames_encryption_mode;
|
||||
char flags;
|
||||
char master_key_descriptor[F2FS_KEY_DESCRIPTOR_SIZE];
|
||||
char nonce[F2FS_KEY_DERIVATION_NONCE_SIZE];
|
||||
} __attribute__((__packed__));
|
||||
|
||||
/* Encryption parameters */
|
||||
#define F2FS_XTS_TWEAK_SIZE 16
|
||||
#define F2FS_AES_128_ECB_KEY_SIZE 16
|
||||
#define F2FS_AES_256_GCM_KEY_SIZE 32
|
||||
#define F2FS_AES_256_CBC_KEY_SIZE 32
|
||||
#define F2FS_AES_256_CTS_KEY_SIZE 32
|
||||
#define F2FS_AES_256_XTS_KEY_SIZE 64
|
||||
#define F2FS_MAX_KEY_SIZE 64
|
||||
|
||||
#define F2FS_KEY_DESC_PREFIX "f2fs:"
|
||||
#define F2FS_KEY_DESC_PREFIX_SIZE 5
|
||||
|
||||
struct f2fs_encryption_key {
|
||||
__u32 mode;
|
||||
char raw[F2FS_MAX_KEY_SIZE];
|
||||
__u32 size;
|
||||
} __attribute__((__packed__));
|
||||
|
||||
struct f2fs_crypt_info {
|
||||
char ci_data_mode;
|
||||
char ci_filename_mode;
|
||||
char ci_flags;
|
||||
struct crypto_ablkcipher *ci_ctfm;
|
||||
struct key *ci_keyring_key;
|
||||
char ci_master_key[F2FS_KEY_DESCRIPTOR_SIZE];
|
||||
};
|
||||
|
||||
#define F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL 0x00000001
|
||||
#define F2FS_WRITE_PATH_FL 0x00000002
|
||||
|
||||
struct f2fs_crypto_ctx {
|
||||
union {
|
||||
struct {
|
||||
struct page *bounce_page; /* Ciphertext page */
|
||||
struct page *control_page; /* Original page */
|
||||
} w;
|
||||
struct {
|
||||
struct bio *bio;
|
||||
struct work_struct work;
|
||||
} r;
|
||||
struct list_head free_list; /* Free list */
|
||||
};
|
||||
char flags; /* Flags */
|
||||
};
|
||||
|
||||
struct f2fs_completion_result {
|
||||
struct completion completion;
|
||||
int res;
|
||||
};
|
||||
|
||||
#define DECLARE_F2FS_COMPLETION_RESULT(ecr) \
|
||||
struct f2fs_completion_result ecr = { \
|
||||
COMPLETION_INITIALIZER((ecr).completion), 0 }
|
||||
|
||||
static inline int f2fs_encryption_key_size(int mode)
|
||||
{
|
||||
switch (mode) {
|
||||
case F2FS_ENCRYPTION_MODE_AES_256_XTS:
|
||||
return F2FS_AES_256_XTS_KEY_SIZE;
|
||||
case F2FS_ENCRYPTION_MODE_AES_256_GCM:
|
||||
return F2FS_AES_256_GCM_KEY_SIZE;
|
||||
case F2FS_ENCRYPTION_MODE_AES_256_CBC:
|
||||
return F2FS_AES_256_CBC_KEY_SIZE;
|
||||
case F2FS_ENCRYPTION_MODE_AES_256_CTS:
|
||||
return F2FS_AES_256_CTS_KEY_SIZE;
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define F2FS_FNAME_NUM_SCATTER_ENTRIES 4
|
||||
#define F2FS_CRYPTO_BLOCK_SIZE 16
|
||||
#define F2FS_FNAME_CRYPTO_DIGEST_SIZE 32
|
||||
|
||||
/**
|
||||
* For encrypted symlinks, the ciphertext length is stored at the beginning
|
||||
* of the string in little-endian format.
|
||||
*/
|
||||
struct f2fs_encrypted_symlink_data {
|
||||
__le16 len;
|
||||
char encrypted_path[1];
|
||||
} __attribute__((__packed__));
|
||||
|
||||
/**
|
||||
* This function is used to calculate the disk space required to
|
||||
* store a filename of length l in encrypted symlink format.
|
||||
*/
|
||||
static inline u32 encrypted_symlink_data_len(u32 l)
|
||||
{
|
||||
return (l + sizeof(struct f2fs_encrypted_symlink_data) - 1);
|
||||
}
|
||||
#endif /* _F2FS_CRYPTO_H */
|
@ -421,7 +421,7 @@ static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
|
||||
int err;
|
||||
|
||||
if (f2fs_encrypted_inode(inode)) {
|
||||
err = f2fs_get_encryption_info(inode);
|
||||
err = fscrypt_get_encryption_info(inode);
|
||||
if (err)
|
||||
return 0;
|
||||
if (!f2fs_encrypted_inode(inode))
|
||||
@ -443,10 +443,10 @@ static int f2fs_file_open(struct inode *inode, struct file *filp)
|
||||
int ret = generic_file_open(inode, filp);
|
||||
|
||||
if (!ret && f2fs_encrypted_inode(inode)) {
|
||||
ret = f2fs_get_encryption_info(inode);
|
||||
ret = fscrypt_get_encryption_info(inode);
|
||||
if (ret)
|
||||
return -EACCES;
|
||||
if (!f2fs_encrypted_inode(inode))
|
||||
if (!fscrypt_has_encryption_key(inode))
|
||||
return -ENOKEY;
|
||||
}
|
||||
return ret;
|
||||
@ -526,7 +526,8 @@ static int truncate_partial_data_page(struct inode *inode, u64 from,
|
||||
truncate_out:
|
||||
f2fs_wait_on_page_writeback(page, DATA, true);
|
||||
zero_user(page, offset, PAGE_CACHE_SIZE - offset);
|
||||
if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
|
||||
if (!cache_only || !f2fs_encrypted_inode(inode) ||
|
||||
!S_ISREG(inode->i_mode))
|
||||
set_page_dirty(page);
|
||||
f2fs_put_page(page, 1);
|
||||
return 0;
|
||||
@ -674,7 +675,7 @@ int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
|
||||
|
||||
if (attr->ia_valid & ATTR_SIZE) {
|
||||
if (f2fs_encrypted_inode(inode) &&
|
||||
f2fs_get_encryption_info(inode))
|
||||
fscrypt_get_encryption_info(inode))
|
||||
return -EACCES;
|
||||
|
||||
if (attr->ia_size <= i_size_read(inode)) {
|
||||
@ -1529,39 +1530,30 @@ static bool uuid_is_nonzero(__u8 u[16])
|
||||
|
||||
static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
|
||||
{
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
struct f2fs_encryption_policy policy;
|
||||
struct fscrypt_policy policy;
|
||||
struct inode *inode = file_inode(filp);
|
||||
|
||||
if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
|
||||
sizeof(policy)))
|
||||
if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
|
||||
sizeof(policy)))
|
||||
return -EFAULT;
|
||||
|
||||
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
|
||||
return f2fs_process_policy(&policy, inode);
|
||||
#else
|
||||
return -EOPNOTSUPP;
|
||||
#endif
|
||||
return fscrypt_process_policy(inode, &policy);
|
||||
}
|
||||
|
||||
static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
|
||||
{
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
struct f2fs_encryption_policy policy;
|
||||
struct fscrypt_policy policy;
|
||||
struct inode *inode = file_inode(filp);
|
||||
int err;
|
||||
|
||||
err = f2fs_get_policy(inode, &policy);
|
||||
err = fscrypt_get_policy(inode, &policy);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
|
||||
sizeof(policy)))
|
||||
if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
|
||||
return -EFAULT;
|
||||
return 0;
|
||||
#else
|
||||
return -EOPNOTSUPP;
|
||||
#endif
|
||||
}
|
||||
|
||||
static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
|
||||
@ -1873,8 +1865,8 @@ static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
|
||||
ssize_t ret;
|
||||
|
||||
if (f2fs_encrypted_inode(inode) &&
|
||||
!f2fs_has_encryption_key(inode) &&
|
||||
f2fs_get_encryption_info(inode))
|
||||
!fscrypt_has_encryption_key(inode) &&
|
||||
fscrypt_get_encryption_info(inode))
|
||||
return -EACCES;
|
||||
|
||||
inode_lock(inode);
|
||||
|
@ -277,7 +277,7 @@ process_inline:
|
||||
}
|
||||
|
||||
struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
|
||||
struct f2fs_filename *fname, struct page **res_page)
|
||||
struct fscrypt_name *fname, struct page **res_page)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
|
||||
struct f2fs_inline_dentry *inline_dentry;
|
||||
@ -535,7 +535,7 @@ bool f2fs_empty_inline_dir(struct inode *dir)
|
||||
}
|
||||
|
||||
int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
|
||||
struct f2fs_str *fstr)
|
||||
struct fscrypt_str *fstr)
|
||||
{
|
||||
struct inode *inode = file_inode(file);
|
||||
struct f2fs_inline_dentry *inline_dentry = NULL;
|
||||
|
@ -389,10 +389,7 @@ no_delete:
|
||||
}
|
||||
}
|
||||
out_clear:
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
if (fi->i_crypt_info)
|
||||
f2fs_free_encryption_info(inode, fi->i_crypt_info);
|
||||
#endif
|
||||
fscrypt_put_encryption_info(inode, NULL);
|
||||
clear_inode(inode);
|
||||
}
|
||||
|
||||
|
@ -169,7 +169,7 @@ static int f2fs_link(struct dentry *old_dentry, struct inode *dir,
|
||||
int err;
|
||||
|
||||
if (f2fs_encrypted_inode(dir) &&
|
||||
!f2fs_is_child_context_consistent_with_parent(dir, inode))
|
||||
!fscrypt_has_permitted_context(dir, inode))
|
||||
return -EPERM;
|
||||
|
||||
f2fs_balance_fs(sbi, true);
|
||||
@ -352,20 +352,20 @@ static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
|
||||
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
|
||||
struct inode *inode;
|
||||
size_t len = strlen(symname);
|
||||
struct f2fs_str disk_link = FSTR_INIT((char *)symname, len + 1);
|
||||
struct f2fs_encrypted_symlink_data *sd = NULL;
|
||||
struct fscrypt_str disk_link = FSTR_INIT((char *)symname, len + 1);
|
||||
struct fscrypt_symlink_data *sd = NULL;
|
||||
int err;
|
||||
|
||||
if (f2fs_encrypted_inode(dir)) {
|
||||
err = f2fs_get_encryption_info(dir);
|
||||
err = fscrypt_get_encryption_info(dir);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (!f2fs_encrypted_inode(dir))
|
||||
if (!fscrypt_has_encryption_key(dir))
|
||||
return -EPERM;
|
||||
|
||||
disk_link.len = (f2fs_fname_encrypted_size(dir, len) +
|
||||
sizeof(struct f2fs_encrypted_symlink_data));
|
||||
disk_link.len = (fscrypt_fname_encrypted_size(dir, len) +
|
||||
sizeof(struct fscrypt_symlink_data));
|
||||
}
|
||||
|
||||
if (disk_link.len > dir->i_sb->s_blocksize)
|
||||
@ -393,7 +393,7 @@ static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
|
||||
|
||||
if (f2fs_encrypted_inode(inode)) {
|
||||
struct qstr istr = QSTR_INIT(symname, len);
|
||||
struct f2fs_str ostr;
|
||||
struct fscrypt_str ostr;
|
||||
|
||||
sd = kzalloc(disk_link.len, GFP_NOFS);
|
||||
if (!sd) {
|
||||
@ -401,18 +401,18 @@ static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
|
||||
goto err_out;
|
||||
}
|
||||
|
||||
err = f2fs_get_encryption_info(inode);
|
||||
err = fscrypt_get_encryption_info(inode);
|
||||
if (err)
|
||||
goto err_out;
|
||||
|
||||
if (!f2fs_encrypted_inode(inode)) {
|
||||
if (!fscrypt_has_encryption_key(inode)) {
|
||||
err = -EPERM;
|
||||
goto err_out;
|
||||
}
|
||||
|
||||
ostr.name = sd->encrypted_path;
|
||||
ostr.len = disk_link.len;
|
||||
err = f2fs_fname_usr_to_disk(inode, &istr, &ostr);
|
||||
err = fscrypt_fname_usr_to_disk(inode, &istr, &ostr);
|
||||
if (err < 0)
|
||||
goto err_out;
|
||||
|
||||
@ -593,7 +593,7 @@ out:
|
||||
static int f2fs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
|
||||
{
|
||||
if (f2fs_encrypted_inode(dir)) {
|
||||
int err = f2fs_get_encryption_info(dir);
|
||||
int err = fscrypt_get_encryption_info(dir);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
@ -623,8 +623,7 @@ static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
|
||||
int err = -ENOENT;
|
||||
|
||||
if ((old_dir != new_dir) && f2fs_encrypted_inode(new_dir) &&
|
||||
!f2fs_is_child_context_consistent_with_parent(new_dir,
|
||||
old_inode)) {
|
||||
!fscrypt_has_permitted_context(new_dir, old_inode)) {
|
||||
err = -EPERM;
|
||||
goto out;
|
||||
}
|
||||
@ -804,11 +803,9 @@ static int f2fs_cross_rename(struct inode *old_dir, struct dentry *old_dentry,
|
||||
int err = -ENOENT;
|
||||
|
||||
if ((f2fs_encrypted_inode(old_dir) || f2fs_encrypted_inode(new_dir)) &&
|
||||
(old_dir != new_dir) &&
|
||||
(!f2fs_is_child_context_consistent_with_parent(new_dir,
|
||||
old_inode) ||
|
||||
!f2fs_is_child_context_consistent_with_parent(old_dir,
|
||||
new_inode)))
|
||||
(old_dir != new_dir) &&
|
||||
(!fscrypt_has_permitted_context(new_dir, old_inode) ||
|
||||
!fscrypt_has_permitted_context(old_dir, new_inode)))
|
||||
return -EPERM;
|
||||
|
||||
old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
|
||||
@ -970,16 +967,15 @@ static int f2fs_rename2(struct inode *old_dir, struct dentry *old_dentry,
|
||||
return f2fs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
static const char *f2fs_encrypted_get_link(struct dentry *dentry,
|
||||
struct inode *inode,
|
||||
struct delayed_call *done)
|
||||
{
|
||||
struct page *cpage = NULL;
|
||||
char *caddr, *paddr = NULL;
|
||||
struct f2fs_str cstr = FSTR_INIT(NULL, 0);
|
||||
struct f2fs_str pstr = FSTR_INIT(NULL, 0);
|
||||
struct f2fs_encrypted_symlink_data *sd;
|
||||
struct fscrypt_str cstr = FSTR_INIT(NULL, 0);
|
||||
struct fscrypt_str pstr = FSTR_INIT(NULL, 0);
|
||||
struct fscrypt_symlink_data *sd;
|
||||
loff_t size = min_t(loff_t, i_size_read(inode), PAGE_SIZE - 1);
|
||||
u32 max_size = inode->i_sb->s_blocksize;
|
||||
int res;
|
||||
@ -987,7 +983,7 @@ static const char *f2fs_encrypted_get_link(struct dentry *dentry,
|
||||
if (!dentry)
|
||||
return ERR_PTR(-ECHILD);
|
||||
|
||||
res = f2fs_get_encryption_info(inode);
|
||||
res = fscrypt_get_encryption_info(inode);
|
||||
if (res)
|
||||
return ERR_PTR(res);
|
||||
|
||||
@ -998,7 +994,7 @@ static const char *f2fs_encrypted_get_link(struct dentry *dentry,
|
||||
caddr[size] = 0;
|
||||
|
||||
/* Symlink is encrypted */
|
||||
sd = (struct f2fs_encrypted_symlink_data *)caddr;
|
||||
sd = (struct fscrypt_symlink_data *)caddr;
|
||||
cstr.name = sd->encrypted_path;
|
||||
cstr.len = le16_to_cpu(sd->len);
|
||||
|
||||
@ -1014,17 +1010,16 @@ static const char *f2fs_encrypted_get_link(struct dentry *dentry,
|
||||
goto errout;
|
||||
}
|
||||
|
||||
if ((cstr.len + sizeof(struct f2fs_encrypted_symlink_data) - 1) >
|
||||
max_size) {
|
||||
if ((cstr.len + sizeof(struct fscrypt_symlink_data) - 1) > max_size) {
|
||||
/* Symlink data on the disk is corrupted */
|
||||
res = -EIO;
|
||||
goto errout;
|
||||
}
|
||||
res = f2fs_fname_crypto_alloc_buffer(inode, cstr.len, &pstr);
|
||||
res = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
|
||||
if (res)
|
||||
goto errout;
|
||||
|
||||
res = f2fs_fname_disk_to_usr(inode, NULL, &cstr, &pstr);
|
||||
res = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
|
||||
if (res < 0)
|
||||
goto errout;
|
||||
|
||||
@ -1037,7 +1032,7 @@ static const char *f2fs_encrypted_get_link(struct dentry *dentry,
|
||||
set_delayed_call(done, kfree_link, paddr);
|
||||
return paddr;
|
||||
errout:
|
||||
f2fs_fname_crypto_free_buffer(&pstr);
|
||||
fscrypt_fname_free_buffer(&pstr);
|
||||
page_cache_release(cpage);
|
||||
return ERR_PTR(res);
|
||||
}
|
||||
@ -1054,7 +1049,6 @@ const struct inode_operations f2fs_encrypted_symlink_inode_operations = {
|
||||
.removexattr = generic_removexattr,
|
||||
#endif
|
||||
};
|
||||
#endif
|
||||
|
||||
const struct inode_operations f2fs_dir_inode_operations = {
|
||||
.create = f2fs_create,
|
||||
|
@ -470,10 +470,6 @@ static struct inode *f2fs_alloc_inode(struct super_block *sb)
|
||||
|
||||
/* Will be used by directory only */
|
||||
fi->i_dir_level = F2FS_SB(sb)->dir_level;
|
||||
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
fi->i_crypt_info = NULL;
|
||||
#endif
|
||||
return &fi->vfs_inode;
|
||||
}
|
||||
|
||||
@ -507,11 +503,7 @@ static int f2fs_drop_inode(struct inode *inode)
|
||||
|
||||
sb_end_intwrite(inode->i_sb);
|
||||
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
if (F2FS_I(inode)->i_crypt_info)
|
||||
f2fs_free_encryption_info(inode,
|
||||
F2FS_I(inode)->i_crypt_info);
|
||||
#endif
|
||||
fscrypt_put_encryption_info(inode, NULL);
|
||||
spin_lock(&inode->i_lock);
|
||||
atomic_dec(&inode->i_count);
|
||||
}
|
||||
@ -891,6 +883,41 @@ static struct super_operations f2fs_sops = {
|
||||
.remount_fs = f2fs_remount,
|
||||
};
|
||||
|
||||
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
||||
static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
|
||||
{
|
||||
return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
||||
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
|
||||
ctx, len, NULL);
|
||||
}
|
||||
|
||||
static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
|
||||
void *fs_data)
|
||||
{
|
||||
return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
||||
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
|
||||
ctx, len, fs_data, XATTR_CREATE);
|
||||
}
|
||||
|
||||
static unsigned f2fs_max_namelen(struct inode *inode)
|
||||
{
|
||||
return S_ISLNK(inode->i_mode) ?
|
||||
inode->i_sb->s_blocksize : F2FS_NAME_LEN;
|
||||
}
|
||||
|
||||
static struct fscrypt_operations f2fs_cryptops = {
|
||||
.get_context = f2fs_get_context,
|
||||
.set_context = f2fs_set_context,
|
||||
.is_encrypted = f2fs_encrypted_inode,
|
||||
.empty_dir = f2fs_empty_dir,
|
||||
.max_namelen = f2fs_max_namelen,
|
||||
};
|
||||
#else
|
||||
static struct fscrypt_operations f2fs_cryptops = {
|
||||
.is_encrypted = f2fs_encrypted_inode,
|
||||
};
|
||||
#endif
|
||||
|
||||
static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
|
||||
u64 ino, u32 generation)
|
||||
{
|
||||
@ -1314,6 +1341,7 @@ try_onemore:
|
||||
get_random_bytes(&sbi->s_next_generation, sizeof(u32));
|
||||
|
||||
sb->s_op = &f2fs_sops;
|
||||
sb->s_cop = &f2fs_cryptops;
|
||||
sb->s_xattr = f2fs_xattr_handlers;
|
||||
sb->s_export_op = &f2fs_export_ops;
|
||||
sb->s_magic = F2FS_SUPER_MAGIC;
|
||||
@ -1619,13 +1647,9 @@ static int __init init_f2fs_fs(void)
|
||||
err = -ENOMEM;
|
||||
goto free_extent_cache;
|
||||
}
|
||||
err = f2fs_init_crypto();
|
||||
if (err)
|
||||
goto free_kset;
|
||||
|
||||
err = register_shrinker(&f2fs_shrinker_info);
|
||||
if (err)
|
||||
goto free_crypto;
|
||||
goto free_kset;
|
||||
|
||||
err = register_filesystem(&f2fs_fs_type);
|
||||
if (err)
|
||||
@ -1640,8 +1664,6 @@ free_filesystem:
|
||||
unregister_filesystem(&f2fs_fs_type);
|
||||
free_shrinker:
|
||||
unregister_shrinker(&f2fs_shrinker_info);
|
||||
free_crypto:
|
||||
f2fs_exit_crypto();
|
||||
free_kset:
|
||||
kset_unregister(f2fs_kset);
|
||||
free_extent_cache:
|
||||
@ -1664,7 +1686,6 @@ static void __exit exit_f2fs_fs(void)
|
||||
f2fs_destroy_root_stats();
|
||||
unregister_shrinker(&f2fs_shrinker_info);
|
||||
unregister_filesystem(&f2fs_fs_type);
|
||||
f2fs_exit_crypto();
|
||||
destroy_extent_cache();
|
||||
destroy_checkpoint_caches();
|
||||
destroy_segment_manager_caches();
|
||||
|
@ -228,6 +228,8 @@ struct dentry_operations {
|
||||
#define DCACHE_FALLTHRU 0x01000000 /* Fall through to lower layer */
|
||||
#define DCACHE_OP_SELECT_INODE 0x02000000 /* Unioned entry: dcache op selects inode */
|
||||
|
||||
#define DCACHE_ENCRYPTED_WITH_KEY 0x04000000 /* dir is encrypted with a valid key */
|
||||
|
||||
extern seqlock_t rename_lock;
|
||||
|
||||
/*
|
||||
|
@ -53,6 +53,8 @@ struct swap_info_struct;
|
||||
struct seq_file;
|
||||
struct workqueue_struct;
|
||||
struct iov_iter;
|
||||
struct fscrypt_info;
|
||||
struct fscrypt_operations;
|
||||
|
||||
extern void __init inode_init(void);
|
||||
extern void __init inode_init_early(void);
|
||||
@ -678,6 +680,10 @@ struct inode {
|
||||
struct hlist_head i_fsnotify_marks;
|
||||
#endif
|
||||
|
||||
#if IS_ENABLED(CONFIG_FS_ENCRYPTION)
|
||||
struct fscrypt_info *i_crypt_info;
|
||||
#endif
|
||||
|
||||
void *i_private; /* fs or device private pointer */
|
||||
};
|
||||
|
||||
@ -1323,6 +1329,8 @@ struct super_block {
|
||||
#endif
|
||||
const struct xattr_handler **s_xattr;
|
||||
|
||||
const struct fscrypt_operations *s_cop;
|
||||
|
||||
struct hlist_bl_head s_anon; /* anonymous dentries for (nfs) exporting */
|
||||
struct list_head s_mounts; /* list of mounts; _not_ for fs use */
|
||||
struct block_device *s_bdev;
|
||||
|
433
include/linux/fscrypto.h
Normal file
433
include/linux/fscrypto.h
Normal file
@ -0,0 +1,433 @@
|
||||
/*
|
||||
* General per-file encryption definition
|
||||
*
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
*
|
||||
* Written by Michael Halcrow, 2015.
|
||||
* Modified by Jaegeuk Kim, 2015.
|
||||
*/
|
||||
|
||||
#ifndef _LINUX_FSCRYPTO_H
|
||||
#define _LINUX_FSCRYPTO_H
|
||||
|
||||
#include <linux/key.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/bio.h>
|
||||
#include <linux/dcache.h>
|
||||
#include <uapi/linux/fs.h>
|
||||
|
||||
#define FS_KEY_DERIVATION_NONCE_SIZE 16
|
||||
#define FS_ENCRYPTION_CONTEXT_FORMAT_V1 1
|
||||
|
||||
#define FS_POLICY_FLAGS_PAD_4 0x00
|
||||
#define FS_POLICY_FLAGS_PAD_8 0x01
|
||||
#define FS_POLICY_FLAGS_PAD_16 0x02
|
||||
#define FS_POLICY_FLAGS_PAD_32 0x03
|
||||
#define FS_POLICY_FLAGS_PAD_MASK 0x03
|
||||
#define FS_POLICY_FLAGS_VALID 0x03
|
||||
|
||||
/* Encryption algorithms */
|
||||
#define FS_ENCRYPTION_MODE_INVALID 0
|
||||
#define FS_ENCRYPTION_MODE_AES_256_XTS 1
|
||||
#define FS_ENCRYPTION_MODE_AES_256_GCM 2
|
||||
#define FS_ENCRYPTION_MODE_AES_256_CBC 3
|
||||
#define FS_ENCRYPTION_MODE_AES_256_CTS 4
|
||||
|
||||
/**
|
||||
* Encryption context for inode
|
||||
*
|
||||
* Protector format:
|
||||
* 1 byte: Protector format (1 = this version)
|
||||
* 1 byte: File contents encryption mode
|
||||
* 1 byte: File names encryption mode
|
||||
* 1 byte: Flags
|
||||
* 8 bytes: Master Key descriptor
|
||||
* 16 bytes: Encryption Key derivation nonce
|
||||
*/
|
||||
struct fscrypt_context {
|
||||
u8 format;
|
||||
u8 contents_encryption_mode;
|
||||
u8 filenames_encryption_mode;
|
||||
u8 flags;
|
||||
u8 master_key_descriptor[FS_KEY_DESCRIPTOR_SIZE];
|
||||
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
|
||||
} __packed;
|
||||
|
||||
/* Encryption parameters */
|
||||
#define FS_XTS_TWEAK_SIZE 16
|
||||
#define FS_AES_128_ECB_KEY_SIZE 16
|
||||
#define FS_AES_256_GCM_KEY_SIZE 32
|
||||
#define FS_AES_256_CBC_KEY_SIZE 32
|
||||
#define FS_AES_256_CTS_KEY_SIZE 32
|
||||
#define FS_AES_256_XTS_KEY_SIZE 64
|
||||
#define FS_MAX_KEY_SIZE 64
|
||||
|
||||
#define FS_KEY_DESC_PREFIX "fscrypt:"
|
||||
#define FS_KEY_DESC_PREFIX_SIZE 8
|
||||
|
||||
/* This is passed in from userspace into the kernel keyring */
|
||||
struct fscrypt_key {
|
||||
u32 mode;
|
||||
u8 raw[FS_MAX_KEY_SIZE];
|
||||
u32 size;
|
||||
} __packed;
|
||||
|
||||
struct fscrypt_info {
|
||||
u8 ci_data_mode;
|
||||
u8 ci_filename_mode;
|
||||
u8 ci_flags;
|
||||
struct crypto_ablkcipher *ci_ctfm;
|
||||
struct key *ci_keyring_key;
|
||||
u8 ci_master_key[FS_KEY_DESCRIPTOR_SIZE];
|
||||
};
|
||||
|
||||
#define FS_CTX_REQUIRES_FREE_ENCRYPT_FL 0x00000001
|
||||
#define FS_WRITE_PATH_FL 0x00000002
|
||||
|
||||
struct fscrypt_ctx {
|
||||
union {
|
||||
struct {
|
||||
struct page *bounce_page; /* Ciphertext page */
|
||||
struct page *control_page; /* Original page */
|
||||
} w;
|
||||
struct {
|
||||
struct bio *bio;
|
||||
struct work_struct work;
|
||||
} r;
|
||||
struct list_head free_list; /* Free list */
|
||||
};
|
||||
u8 flags; /* Flags */
|
||||
u8 mode; /* Encryption mode for tfm */
|
||||
};
|
||||
|
||||
struct fscrypt_completion_result {
|
||||
struct completion completion;
|
||||
int res;
|
||||
};
|
||||
|
||||
#define DECLARE_FS_COMPLETION_RESULT(ecr) \
|
||||
struct fscrypt_completion_result ecr = { \
|
||||
COMPLETION_INITIALIZER((ecr).completion), 0 }
|
||||
|
||||
static inline int fscrypt_key_size(int mode)
|
||||
{
|
||||
switch (mode) {
|
||||
case FS_ENCRYPTION_MODE_AES_256_XTS:
|
||||
return FS_AES_256_XTS_KEY_SIZE;
|
||||
case FS_ENCRYPTION_MODE_AES_256_GCM:
|
||||
return FS_AES_256_GCM_KEY_SIZE;
|
||||
case FS_ENCRYPTION_MODE_AES_256_CBC:
|
||||
return FS_AES_256_CBC_KEY_SIZE;
|
||||
case FS_ENCRYPTION_MODE_AES_256_CTS:
|
||||
return FS_AES_256_CTS_KEY_SIZE;
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define FS_FNAME_NUM_SCATTER_ENTRIES 4
|
||||
#define FS_CRYPTO_BLOCK_SIZE 16
|
||||
#define FS_FNAME_CRYPTO_DIGEST_SIZE 32
|
||||
|
||||
/**
|
||||
* For encrypted symlinks, the ciphertext length is stored at the beginning
|
||||
* of the string in little-endian format.
|
||||
*/
|
||||
struct fscrypt_symlink_data {
|
||||
__le16 len;
|
||||
char encrypted_path[1];
|
||||
} __packed;
|
||||
|
||||
/**
|
||||
* This function is used to calculate the disk space required to
|
||||
* store a filename of length l in encrypted symlink format.
|
||||
*/
|
||||
static inline u32 fscrypt_symlink_data_len(u32 l)
|
||||
{
|
||||
if (l < FS_CRYPTO_BLOCK_SIZE)
|
||||
l = FS_CRYPTO_BLOCK_SIZE;
|
||||
return (l + sizeof(struct fscrypt_symlink_data) - 1);
|
||||
}
|
||||
|
||||
struct fscrypt_str {
|
||||
unsigned char *name;
|
||||
u32 len;
|
||||
};
|
||||
|
||||
struct fscrypt_name {
|
||||
const struct qstr *usr_fname;
|
||||
struct fscrypt_str disk_name;
|
||||
u32 hash;
|
||||
u32 minor_hash;
|
||||
struct fscrypt_str crypto_buf;
|
||||
};
|
||||
|
||||
#define FSTR_INIT(n, l) { .name = n, .len = l }
|
||||
#define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
|
||||
#define fname_name(p) ((p)->disk_name.name)
|
||||
#define fname_len(p) ((p)->disk_name.len)
|
||||
|
||||
/*
|
||||
* crypto opertions for filesystems
|
||||
*/
|
||||
struct fscrypt_operations {
|
||||
int (*get_context)(struct inode *, void *, size_t);
|
||||
int (*prepare_context)(struct inode *);
|
||||
int (*set_context)(struct inode *, const void *, size_t, void *);
|
||||
int (*dummy_context)(struct inode *);
|
||||
bool (*is_encrypted)(struct inode *);
|
||||
bool (*empty_dir)(struct inode *);
|
||||
unsigned (*max_namelen)(struct inode *);
|
||||
};
|
||||
|
||||
static inline bool fscrypt_dummy_context_enabled(struct inode *inode)
|
||||
{
|
||||
if (inode->i_sb->s_cop->dummy_context &&
|
||||
inode->i_sb->s_cop->dummy_context(inode))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline bool fscrypt_valid_contents_enc_mode(u32 mode)
|
||||
{
|
||||
return (mode == FS_ENCRYPTION_MODE_AES_256_XTS);
|
||||
}
|
||||
|
||||
static inline bool fscrypt_valid_filenames_enc_mode(u32 mode)
|
||||
{
|
||||
return (mode == FS_ENCRYPTION_MODE_AES_256_CTS);
|
||||
}
|
||||
|
||||
static inline u32 fscrypt_validate_encryption_key_size(u32 mode, u32 size)
|
||||
{
|
||||
if (size == fscrypt_key_size(mode))
|
||||
return size;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
|
||||
{
|
||||
if (str->len == 1 && str->name[0] == '.')
|
||||
return true;
|
||||
|
||||
if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline struct page *fscrypt_control_page(struct page *page)
|
||||
{
|
||||
#if IS_ENABLED(CONFIG_FS_ENCRYPTION)
|
||||
return ((struct fscrypt_ctx *)page_private(page))->w.control_page;
|
||||
#else
|
||||
WARN_ON_ONCE(1);
|
||||
return ERR_PTR(-EINVAL);
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline int fscrypt_has_encryption_key(struct inode *inode)
|
||||
{
|
||||
#if IS_ENABLED(CONFIG_FS_ENCRYPTION)
|
||||
return (inode->i_crypt_info != NULL);
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void fscrypt_set_encrypted_dentry(struct dentry *dentry)
|
||||
{
|
||||
#if IS_ENABLED(CONFIG_FS_ENCRYPTION)
|
||||
spin_lock(&dentry->d_lock);
|
||||
dentry->d_flags |= DCACHE_ENCRYPTED_WITH_KEY;
|
||||
spin_unlock(&dentry->d_lock);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if IS_ENABLED(CONFIG_FS_ENCRYPTION)
|
||||
extern const struct dentry_operations fscrypt_d_ops;
|
||||
#endif
|
||||
|
||||
static inline void fscrypt_set_d_op(struct dentry *dentry)
|
||||
{
|
||||
#if IS_ENABLED(CONFIG_FS_ENCRYPTION)
|
||||
d_set_d_op(dentry, &fscrypt_d_ops);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if IS_ENABLED(CONFIG_FS_ENCRYPTION)
|
||||
/* crypto.c */
|
||||
extern struct kmem_cache *fscrypt_info_cachep;
|
||||
int fscrypt_initialize(void);
|
||||
|
||||
extern struct fscrypt_ctx *fscrypt_get_ctx(struct inode *);
|
||||
extern void fscrypt_release_ctx(struct fscrypt_ctx *);
|
||||
extern struct page *fscrypt_encrypt_page(struct inode *, struct page *);
|
||||
extern int fscrypt_decrypt_page(struct page *);
|
||||
extern void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *, struct bio *);
|
||||
extern void fscrypt_pullback_bio_page(struct page **, bool);
|
||||
extern void fscrypt_restore_control_page(struct page *);
|
||||
extern int fscrypt_zeroout_range(struct inode *, pgoff_t, sector_t,
|
||||
unsigned int);
|
||||
/* policy.c */
|
||||
extern int fscrypt_process_policy(struct inode *,
|
||||
const struct fscrypt_policy *);
|
||||
extern int fscrypt_get_policy(struct inode *, struct fscrypt_policy *);
|
||||
extern int fscrypt_has_permitted_context(struct inode *, struct inode *);
|
||||
extern int fscrypt_inherit_context(struct inode *, struct inode *,
|
||||
void *, bool);
|
||||
/* keyinfo.c */
|
||||
extern int get_crypt_info(struct inode *);
|
||||
extern int fscrypt_get_encryption_info(struct inode *);
|
||||
extern void fscrypt_put_encryption_info(struct inode *, struct fscrypt_info *);
|
||||
|
||||
/* fname.c */
|
||||
extern int fscrypt_setup_filename(struct inode *, const struct qstr *,
|
||||
int lookup, struct fscrypt_name *);
|
||||
extern void fscrypt_free_filename(struct fscrypt_name *);
|
||||
extern u32 fscrypt_fname_encrypted_size(struct inode *, u32);
|
||||
extern int fscrypt_fname_alloc_buffer(struct inode *, u32,
|
||||
struct fscrypt_str *);
|
||||
extern void fscrypt_fname_free_buffer(struct fscrypt_str *);
|
||||
extern int fscrypt_fname_disk_to_usr(struct inode *, u32, u32,
|
||||
const struct fscrypt_str *, struct fscrypt_str *);
|
||||
extern int fscrypt_fname_usr_to_disk(struct inode *, const struct qstr *,
|
||||
struct fscrypt_str *);
|
||||
#endif
|
||||
|
||||
/* crypto.c */
|
||||
static inline struct fscrypt_ctx *fscrypt_notsupp_get_ctx(struct inode *i)
|
||||
{
|
||||
return ERR_PTR(-EOPNOTSUPP);
|
||||
}
|
||||
|
||||
static inline void fscrypt_notsupp_release_ctx(struct fscrypt_ctx *c)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
static inline struct page *fscrypt_notsupp_encrypt_page(struct inode *i,
|
||||
struct page *p)
|
||||
{
|
||||
return ERR_PTR(-EOPNOTSUPP);
|
||||
}
|
||||
|
||||
static inline int fscrypt_notsupp_decrypt_page(struct page *p)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
|
||||
static inline void fscrypt_notsupp_decrypt_bio_pages(struct fscrypt_ctx *c,
|
||||
struct bio *b)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
static inline void fscrypt_notsupp_pullback_bio_page(struct page **p, bool b)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
static inline void fscrypt_notsupp_restore_control_page(struct page *p)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
static inline int fscrypt_notsupp_zeroout_range(struct inode *i, pgoff_t p,
|
||||
sector_t s, unsigned int f)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
|
||||
/* policy.c */
|
||||
static inline int fscrypt_notsupp_process_policy(struct inode *i,
|
||||
const struct fscrypt_policy *p)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
|
||||
static inline int fscrypt_notsupp_get_policy(struct inode *i,
|
||||
struct fscrypt_policy *p)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
|
||||
static inline int fscrypt_notsupp_has_permitted_context(struct inode *p,
|
||||
struct inode *i)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int fscrypt_notsupp_inherit_context(struct inode *p,
|
||||
struct inode *i, void *v, bool b)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
|
||||
/* keyinfo.c */
|
||||
static inline int fscrypt_notsupp_get_encryption_info(struct inode *i)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
|
||||
static inline void fscrypt_notsupp_put_encryption_info(struct inode *i,
|
||||
struct fscrypt_info *f)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
/* fname.c */
|
||||
static inline int fscrypt_notsupp_setup_filename(struct inode *dir,
|
||||
const struct qstr *iname,
|
||||
int lookup, struct fscrypt_name *fname)
|
||||
{
|
||||
if (dir->i_sb->s_cop->is_encrypted(dir))
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
memset(fname, 0, sizeof(struct fscrypt_name));
|
||||
fname->usr_fname = iname;
|
||||
fname->disk_name.name = (unsigned char *)iname->name;
|
||||
fname->disk_name.len = iname->len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void fscrypt_notsupp_free_filename(struct fscrypt_name *fname)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
static inline u32 fscrypt_notsupp_fname_encrypted_size(struct inode *i, u32 s)
|
||||
{
|
||||
/* never happens */
|
||||
WARN_ON(1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int fscrypt_notsupp_fname_alloc_buffer(struct inode *inode,
|
||||
u32 ilen, struct fscrypt_str *crypto_str)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
|
||||
static inline void fscrypt_notsupp_fname_free_buffer(struct fscrypt_str *c)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
static inline int fscrypt_notsupp_fname_disk_to_usr(struct inode *inode,
|
||||
u32 hash, u32 minor_hash,
|
||||
const struct fscrypt_str *iname,
|
||||
struct fscrypt_str *oname)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
|
||||
static inline int fscrypt_notsupp_fname_usr_to_disk(struct inode *inode,
|
||||
const struct qstr *iname,
|
||||
struct fscrypt_str *oname)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
#endif /* _LINUX_FSCRYPTO_H */
|
@ -246,6 +246,24 @@ struct fsxattr {
|
||||
#define FS_IOC_FSGETXATTR _IOR ('X', 31, struct fsxattr)
|
||||
#define FS_IOC_FSSETXATTR _IOW ('X', 32, struct fsxattr)
|
||||
|
||||
/*
|
||||
* File system encryption support
|
||||
*/
|
||||
/* Policy provided via an ioctl on the topmost directory */
|
||||
#define FS_KEY_DESCRIPTOR_SIZE 8
|
||||
|
||||
struct fscrypt_policy {
|
||||
__u8 version;
|
||||
__u8 contents_encryption_mode;
|
||||
__u8 filenames_encryption_mode;
|
||||
__u8 flags;
|
||||
__u8 master_key_descriptor[FS_KEY_DESCRIPTOR_SIZE];
|
||||
} __packed;
|
||||
|
||||
#define FS_IOC_SET_ENCRYPTION_POLICY _IOR('f', 19, struct fscrypt_policy)
|
||||
#define FS_IOC_GET_ENCRYPTION_PWSALT _IOW('f', 20, __u8[16])
|
||||
#define FS_IOC_GET_ENCRYPTION_POLICY _IOW('f', 21, struct fscrypt_policy)
|
||||
|
||||
/*
|
||||
* Inode flags (FS_IOC_GETFLAGS / FS_IOC_SETFLAGS)
|
||||
*
|
||||
|
Loading…
Reference in New Issue
Block a user