linux/drivers/media/common/tuners/mt2063.c

4247 lines
133 KiB
C
Raw Normal View History

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include "mt2063.h"
/* Version of this module */
#define MT2063_VERSION 10018 /* Version 01.18 */
static unsigned int verbose;
module_param(verbose, int, 0644);
/* Prototypes */
static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
u32 f_min, u32 f_max);
static u32 MT2063_ReInit(void *h);
static u32 MT2063_Close(void *hMT2063);
static u32 MT2063_GetReg(void *h, u8 reg, u8 * val);
static u32 MT2063_GetParam(void *h, enum MT2063_Param param, u32 * pValue);
static u32 MT2063_SetReg(void *h, u8 reg, u8 val);
static u32 MT2063_SetParam(void *h, enum MT2063_Param param, u32 nValue);
/*****************/
/* From drivers/media/common/tuners/mt2063_cfg.h */
unsigned int mt2063_setTune(struct dvb_frontend *fe, u32 f_in,
u32 bw_in,
enum MTTune_atv_standard tv_type)
{
//return (int)MT_Tune_atv(h, f_in, bw_in, tv_type);
struct dvb_frontend_ops *frontend_ops = NULL;
struct dvb_tuner_ops *tuner_ops = NULL;
struct tuner_state t_state;
struct mt2063_state *mt2063State = fe->tuner_priv;
int err = 0;
t_state.frequency = f_in;
t_state.bandwidth = bw_in;
mt2063State->tv_type = tv_type;
if (&fe->ops)
frontend_ops = &fe->ops;
if (&frontend_ops->tuner_ops)
tuner_ops = &frontend_ops->tuner_ops;
if (tuner_ops->set_state) {
if ((err =
tuner_ops->set_state(fe, DVBFE_TUNER_FREQUENCY,
&t_state)) < 0) {
printk("%s: Invalid parameter\n", __func__);
return err;
}
}
return err;
}
unsigned int mt2063_lockStatus(struct dvb_frontend *fe)
{
struct dvb_frontend_ops *frontend_ops = &fe->ops;
struct dvb_tuner_ops *tuner_ops = &frontend_ops->tuner_ops;
struct tuner_state t_state;
int err = 0;
if (&fe->ops)
frontend_ops = &fe->ops;
if (&frontend_ops->tuner_ops)
tuner_ops = &frontend_ops->tuner_ops;
if (tuner_ops->get_state) {
if ((err =
tuner_ops->get_state(fe, DVBFE_TUNER_REFCLOCK,
&t_state)) < 0) {
printk("%s: Invalid parameter\n", __func__);
return err;
}
}
return err;
}
unsigned int tuner_MT2063_Open(struct dvb_frontend *fe)
{
struct dvb_frontend_ops *frontend_ops = &fe->ops;
struct dvb_tuner_ops *tuner_ops = &frontend_ops->tuner_ops;
struct tuner_state t_state;
int err = 0;
if (&fe->ops)
frontend_ops = &fe->ops;
if (&frontend_ops->tuner_ops)
tuner_ops = &frontend_ops->tuner_ops;
if (tuner_ops->set_state) {
if ((err =
tuner_ops->set_state(fe, DVBFE_TUNER_OPEN,
&t_state)) < 0) {
printk("%s: Invalid parameter\n", __func__);
return err;
}
}
return err;
}
unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
{
struct dvb_frontend_ops *frontend_ops = &fe->ops;
struct dvb_tuner_ops *tuner_ops = &frontend_ops->tuner_ops;
struct tuner_state t_state;
int err = 0;
if (&fe->ops)
frontend_ops = &fe->ops;
if (&frontend_ops->tuner_ops)
tuner_ops = &frontend_ops->tuner_ops;
if (tuner_ops->set_state) {
if ((err =
tuner_ops->set_state(fe, DVBFE_TUNER_SOFTWARE_SHUTDOWN,
&t_state)) < 0) {
printk("%s: Invalid parameter\n", __func__);
return err;
}
}
return err;
}
unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
{
struct dvb_frontend_ops *frontend_ops = &fe->ops;
struct dvb_tuner_ops *tuner_ops = &frontend_ops->tuner_ops;
struct tuner_state t_state;
int err = 0;
if (&fe->ops)
frontend_ops = &fe->ops;
if (&frontend_ops->tuner_ops)
tuner_ops = &frontend_ops->tuner_ops;
if (tuner_ops->set_state) {
if ((err =
tuner_ops->set_state(fe, DVBFE_TUNER_CLEAR_POWER_MASKBITS,
&t_state)) < 0) {
printk("%s: Invalid parameter\n", __func__);
return err;
}
}
return err;
}
/*****************/
//i2c operation
static int mt2063_writeregs(struct mt2063_state *state, u8 reg1,
u8 * data, int len)
{
int ret;
u8 buf[60]; /* = { reg1, data }; */
struct i2c_msg msg = {
.addr = state->config->tuner_address,
.flags = 0,
.buf = buf,
.len = len + 1
};
msg.buf[0] = reg1;
memcpy(msg.buf + 1, data, len);
//printk("mt2063_writeregs state->i2c=%p\n", state->i2c);
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret < 0)
printk("mt2063_writeregs error ret=%d\n", ret);
return ret;
}
static int mt2063_read_regs(struct mt2063_state *state, u8 reg1, u8 * b, u8 len)
{
int ret;
u8 b0[] = { reg1 };
struct i2c_msg msg[] = {
{
.addr = state->config->tuner_address,
.flags = I2C_M_RD,
.buf = b0,
.len = 1}, {
.addr = state->config->tuner_address,
.flags = I2C_M_RD,
.buf = b,
.len = len}
};
//printk("mt2063_read_regs state->i2c=%p\n", state->i2c);
ret = i2c_transfer(state->i2c, msg, 2);
if (ret < 0)
printk("mt2063_readregs error ret=%d\n", ret);
return ret;
}
//context of mt2063_userdef.c <Henry> ======================================
//#################################################################
//=================================================================
/*****************************************************************************
**
** Name: MT_WriteSub
**
** Description: Write values to device using a two-wire serial bus.
**
** Parameters: hUserData - User-specific I/O parameter that was
** passed to tuner's Open function.
** addr - device serial bus address (value passed
** as parameter to MTxxxx_Open)
** subAddress - serial bus sub-address (Register Address)
** pData - pointer to the Data to be written to the
** device
** cnt - number of bytes/registers to be written
**
** Returns: status:
** MT_OK - No errors
** MT_COMM_ERR - Serial bus communications error
** user-defined
**
** Notes: This is a callback function that is called from the
** the tuning algorithm. You MUST provide code for this
** function to write data using the tuner's 2-wire serial
** bus.
**
** The hUserData parameter is a user-specific argument.
** If additional arguments are needed for the user's
** serial bus read/write functions, this argument can be
** used to supply the necessary information.
** The hUserData parameter is initialized in the tuner's Open
** function.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** N/A 03-25-2004 DAD Original
**
*****************************************************************************/
static u32 MT2063_WriteSub(void *hUserData,
u32 addr,
u8 subAddress, u8 * pData, u32 cnt)
{
u32 status = MT2063_OK; /* Status to be returned */
struct dvb_frontend *fe = hUserData;
struct mt2063_state *state = fe->tuner_priv;
/*
** ToDo: Add code here to implement a serial-bus write
** operation to the MTxxxx tuner. If successful,
** return MT_OK.
*/
/* return status; */
fe->ops.i2c_gate_ctrl(fe, 1); //I2C bypass drxk3926 close i2c bridge
if (mt2063_writeregs(state, subAddress, pData, cnt) < 0) {
status = MT2063_ERROR;
}
fe->ops.i2c_gate_ctrl(fe, 0); //I2C bypass drxk3926 close i2c bridge
return (status);
}
/*****************************************************************************
**
** Name: MT_ReadSub
**
** Description: Read values from device using a two-wire serial bus.
**
** Parameters: hUserData - User-specific I/O parameter that was
** passed to tuner's Open function.
** addr - device serial bus address (value passed
** as parameter to MTxxxx_Open)
** subAddress - serial bus sub-address (Register Address)
** pData - pointer to the Data to be written to the
** device
** cnt - number of bytes/registers to be written
**
** Returns: status:
** MT_OK - No errors
** MT_COMM_ERR - Serial bus communications error
** user-defined
**
** Notes: This is a callback function that is called from the
** the tuning algorithm. You MUST provide code for this
** function to read data using the tuner's 2-wire serial
** bus.
**
** The hUserData parameter is a user-specific argument.
** If additional arguments are needed for the user's
** serial bus read/write functions, this argument can be
** used to supply the necessary information.
** The hUserData parameter is initialized in the tuner's Open
** function.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** N/A 03-25-2004 DAD Original
**
*****************************************************************************/
static u32 MT2063_ReadSub(void *hUserData,
u32 addr,
u8 subAddress, u8 * pData, u32 cnt)
{
/*
** ToDo: Add code here to implement a serial-bus read
** operation to the MTxxxx tuner. If successful,
** return MT_OK.
*/
/* return status; */
u32 status = MT2063_OK; /* Status to be returned */
struct dvb_frontend *fe = hUserData;
struct mt2063_state *state = fe->tuner_priv;
u32 i = 0;
fe->ops.i2c_gate_ctrl(fe, 1); //I2C bypass drxk3926 close i2c bridge
for (i = 0; i < cnt; i++) {
if (mt2063_read_regs(state, subAddress + i, pData + i, 1) < 0) {
status = MT2063_ERROR;
break;
}
}
fe->ops.i2c_gate_ctrl(fe, 0); //I2C bypass drxk3926 close i2c bridge
return (status);
}
/*****************************************************************************
**
** Name: MT_Sleep
**
** Description: Delay execution for "nMinDelayTime" milliseconds
**
** Parameters: hUserData - User-specific I/O parameter that was
** passed to tuner's Open function.
** nMinDelayTime - Delay time in milliseconds
**
** Returns: None.
**
** Notes: This is a callback function that is called from the
** the tuning algorithm. You MUST provide code that
** blocks execution for the specified period of time.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** N/A 03-25-2004 DAD Original
**
*****************************************************************************/
static int MT2063_Sleep(struct dvb_frontend *fe)
{
/*
** ToDo: Add code here to implement a OS blocking
** for a period of "nMinDelayTime" milliseconds.
*/
msleep(10);
return 0;
}
//end of mt2063_userdef.c
//=================================================================
//#################################################################
//=================================================================
//context of mt2063_spuravoid.c <Henry> ======================================
//#################################################################
//=================================================================
/*****************************************************************************
**
** Name: mt_spuravoid.c
**
** Description: Microtune spur avoidance software module.
** Supports Microtune tuner drivers.
**
** CVS ID: $Id: mt_spuravoid.c,v 1.3 2008/06/26 15:39:52 software Exp $
** CVS Source: $Source: /export/home/cvsroot/software/tuners/MT2063/mt_spuravoid.c,v $
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 082 03-25-2005 JWS Original multi-tuner support - requires
** MTxxxx_CNT declarations
** 096 04-06-2005 DAD Ver 1.11: Fix divide by 0 error if maxH==0.
** 094 04-06-2005 JWS Ver 1.11 Added uceil and ufloor to get rid
** of compiler warnings
** N/A 04-07-2005 DAD Ver 1.13: Merged single- and multi-tuner spur
** avoidance into a single module.
** 103 01-31-2005 DAD Ver 1.14: In MT_AddExclZone(), if the range
** (f_min, f_max) < 0, ignore the entry.
** 115 03-23-2007 DAD Fix declaration of spur due to truncation
** errors.
** 117 03-29-2007 RSK Ver 1.15: Re-wrote to match search order from
** tuner DLL.
** 137 06-18-2007 DAD Ver 1.16: Fix possible divide-by-0 error for
** multi-tuners that have
** (delta IF1) > (f_out-f_outbw/2).
** 147 07-27-2007 RSK Ver 1.17: Corrected calculation (-) to (+)
** Added logic to force f_Center within 1/2 f_Step.
** 177 S 02-26-2008 RSK Ver 1.18: Corrected calculation using LO1 > MAX/2
** Type casts added to preserve correct sign.
** N/A I 06-17-2008 RSK Ver 1.19: Refactoring avoidance of DECT
** frequencies into MT_ResetExclZones().
** N/A I 06-20-2008 RSK Ver 1.21: New VERSION number for ver checking.
**
*****************************************************************************/
/* Version of this module */
#define MT2063_SPUR_VERSION 10201 /* Version 01.21 */
/* Implement ceiling, floor functions. */
#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
#define uceil(n, d) ((n)/(d) + ((n)%(d) != 0))
#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
#define ufloor(n, d) ((n)/(d))
struct MT2063_FIFZone_t {
s32 min_;
s32 max_;
};
#if MT2063_TUNER_CNT > 1
static struct MT2063_AvoidSpursData_t *TunerList[MT2063_TUNER_CNT];
static u32 TunerCount = 0;
#endif
static u32 MT2063_RegisterTuner(struct MT2063_AvoidSpursData_t *pAS_Info)
{
#if MT2063_TUNER_CNT == 1
pAS_Info->nAS_Algorithm = 1;
return MT2063_OK;
#else
u32 index;
pAS_Info->nAS_Algorithm = 2;
/*
** Check to see if tuner is already registered
*/
for (index = 0; index < TunerCount; index++) {
if (TunerList[index] == pAS_Info) {
return MT2063_OK; /* Already here - no problem */
}
}
/*
** Add tuner to list - if there is room.
*/
if (TunerCount < MT2063_TUNER_CNT) {
TunerList[TunerCount] = pAS_Info;
TunerCount++;
return MT2063_OK;
} else
return MT2063_TUNER_CNT_ERR;
#endif
}
static void MT2063_UnRegisterTuner(struct MT2063_AvoidSpursData_t *pAS_Info)
{
#if MT2063_TUNER_CNT > 1
u32 index;
for (index = 0; index < TunerCount; index++) {
if (TunerList[index] == pAS_Info) {
TunerList[index] = TunerList[--TunerCount];
}
}
#endif
}
/*
** Reset all exclusion zones.
** Add zones to protect the PLL FracN regions near zero
**
** N/A I 06-17-2008 RSK Ver 1.19: Refactoring avoidance of DECT
** frequencies into MT_ResetExclZones().
*/
static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
{
u32 center;
#if MT2063_TUNER_CNT > 1
u32 index;
struct MT2063_AvoidSpursData_t *adj;
#endif
pAS_Info->nZones = 0; /* this clears the used list */
pAS_Info->usedZones = NULL; /* reset ptr */
pAS_Info->freeZones = NULL; /* reset ptr */
center =
pAS_Info->f_ref *
((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
while (center <
pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
pAS_Info->f_LO1_FracN_Avoid) {
/* Exclude LO1 FracN */
MT2063_AddExclZone(pAS_Info,
center - pAS_Info->f_LO1_FracN_Avoid,
center - 1);
MT2063_AddExclZone(pAS_Info, center + 1,
center + pAS_Info->f_LO1_FracN_Avoid);
center += pAS_Info->f_ref;
}
center =
pAS_Info->f_ref *
((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
while (center <
pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
pAS_Info->f_LO2_FracN_Avoid) {
/* Exclude LO2 FracN */
MT2063_AddExclZone(pAS_Info,
center - pAS_Info->f_LO2_FracN_Avoid,
center - 1);
MT2063_AddExclZone(pAS_Info, center + 1,
center + pAS_Info->f_LO2_FracN_Avoid);
center += pAS_Info->f_ref;
}
if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
/* Exclude LO1 values that conflict with DECT channels */
MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */
MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */
MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */
MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */
MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */
}
if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */
MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */
MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */
MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */
MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */
MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */
MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */
MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */
MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */
MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */
}
#if MT2063_TUNER_CNT > 1
/*
** Iterate through all adjacent tuners and exclude frequencies related to them
*/
for (index = 0; index < TunerCount; ++index) {
adj = TunerList[index];
if (pAS_Info == adj) /* skip over our own data, don't process it */
continue;
/*
** Add 1st IF exclusion zone covering adjacent tuner's LO2
** at "adjfLO2 + f_out" +/- m_MinLOSpacing
*/
if (adj->f_LO2 != 0)
MT2063_AddExclZone(pAS_Info,
(adj->f_LO2 + pAS_Info->f_out) -
pAS_Info->f_min_LO_Separation,
(adj->f_LO2 + pAS_Info->f_out) +
pAS_Info->f_min_LO_Separation);
/*
** Add 1st IF exclusion zone covering adjacent tuner's LO1
** at "adjfLO1 - f_in" +/- m_MinLOSpacing
*/
if (adj->f_LO1 != 0)
MT2063_AddExclZone(pAS_Info,
(adj->f_LO1 - pAS_Info->f_in) -
pAS_Info->f_min_LO_Separation,
(adj->f_LO1 - pAS_Info->f_in) +
pAS_Info->f_min_LO_Separation);
}
#endif
}
static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
*pAS_Info,
struct MT2063_ExclZone_t *pPrevNode)
{
struct MT2063_ExclZone_t *pNode;
/* Check for a node in the free list */
if (pAS_Info->freeZones != NULL) {
/* Use one from the free list */
pNode = pAS_Info->freeZones;
pAS_Info->freeZones = pNode->next_;
} else {
/* Grab a node from the array */
pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
}
if (pPrevNode != NULL) {
pNode->next_ = pPrevNode->next_;
pPrevNode->next_ = pNode;
} else { /* insert at the beginning of the list */
pNode->next_ = pAS_Info->usedZones;
pAS_Info->usedZones = pNode;
}
pAS_Info->nZones++;
return pNode;
}
static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
*pAS_Info,
struct MT2063_ExclZone_t *pPrevNode,
struct MT2063_ExclZone_t
*pNodeToRemove)
{
struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
/* Make previous node point to the subsequent node */
if (pPrevNode != NULL)
pPrevNode->next_ = pNext;
/* Add pNodeToRemove to the beginning of the freeZones */
pNodeToRemove->next_ = pAS_Info->freeZones;
pAS_Info->freeZones = pNodeToRemove;
/* Decrement node count */
pAS_Info->nZones--;
return pNext;
}
/*****************************************************************************
**
** Name: MT_AddExclZone
**
** Description: Add (and merge) an exclusion zone into the list.
** If the range (f_min, f_max) is totally outside the
** 1st IF BW, ignore the entry.
** If the range (f_min, f_max) is negative, ignore the entry.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 103 01-31-2005 DAD Ver 1.14: In MT_AddExclZone(), if the range
** (f_min, f_max) < 0, ignore the entry.
**
*****************************************************************************/
static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
u32 f_min, u32 f_max)
{
struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
struct MT2063_ExclZone_t *pPrev = NULL;
struct MT2063_ExclZone_t *pNext = NULL;
/* Check to see if this overlaps the 1st IF filter */
if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
&& (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
&& (f_min < f_max)) {
/*
** 1 2 3 4 5 6
**
** New entry: |---| |--| |--| |-| |---| |--|
** or or or or or
** Existing: |--| |--| |--| |---| |-| |--|
*/
/* Check for our place in the list */
while ((pNode != NULL) && (pNode->max_ < f_min)) {
pPrev = pNode;
pNode = pNode->next_;
}
if ((pNode != NULL) && (pNode->min_ < f_max)) {
/* Combine me with pNode */
if (f_min < pNode->min_)
pNode->min_ = f_min;
if (f_max > pNode->max_)
pNode->max_ = f_max;
} else {
pNode = InsertNode(pAS_Info, pPrev);
pNode->min_ = f_min;
pNode->max_ = f_max;
}
/* Look for merging possibilities */
pNext = pNode->next_;
while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
if (pNext->max_ > pNode->max_)
pNode->max_ = pNext->max_;
pNext = RemoveNode(pAS_Info, pNode, pNext); /* Remove pNext, return ptr to pNext->next */
}
}
}
/*****************************************************************************
**
** Name: MT_ChooseFirstIF
**
** Description: Choose the best available 1st IF
** If f_Desired is not excluded, choose that first.
** Otherwise, return the value closest to f_Center that is
** not excluded
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 117 03-29-2007 RSK Ver 1.15: Re-wrote to match search order from
** tuner DLL.
** 147 07-27-2007 RSK Ver 1.17: Corrected calculation (-) to (+)
** Added logic to force f_Center within 1/2 f_Step.
**
*****************************************************************************/
static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
{
/*
** Update "f_Desired" to be the nearest "combinational-multiple" of "f_LO1_Step".
** The resulting number, F_LO1 must be a multiple of f_LO1_Step. And F_LO1 is the arithmetic sum
** of f_in + f_Center. Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
** However, the sum must be.
*/
const u32 f_Desired =
pAS_Info->f_LO1_Step *
((pAS_Info->f_if1_Request + pAS_Info->f_in +
pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
pAS_Info->f_in;
const u32 f_Step =
(pAS_Info->f_LO1_Step >
pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
f_LO2_Step;
u32 f_Center;
s32 i;
s32 j = 0;
u32 bDesiredExcluded = 0;
u32 bZeroExcluded = 0;
s32 tmpMin, tmpMax;
s32 bestDiff;
struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
if (pAS_Info->nZones == 0)
return f_Desired;
/* f_Center needs to be an integer multiple of f_Step away from f_Desired */
if (pAS_Info->f_if1_Center > f_Desired)
f_Center =
f_Desired +
f_Step *
((pAS_Info->f_if1_Center - f_Desired +
f_Step / 2) / f_Step);
else
f_Center =
f_Desired -
f_Step *
((f_Desired - pAS_Info->f_if1_Center +
f_Step / 2) / f_Step);
//assert;
//if (!abs((s32) f_Center - (s32) pAS_Info->f_if1_Center) <= (s32) (f_Step/2))
// return 0;
/* Take MT_ExclZones, center around f_Center and change the resolution to f_Step */
while (pNode != NULL) {
/* floor function */
tmpMin =
floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
/* ceil function */
tmpMax =
ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
bDesiredExcluded = 1;
if ((tmpMin < 0) && (tmpMax > 0))
bZeroExcluded = 1;
/* See if this zone overlaps the previous */
if ((j > 0) && (tmpMin < zones[j - 1].max_))
zones[j - 1].max_ = tmpMax;
else {
/* Add new zone */
//assert(j<MT2063_MAX_ZONES);
//if (j>=MT2063_MAX_ZONES)
//break;
zones[j].min_ = tmpMin;
zones[j].max_ = tmpMax;
j++;
}
pNode = pNode->next_;
}
/*
** If the desired is okay, return with it
*/
if (bDesiredExcluded == 0)
return f_Desired;
/*
** If the desired is excluded and the center is okay, return with it
*/
if (bZeroExcluded == 0)
return f_Center;
/* Find the value closest to 0 (f_Center) */
bestDiff = zones[0].min_;
for (i = 0; i < j; i++) {
if (abs(zones[i].min_) < abs(bestDiff))
bestDiff = zones[i].min_;
if (abs(zones[i].max_) < abs(bestDiff))
bestDiff = zones[i].max_;
}
if (bestDiff < 0)
return f_Center - ((u32) (-bestDiff) * f_Step);
return f_Center + (bestDiff * f_Step);
}
/****************************************************************************
**
** Name: gcd
**
** Description: Uses Euclid's algorithm
**
** Parameters: u, v - unsigned values whose GCD is desired.
**
** Global: None
**
** Returns: greatest common divisor of u and v, if either value
** is 0, the other value is returned as the result.
**
** Dependencies: None.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** N/A 06-01-2004 JWS Original
** N/A 08-03-2004 DAD Changed to Euclid's since it can handle
** unsigned numbers.
**
****************************************************************************/
static u32 MT2063_gcd(u32 u, u32 v)
{
u32 r;
while (v != 0) {
r = u % v;
u = v;
v = r;
}
return u;
}
/****************************************************************************
**
** Name: umax
**
** Description: Implements a simple maximum function for unsigned numbers.
** Implemented as a function rather than a macro to avoid
** multiple evaluation of the calling parameters.
**
** Parameters: a, b - Values to be compared
**
** Global: None
**
** Returns: larger of the input values.
**
** Dependencies: None.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** N/A 06-02-2004 JWS Original
**
****************************************************************************/
static u32 MT2063_umax(u32 a, u32 b)
{
return (a >= b) ? a : b;
}
#if MT2063_TUNER_CNT > 1
static s32 RoundAwayFromZero(s32 n, s32 d)
{
return (n < 0) ? floor(n, d) : ceil(n, d);
}
/****************************************************************************
**
** Name: IsSpurInAdjTunerBand
**
** Description: Checks to see if a spur will be present within the IF's
** bandwidth or near the zero IF.
** (fIFOut +/- fIFBW/2, -fIFOut +/- fIFBW/2)
** and
** (0 +/- fZIFBW/2)
**
** ma mb me mf mc md
** <--+-+-+-----------------+-+-+-----------------+-+-+-->
** | ^ 0 ^ |
** ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
** a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
**
** Note that some equations are doubled to prevent round-off
** problems when calculating fIFBW/2
**
** The spur frequencies are computed as:
**
** fSpur = n * f1 - m * f2 - fOffset
**
** Parameters: f1 - The 1st local oscillator (LO) frequency
** of the tuner whose output we are examining
** f2 - The 1st local oscillator (LO) frequency
** of the adjacent tuner
** fOffset - The 2nd local oscillator of the tuner whose
** output we are examining
** fIFOut - Output IF center frequency
** fIFBW - Output IF Bandwidth
** nMaxH - max # of LO harmonics to search
** fp - If spur, positive distance to spur-free band edge (returned)
** fm - If spur, negative distance to spur-free band edge (returned)
**
** Returns: 1 if an LO spur would be present, otherwise 0.
**
** Dependencies: None.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** N/A 01-21-2005 JWS Original, adapted from MT_DoubleConversion.
** 115 03-23-2007 DAD Fix declaration of spur due to truncation
** errors.
** 137 06-18-2007 DAD Ver 1.16: Fix possible divide-by-0 error for
** multi-tuners that have
** (delta IF1) > (f_out-f_outbw/2).
** 177 S 02-26-2008 RSK Ver 1.18: Corrected calculation using LO1 > MAX/2
** Type casts added to preserve correct sign.
**
****************************************************************************/
static u32 IsSpurInAdjTunerBand(u32 bIsMyOutput,
u32 f1,
u32 f2,
u32 fOffset,
u32 fIFOut,
u32 fIFBW,
u32 fZIFBW,
u32 nMaxH, u32 * fp, u32 * fm)
{
u32 bSpurFound = 0;
const u32 fHalf_IFBW = fIFBW / 2;
const u32 fHalf_ZIFBW = fZIFBW / 2;
/* Calculate a scale factor for all frequencies, so that our
calculations all stay within 31 bits */
const u32 f_Scale =
((f1 +
(fOffset + fIFOut +
fHalf_IFBW) / nMaxH) / (MAX_UDATA / 2 / nMaxH)) + 1;
/*
** After this scaling, _f1, _f2, and _f3 are guaranteed to fit into
** signed data types (smaller than MAX_UDATA/2)
*/
const s32 _f1 = (s32) (f1 / f_Scale);
const s32 _f2 = (s32) (f2 / f_Scale);
const s32 _f3 = (s32) (fOffset / f_Scale);
const s32 c = (s32) (fIFOut - fHalf_IFBW) / (s32) f_Scale;
const s32 d = (s32) ((fIFOut + fHalf_IFBW) / f_Scale);
const s32 f = (s32) (fHalf_ZIFBW / f_Scale);
s32 ma, mb, mc, md, me, mf;
s32 fp_ = 0;
s32 fm_ = 0;
s32 n;
/*
** If the other tuner does not have an LO frequency defined,
** assume that we cannot interfere with it
*/
if (f2 == 0)
return 0;
/* Check out all multiples of f1 from -nMaxH to +nMaxH */
for (n = -(s32) nMaxH; n <= (s32) nMaxH; ++n) {
const s32 nf1 = n * _f1;
md = (_f3 + d - nf1) / _f2;
/* If # f2 harmonics > nMaxH, then no spurs present */
if (md <= -(s32) nMaxH)
break;
ma = (_f3 - d - nf1) / _f2;
if ((ma == md) || (ma >= (s32) (nMaxH)))
continue;
mc = (_f3 + c - nf1) / _f2;
if (mc != md) {
const s32 m = (n < 0) ? md : mc;
const s32 fspur = (nf1 + m * _f2 - _f3);
const s32 den = (bIsMyOutput ? n - 1 : n);
if (den == 0) {
fp_ = (d - fspur) * f_Scale;
fm_ = (fspur - c) * f_Scale;
} else {
fp_ =
(s32) RoundAwayFromZero((d - fspur) *
f_Scale, den);
fm_ =
(s32) RoundAwayFromZero((fspur - c) *
f_Scale, den);
}
if (((u32) abs(fm_) >= f_Scale)
&& ((u32) abs(fp_) >= f_Scale)) {
bSpurFound = 1;
break;
}
}
/* Location of Zero-IF-spur to be checked */
mf = (_f3 + f - nf1) / _f2;
me = (_f3 - f - nf1) / _f2;
if (me != mf) {
const s32 m = (n < 0) ? mf : me;
const s32 fspur = (nf1 + m * _f2 - _f3);
const s32 den = (bIsMyOutput ? n - 1 : n);
if (den == 0) {
fp_ = (d - fspur) * f_Scale;
fm_ = (fspur - c) * f_Scale;
} else {
fp_ =
(s32) RoundAwayFromZero((f - fspur) *
f_Scale, den);
fm_ =
(s32) RoundAwayFromZero((fspur + f) *
f_Scale, den);
}
if (((u32) abs(fm_) >= f_Scale)
&& ((u32) abs(fp_) >= f_Scale)) {
bSpurFound = 1;
break;
}
}
mb = (_f3 - c - nf1) / _f2;
if (ma != mb) {
const s32 m = (n < 0) ? mb : ma;
const s32 fspur = (nf1 + m * _f2 - _f3);
const s32 den = (bIsMyOutput ? n - 1 : n);
if (den == 0) {
fp_ = (d - fspur) * f_Scale;
fm_ = (fspur - c) * f_Scale;
} else {
fp_ =
(s32) RoundAwayFromZero((-c - fspur) *
f_Scale, den);
fm_ =
(s32) RoundAwayFromZero((fspur + d) *
f_Scale, den);
}
if (((u32) abs(fm_) >= f_Scale)
&& ((u32) abs(fp_) >= f_Scale)) {
bSpurFound = 1;
break;
}
}
}
/*
** Verify that fm & fp are both positive
** Add one to ensure next 1st IF choice is not right on the edge
*/
if (fp_ < 0) {
*fp = -fm_ + 1;
*fm = -fp_ + 1;
} else if (fp_ > 0) {
*fp = fp_ + 1;
*fm = fm_ + 1;
} else {
*fp = 1;
*fm = abs(fm_) + 1;
}
return bSpurFound;
}
#endif
/****************************************************************************
**
** Name: IsSpurInBand
**
** Description: Checks to see if a spur will be present within the IF's
** bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
**
** ma mb mc md
** <--+-+-+-------------------+-------------------+-+-+-->
** | ^ 0 ^ |
** ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
** a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
**
** Note that some equations are doubled to prevent round-off
** problems when calculating fIFBW/2
**
** Parameters: pAS_Info - Avoid Spurs information block
** fm - If spur, amount f_IF1 has to move negative
** fp - If spur, amount f_IF1 has to move positive
**
** Global: None
**
** Returns: 1 if an LO spur would be present, otherwise 0.
**
** Dependencies: None.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** N/A 11-28-2002 DAD Implemented algorithm from applied patent
**
****************************************************************************/
static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
u32 * fm, u32 * fp)
{
/*
** Calculate LO frequency settings.
*/
u32 n, n0;
const u32 f_LO1 = pAS_Info->f_LO1;
const u32 f_LO2 = pAS_Info->f_LO2;
const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
const u32 c = d - pAS_Info->f_out_bw;
const u32 f = pAS_Info->f_zif_bw / 2;
const u32 f_Scale = (f_LO1 / (MAX_UDATA / 2 / pAS_Info->maxH1)) + 1;
s32 f_nsLO1, f_nsLO2;
s32 f_Spur;
u32 ma, mb, mc, md, me, mf;
u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
#if MT2063_TUNER_CNT > 1
u32 index;
struct MT2063_AvoidSpursData_t *adj;
#endif
*fm = 0;
/*
** For each edge (d, c & f), calculate a scale, based on the gcd
** of f_LO1, f_LO2 and the edge value. Use the larger of this
** gcd-based scale factor or f_Scale.
*/
lo_gcd = MT2063_gcd(f_LO1, f_LO2);
gd_Scale = MT2063_umax((u32) MT2063_gcd(lo_gcd, d), f_Scale);
hgds = gd_Scale / 2;
gc_Scale = MT2063_umax((u32) MT2063_gcd(lo_gcd, c), f_Scale);
hgcs = gc_Scale / 2;
gf_Scale = MT2063_umax((u32) MT2063_gcd(lo_gcd, f), f_Scale);
hgfs = gf_Scale / 2;
n0 = uceil(f_LO2 - d, f_LO1 - f_LO2);
/* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
for (n = n0; n <= pAS_Info->maxH1; ++n) {
md = (n * ((f_LO1 + hgds) / gd_Scale) -
((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
/* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */
if (md >= pAS_Info->maxH1)
break;
ma = (n * ((f_LO1 + hgds) / gd_Scale) +
((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
/* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
if (md == ma)
continue;
mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
if (mc != md) {
f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
f_Spur =
(gc_Scale * (f_nsLO1 - f_nsLO2)) +
n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
*fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
*fm = (((s32) d - f_Spur) / (mc - n)) + 1;
return 1;
}
/* Location of Zero-IF-spur to be checked */
me = (n * ((f_LO1 + hgfs) / gf_Scale) +
((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
if (me != mf) {
f_nsLO1 = n * (f_LO1 / gf_Scale);
f_nsLO2 = me * (f_LO2 / gf_Scale);
f_Spur =
(gf_Scale * (f_nsLO1 - f_nsLO2)) +
n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
*fp = ((f_Spur + (s32) f) / (me - n)) + 1;
*fm = (((s32) f - f_Spur) / (me - n)) + 1;
return 1;
}
mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
if (ma != mb) {
f_nsLO1 = n * (f_LO1 / gc_Scale);
f_nsLO2 = ma * (f_LO2 / gc_Scale);
f_Spur =
(gc_Scale * (f_nsLO1 - f_nsLO2)) +
n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
*fp = (((s32) d + f_Spur) / (ma - n)) + 1;
*fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
return 1;
}
}
#if MT2063_TUNER_CNT > 1
/* If no spur found, see if there are more tuners on the same board */
for (index = 0; index < TunerCount; ++index) {
adj = TunerList[index];
if (pAS_Info == adj) /* skip over our own data, don't process it */
continue;
/* Look for LO-related spurs from the adjacent tuner generated into my IF output */
if (IsSpurInAdjTunerBand(1, /* check my IF output */
pAS_Info->f_LO1, /* my fLO1 */
adj->f_LO1, /* the other tuner's fLO1 */
pAS_Info->f_LO2, /* my fLO2 */
pAS_Info->f_out, /* my fOut */
pAS_Info->f_out_bw, /* my output IF bandwidth */
pAS_Info->f_zif_bw, /* my Zero-IF bandwidth */
pAS_Info->maxH2, fp, /* minimum amount to move LO's positive */
fm)) /* miminum amount to move LO's negative */
return 1;
/* Look for LO-related spurs from my tuner generated into the adjacent tuner's IF output */
if (IsSpurInAdjTunerBand(0, /* check his IF output */
pAS_Info->f_LO1, /* my fLO1 */
adj->f_LO1, /* the other tuner's fLO1 */
adj->f_LO2, /* the other tuner's fLO2 */
adj->f_out, /* the other tuner's fOut */
adj->f_out_bw, /* the other tuner's output IF bandwidth */
pAS_Info->f_zif_bw, /* the other tuner's Zero-IF bandwidth */
adj->maxH2, fp, /* minimum amount to move LO's positive */
fm)) /* miminum amount to move LO's negative */
return 1;
}
#endif
/* No spurs found */
return 0;
}
/*****************************************************************************
**
** Name: MT_AvoidSpurs
**
** Description: Main entry point to avoid spurs.
** Checks for existing spurs in present LO1, LO2 freqs
** and if present, chooses spur-free LO1, LO2 combination
** that tunes the same input/output frequencies.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 096 04-06-2005 DAD Ver 1.11: Fix divide by 0 error if maxH==0.
**
*****************************************************************************/
static u32 MT2063_AvoidSpurs(void *h, struct MT2063_AvoidSpursData_t * pAS_Info)
{
u32 status = MT2063_OK;
u32 fm, fp; /* restricted range on LO's */
pAS_Info->bSpurAvoided = 0;
pAS_Info->nSpursFound = 0;
if (pAS_Info->maxH1 == 0)
return MT2063_OK;
/*
** Avoid LO Generated Spurs
**
** Make sure that have no LO-related spurs within the IF output
** bandwidth.
**
** If there is an LO spur in this band, start at the current IF1 frequency
** and work out until we find a spur-free frequency or run up against the
** 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
** will be unchanged if a spur-free setting is not found.
*/
pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
if (pAS_Info->bSpurPresent) {
u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */
u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */
u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */
u32 delta_IF1;
u32 new_IF1;
/*
** Spur was found, attempt to find a spur-free 1st IF
*/
do {
pAS_Info->nSpursFound++;
/* Raise f_IF1_upper, if needed */
MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
/* Choose next IF1 that is closest to f_IF1_CENTER */
new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
if (new_IF1 > zfIF1) {
pAS_Info->f_LO1 += (new_IF1 - zfIF1);
pAS_Info->f_LO2 += (new_IF1 - zfIF1);
} else {
pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
}
zfIF1 = new_IF1;
if (zfIF1 > pAS_Info->f_if1_Center)
delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
else
delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
}
/*
** Continue while the new 1st IF is still within the 1st IF bandwidth
** and there is a spur in the band (again)
*/
while ((2 * delta_IF1 + pAS_Info->f_out_bw <=
pAS_Info->f_if1_bw)
&& (pAS_Info->bSpurPresent =
IsSpurInBand(pAS_Info, &fm, &fp)));
/*
** Use the LO-spur free values found. If the search went all the way to
** the 1st IF band edge and always found spurs, just leave the original
** choice. It's as "good" as any other.
*/
if (pAS_Info->bSpurPresent == 1) {
status |= MT2063_SPUR_PRESENT_ERR;
pAS_Info->f_LO1 = zfLO1;
pAS_Info->f_LO2 = zfLO2;
} else
pAS_Info->bSpurAvoided = 1;
}
status |=
((pAS_Info->
nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);
return (status);
}
//end of mt2063_spuravoid.c
//=================================================================
//#################################################################
//=================================================================
/*
** The expected version of MT_AvoidSpursData_t
** If the version is different, an updated file is needed from Microtune
*/
/* Expecting version 1.21 of the Spur Avoidance API */
typedef enum {
MT2063_SET_ATTEN,
MT2063_INCR_ATTEN,
MT2063_DECR_ATTEN
} MT2063_ATTEN_CNTL_MODE;
//#define TUNER_MT2063_OPTIMIZATION
/*
** Constants used by the tuning algorithm
*/
#define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
#define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
#define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
#define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
#define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
#define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
#define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
#define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
#define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
#define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
#define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
#define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
#define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
#define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
#define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
#define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
#define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
#define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
/*
** Define the supported Part/Rev codes for the MT2063
*/
#define MT2063_B0 (0x9B)
#define MT2063_B1 (0x9C)
#define MT2063_B2 (0x9D)
#define MT2063_B3 (0x9E)
/*
** The number of Tuner Registers
*/
static const u32 MT2063_Num_Registers = MT2063_REG_END_REGS;
#define USE_GLOBAL_TUNER 0
static u32 nMT2063MaxTuners = 1;
static u32 nMT2063OpenTuners = 0;
/*
** Constants for setting receiver modes.
** (6 modes defined at this time, enumerated by MT2063_RCVR_MODES)
** (DNC1GC & DNC2GC are the values, which are used, when the specific
** DNC Output is selected, the other is always off)
**
** If PAL-L or L' is received, set:
** MT2063_SetParam(hMT2063,MT2063_TAGC,1);
**
** --------------+----------------------------------------------
** Mode 0 : | MT2063_CABLE_QAM
** Mode 1 : | MT2063_CABLE_ANALOG
** Mode 2 : | MT2063_OFFAIR_COFDM
** Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
** Mode 4 : | MT2063_OFFAIR_ANALOG
** Mode 5 : | MT2063_OFFAIR_8VSB
** --------------+----+----+----+----+-----+-----+--------------
** Mode | 0 | 1 | 2 | 3 | 4 | 5 |
** --------------+----+----+----+----+-----+-----+
**
**
*/
static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };
/*
** Local Function Prototypes - not available for external access.
*/
/* Forward declaration(s): */
static u32 MT2063_CalcLO1Mult(u32 * Div, u32 * FracN, u32 f_LO,
u32 f_LO_Step, u32 f_Ref);
static u32 MT2063_CalcLO2Mult(u32 * Div, u32 * FracN, u32 f_LO,
u32 f_LO_Step, u32 f_Ref);
static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num,
u32 denom);
/******************************************************************************
**
** Name: MT2063_Open
**
** Description: Initialize the tuner's register values.
**
** Parameters: MT2063_Addr - Serial bus address of the tuner.
** hMT2063 - Tuner handle passed back.
** hUserData - User-defined data, if needed for the
** MT_ReadSub() & MT_WriteSub functions.
**
** Returns: status:
** MT_OK - No errors
** MT_TUNER_ID_ERR - Tuner Part/Rev code mismatch
** MT_TUNER_INIT_ERR - Tuner initialization failed
** MT_COMM_ERR - Serial bus communications error
** MT_ARG_NULL - Null pointer argument passed
** MT_TUNER_CNT_ERR - Too many tuners open
**
** Dependencies: MT_ReadSub - Read byte(s) of data from the two-wire bus
** MT_WriteSub - Write byte(s) of data to the two-wire bus
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
**
******************************************************************************/
static u32 MT2063_Open(u32 MT2063_Addr, struct MT2063_Info_t **hMT2063, void *hUserData)
{
u32 status = MT2063_OK; /* Status to be returned. */
struct MT2063_Info_t *pInfo = NULL;
struct dvb_frontend *fe = (struct dvb_frontend *)hUserData;
struct mt2063_state *state = fe->tuner_priv;
/* Check the argument before using */
if (hMT2063 == NULL) {
return MT2063_ARG_NULL;
}
/* Default tuner handle to NULL. If successful, it will be reassigned */
if (state->MT2063_init == false) {
pInfo = kzalloc(sizeof(struct MT2063_Info_t), GFP_KERNEL);
if (pInfo == NULL) {
return MT2063_TUNER_OPEN_ERR;
}
pInfo->handle = NULL;
pInfo->address = MAX_UDATA;
pInfo->rcvr_mode = MT2063_CABLE_QAM;
pInfo->hUserData = NULL;
} else {
pInfo = *hMT2063;
}
if (MT2063_NO_ERROR(status)) {
status |= MT2063_RegisterTuner(&pInfo->AS_Data);
}
if (MT2063_NO_ERROR(status)) {
pInfo->handle = (void *) pInfo;
pInfo->hUserData = hUserData;
pInfo->address = MT2063_Addr;
pInfo->rcvr_mode = MT2063_CABLE_QAM;
status |= MT2063_ReInit((void *) pInfo);
}
if (MT2063_IS_ERROR(status))
/* MT2063_Close handles the un-registration of the tuner */
MT2063_Close((void *) pInfo);
else {
state->MT2063_init = true;
*hMT2063 = pInfo->handle;
}
return (status);
}
static u32 MT2063_IsValidHandle(struct MT2063_Info_t *handle)
{
return ((handle != NULL) && (handle->handle == handle)) ? 1 : 0;
}
/******************************************************************************
**
** Name: MT2063_Close
**
** Description: Release the handle to the tuner.
**
** Parameters: hMT2063 - Handle to the MT2063 tuner
**
** Returns: status:
** MT_OK - No errors
** MT_INV_HANDLE - Invalid tuner handle
**
** Dependencies: mt_errordef.h - definition of error codes
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
**
******************************************************************************/
static u32 MT2063_Close(void *hMT2063)
{
struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)hMT2063;
if (!MT2063_IsValidHandle(pInfo))
return MT2063_INV_HANDLE;
/* Unregister tuner with SpurAvoidance routines (if needed) */
MT2063_UnRegisterTuner(&pInfo->AS_Data);
/* Now remove the tuner from our own list of tuners */
pInfo->handle = NULL;
pInfo->address = MAX_UDATA;
pInfo->hUserData = NULL;
//kfree(pInfo);
//pInfo = NULL;
return MT2063_OK;
}
/****************************************************************************
**
** Name: MT2063_GetLocked
**
** Description: Checks to see if LO1 and LO2 are locked.
**
** Parameters: h - Open handle to the tuner (from MT2063_Open).
**
** Returns: status:
** MT_OK - No errors
** MT_UPC_UNLOCK - Upconverter PLL unlocked
** MT_DNC_UNLOCK - Downconverter PLL unlocked
** MT_COMM_ERR - Serial bus communications error
** MT_INV_HANDLE - Invalid tuner handle
**
** Dependencies: MT_ReadSub - Read byte(s) of data from the serial bus
** MT_Sleep - Delay execution for x milliseconds
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
**
****************************************************************************/
static u32 MT2063_GetLocked(void *h)
{
const u32 nMaxWait = 100; /* wait a maximum of 100 msec */
const u32 nPollRate = 2; /* poll status bits every 2 ms */
const u32 nMaxLoops = nMaxWait / nPollRate;
const u8 LO1LK = 0x80;
u8 LO2LK = 0x08;
u32 status = MT2063_OK; /* Status to be returned */
u32 nDelays = 0;
struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h;
if (MT2063_IsValidHandle(pInfo) == 0)
return MT2063_INV_HANDLE;
/* LO2 Lock bit was in a different place for B0 version */
if (pInfo->tuner_id == MT2063_B0)
LO2LK = 0x40;
do {
status |=
MT2063_ReadSub(pInfo->hUserData, pInfo->address,
MT2063_REG_LO_STATUS,
&pInfo->reg[MT2063_REG_LO_STATUS], 1);
if (MT2063_IS_ERROR(status))
return (status);
if ((pInfo->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
(LO1LK | LO2LK)) {
return (status);
}
msleep(nPollRate); /* Wait between retries */
}
while (++nDelays < nMaxLoops);
if ((pInfo->reg[MT2063_REG_LO_STATUS] & LO1LK) == 0x00)
status |= MT2063_UPC_UNLOCK;
if ((pInfo->reg[MT2063_REG_LO_STATUS] & LO2LK) == 0x00)
status |= MT2063_DNC_UNLOCK;
return (status);
}
/****************************************************************************
**
** Name: MT2063_GetParam
**
** Description: Gets a tuning algorithm parameter.
**
** This function provides access to the internals of the
** tuning algorithm - mostly for testing purposes.
**
** Parameters: h - Tuner handle (returned by MT2063_Open)
** param - Tuning algorithm parameter
** (see enum MT2063_Param)
** pValue - ptr to returned value
**
** param Description
** ---------------------- --------------------------------
** MT2063_IC_ADDR Serial Bus address of this tuner
** MT2063_MAX_OPEN Max # of MT2063's allowed open
** MT2063_NUM_OPEN # of MT2063's open
** MT2063_SRO_FREQ crystal frequency
** MT2063_STEPSIZE minimum tuning step size
** MT2063_INPUT_FREQ input center frequency
** MT2063_LO1_FREQ LO1 Frequency
** MT2063_LO1_STEPSIZE LO1 minimum step size
** MT2063_LO1_FRACN_AVOID LO1 FracN keep-out region
** MT2063_IF1_ACTUAL Current 1st IF in use
** MT2063_IF1_REQUEST Requested 1st IF
** MT2063_IF1_CENTER Center of 1st IF SAW filter
** MT2063_IF1_BW Bandwidth of 1st IF SAW filter
** MT2063_ZIF_BW zero-IF bandwidth
** MT2063_LO2_FREQ LO2 Frequency
** MT2063_LO2_STEPSIZE LO2 minimum step size
** MT2063_LO2_FRACN_AVOID LO2 FracN keep-out region
** MT2063_OUTPUT_FREQ output center frequency
** MT2063_OUTPUT_BW output bandwidth
** MT2063_LO_SEPARATION min inter-tuner LO separation
** MT2063_AS_ALG ID of avoid-spurs algorithm in use
** MT2063_MAX_HARM1 max # of intra-tuner harmonics
** MT2063_MAX_HARM2 max # of inter-tuner harmonics
** MT2063_EXCL_ZONES # of 1st IF exclusion zones
** MT2063_NUM_SPURS # of spurs found/avoided
** MT2063_SPUR_AVOIDED >0 spurs avoided
** MT2063_SPUR_PRESENT >0 spurs in output (mathematically)
** MT2063_RCVR_MODE Predefined modes.
** MT2063_ACLNA LNA attenuator gain code
** MT2063_ACRF RF attenuator gain code
** MT2063_ACFIF FIF attenuator gain code
** MT2063_ACLNA_MAX LNA attenuator limit
** MT2063_ACRF_MAX RF attenuator limit
** MT2063_ACFIF_MAX FIF attenuator limit
** MT2063_PD1 Actual value of PD1
** MT2063_PD2 Actual value of PD2
** MT2063_DNC_OUTPUT_ENABLE DNC output selection
** MT2063_VGAGC VGA gain code
** MT2063_VGAOI VGA output current
** MT2063_TAGC TAGC setting
** MT2063_AMPGC AMP gain code
** MT2063_AVOID_DECT Avoid DECT Frequencies
** MT2063_CTFILT_SW Cleartune filter selection
**
** Usage: status |= MT2063_GetParam(hMT2063,
** MT2063_IF1_ACTUAL,
** &f_IF1_Actual);
**
** Returns: status:
** MT_OK - No errors
** MT_INV_HANDLE - Invalid tuner handle
** MT_ARG_NULL - Null pointer argument passed
** MT_ARG_RANGE - Invalid parameter requested
**
** Dependencies: USERS MUST CALL MT2063_Open() FIRST!
**
** See Also: MT2063_SetParam, MT2063_Open
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
** 154 09-13-2007 RSK Ver 1.05: Get/SetParam changes for LOx_FREQ
** 10-31-2007 PINZ Ver 1.08: Get/SetParam add VGAGC, VGAOI, AMPGC, TAGC
** 173 M 01-23-2008 RSK Ver 1.12: Read LO1C and LO2C registers from HW
** in GetParam.
** 04-18-2008 PINZ Ver 1.15: Add SetParam LNARIN & PDxTGT
** Split SetParam up to ACLNA / ACLNA_MAX
** removed ACLNA_INRC/DECR (+RF & FIF)
** removed GCUAUTO / BYPATNDN/UP
** 175 I 16-06-2008 PINZ Ver 1.16: Add control to avoid US DECT freqs.
** 175 I 06-19-2008 RSK Ver 1.17: Refactor DECT control to SpurAvoid.
** 06-24-2008 PINZ Ver 1.18: Add Get/SetParam CTFILT_SW
**
****************************************************************************/
static u32 MT2063_GetParam(void *h, enum MT2063_Param param, u32 * pValue)
{
u32 status = MT2063_OK; /* Status to be returned */
struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h;
u32 Div;
u32 Num;
if (pValue == NULL)
status |= MT2063_ARG_NULL;
/* Verify that the handle passed points to a valid tuner */
if (MT2063_IsValidHandle(pInfo) == 0)
status |= MT2063_INV_HANDLE;
if (MT2063_NO_ERROR(status)) {
switch (param) {
/* Serial Bus address of this tuner */
case MT2063_IC_ADDR:
*pValue = pInfo->address;
break;
/* Max # of MT2063's allowed to be open */
case MT2063_MAX_OPEN:
*pValue = nMT2063MaxTuners;
break;
/* # of MT2063's open */
case MT2063_NUM_OPEN:
*pValue = nMT2063OpenTuners;
break;
/* crystal frequency */
case MT2063_SRO_FREQ:
*pValue = pInfo->AS_Data.f_ref;
break;
/* minimum tuning step size */
case MT2063_STEPSIZE:
*pValue = pInfo->AS_Data.f_LO2_Step;
break;
/* input center frequency */
case MT2063_INPUT_FREQ:
*pValue = pInfo->AS_Data.f_in;
break;
/* LO1 Frequency */
case MT2063_LO1_FREQ:
{
/* read the actual tuner register values for LO1C_1 and LO1C_2 */
status |=
MT2063_ReadSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO1C_1,
&pInfo->
reg[MT2063_REG_LO1C_1], 2);
Div = pInfo->reg[MT2063_REG_LO1C_1];
Num = pInfo->reg[MT2063_REG_LO1C_2] & 0x3F;
pInfo->AS_Data.f_LO1 =
(pInfo->AS_Data.f_ref * Div) +
MT2063_fLO_FractionalTerm(pInfo->AS_Data.
f_ref, Num, 64);
}
*pValue = pInfo->AS_Data.f_LO1;
break;
/* LO1 minimum step size */
case MT2063_LO1_STEPSIZE:
*pValue = pInfo->AS_Data.f_LO1_Step;
break;
/* LO1 FracN keep-out region */
case MT2063_LO1_FRACN_AVOID_PARAM:
*pValue = pInfo->AS_Data.f_LO1_FracN_Avoid;
break;
/* Current 1st IF in use */
case MT2063_IF1_ACTUAL:
*pValue = pInfo->f_IF1_actual;
break;
/* Requested 1st IF */
case MT2063_IF1_REQUEST:
*pValue = pInfo->AS_Data.f_if1_Request;
break;
/* Center of 1st IF SAW filter */
case MT2063_IF1_CENTER:
*pValue = pInfo->AS_Data.f_if1_Center;
break;
/* Bandwidth of 1st IF SAW filter */
case MT2063_IF1_BW:
*pValue = pInfo->AS_Data.f_if1_bw;
break;
/* zero-IF bandwidth */
case MT2063_ZIF_BW:
*pValue = pInfo->AS_Data.f_zif_bw;
break;
/* LO2 Frequency */
case MT2063_LO2_FREQ:
{
/* Read the actual tuner register values for LO2C_1, LO2C_2 and LO2C_3 */
status |=
MT2063_ReadSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO2C_1,
&pInfo->
reg[MT2063_REG_LO2C_1], 3);
Div =
(pInfo->reg[MT2063_REG_LO2C_1] & 0xFE) >> 1;
Num =
((pInfo->
reg[MT2063_REG_LO2C_1] & 0x01) << 12) |
(pInfo->
reg[MT2063_REG_LO2C_2] << 4) | (pInfo->
reg
[MT2063_REG_LO2C_3]
& 0x00F);
pInfo->AS_Data.f_LO2 =
(pInfo->AS_Data.f_ref * Div) +
MT2063_fLO_FractionalTerm(pInfo->AS_Data.
f_ref, Num, 8191);
}
*pValue = pInfo->AS_Data.f_LO2;
break;
/* LO2 minimum step size */
case MT2063_LO2_STEPSIZE:
*pValue = pInfo->AS_Data.f_LO2_Step;
break;
/* LO2 FracN keep-out region */
case MT2063_LO2_FRACN_AVOID:
*pValue = pInfo->AS_Data.f_LO2_FracN_Avoid;
break;
/* output center frequency */
case MT2063_OUTPUT_FREQ:
*pValue = pInfo->AS_Data.f_out;
break;
/* output bandwidth */
case MT2063_OUTPUT_BW:
*pValue = pInfo->AS_Data.f_out_bw - 750000;
break;
/* min inter-tuner LO separation */
case MT2063_LO_SEPARATION:
*pValue = pInfo->AS_Data.f_min_LO_Separation;
break;
/* ID of avoid-spurs algorithm in use */
case MT2063_AS_ALG:
*pValue = pInfo->AS_Data.nAS_Algorithm;
break;
/* max # of intra-tuner harmonics */
case MT2063_MAX_HARM1:
*pValue = pInfo->AS_Data.maxH1;
break;
/* max # of inter-tuner harmonics */
case MT2063_MAX_HARM2:
*pValue = pInfo->AS_Data.maxH2;
break;
/* # of 1st IF exclusion zones */
case MT2063_EXCL_ZONES:
*pValue = pInfo->AS_Data.nZones;
break;
/* # of spurs found/avoided */
case MT2063_NUM_SPURS:
*pValue = pInfo->AS_Data.nSpursFound;
break;
/* >0 spurs avoided */
case MT2063_SPUR_AVOIDED:
*pValue = pInfo->AS_Data.bSpurAvoided;
break;
/* >0 spurs in output (mathematically) */
case MT2063_SPUR_PRESENT:
*pValue = pInfo->AS_Data.bSpurPresent;
break;
/* Predefined receiver setup combination */
case MT2063_RCVR_MODE:
*pValue = pInfo->rcvr_mode;
break;
case MT2063_PD1:
case MT2063_PD2:
{
u8 mask = (param == MT2063_PD1 ? 0x01 : 0x03); /* PD1 vs PD2 */
u8 orig = (pInfo->reg[MT2063_REG_BYP_CTRL]);
u8 reg = (orig & 0xF1) | mask; /* Only set 3 bits (not 5) */
int i;
*pValue = 0;
/* Initiate ADC output to reg 0x0A */
if (reg != orig)
status |=
MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_BYP_CTRL,
&reg, 1);
if (MT2063_IS_ERROR(status))
return (status);
for (i = 0; i < 8; i++) {
status |=
MT2063_ReadSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_ADC_OUT,
&pInfo->
reg
[MT2063_REG_ADC_OUT],
1);
if (MT2063_NO_ERROR(status))
*pValue +=
pInfo->
reg[MT2063_REG_ADC_OUT];
else {
if (i)
*pValue /= i;
return (status);
}
}
*pValue /= 8; /* divide by number of reads */
*pValue >>= 2; /* only want 6 MSB's out of 8 */
/* Restore value of Register BYP_CTRL */
if (reg != orig)
status |=
MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_BYP_CTRL,
&orig, 1);
}
break;
/* Get LNA attenuator code */
case MT2063_ACLNA:
{
u8 val;
status |=
MT2063_GetReg(pInfo, MT2063_REG_XO_STATUS,
&val);
*pValue = val & 0x1f;
}
break;
/* Get RF attenuator code */
case MT2063_ACRF:
{
u8 val;
status |=
MT2063_GetReg(pInfo, MT2063_REG_RF_STATUS,
&val);
*pValue = val & 0x1f;
}
break;
/* Get FIF attenuator code */
case MT2063_ACFIF:
{
u8 val;
status |=
MT2063_GetReg(pInfo, MT2063_REG_FIF_STATUS,
&val);
*pValue = val & 0x1f;
}
break;
/* Get LNA attenuator limit */
case MT2063_ACLNA_MAX:
{
u8 val;
status |=
MT2063_GetReg(pInfo, MT2063_REG_LNA_OV,
&val);
*pValue = val & 0x1f;
}
break;
/* Get RF attenuator limit */
case MT2063_ACRF_MAX:
{
u8 val;
status |=
MT2063_GetReg(pInfo, MT2063_REG_RF_OV,
&val);
*pValue = val & 0x1f;
}
break;
/* Get FIF attenuator limit */
case MT2063_ACFIF_MAX:
{
u8 val;
status |=
MT2063_GetReg(pInfo, MT2063_REG_FIF_OV,
&val);
*pValue = val & 0x1f;
}
break;
/* Get current used DNC output */
case MT2063_DNC_OUTPUT_ENABLE:
{
if ((pInfo->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */
if ((pInfo->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
*pValue =
(u32) MT2063_DNC_NONE;
else
*pValue =
(u32) MT2063_DNC_2;
} else { /* DNC1 is on */
if ((pInfo->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
*pValue =
(u32) MT2063_DNC_1;
else
*pValue =
(u32) MT2063_DNC_BOTH;
}
}
break;
/* Get VGA Gain Code */
case MT2063_VGAGC:
*pValue =
((pInfo->reg[MT2063_REG_VGA_GAIN] & 0x0C) >> 2);
break;
/* Get VGA bias current */
case MT2063_VGAOI:
*pValue = (pInfo->reg[MT2063_REG_RSVD_31] & 0x07);
break;
/* Get TAGC setting */
case MT2063_TAGC:
*pValue = (pInfo->reg[MT2063_REG_RSVD_1E] & 0x03);
break;
/* Get AMP Gain Code */
case MT2063_AMPGC:
*pValue = (pInfo->reg[MT2063_REG_TEMP_SEL] & 0x03);
break;
/* Avoid DECT Frequencies */
case MT2063_AVOID_DECT:
*pValue = pInfo->AS_Data.avoidDECT;
break;
/* Cleartune filter selection: 0 - by IC (default), 1 - by software */
case MT2063_CTFILT_SW:
*pValue = pInfo->ctfilt_sw;
break;
case MT2063_EOP:
default:
status |= MT2063_ARG_RANGE;
}
}
return (status);
}
/****************************************************************************
**
** Name: MT2063_GetReg
**
** Description: Gets an MT2063 register.
**
** Parameters: h - Tuner handle (returned by MT2063_Open)
** reg - MT2063 register/subaddress location
** *val - MT2063 register/subaddress value
**
** Returns: status:
** MT_OK - No errors
** MT_COMM_ERR - Serial bus communications error
** MT_INV_HANDLE - Invalid tuner handle
** MT_ARG_NULL - Null pointer argument passed
** MT_ARG_RANGE - Argument out of range
**
** Dependencies: USERS MUST CALL MT2063_Open() FIRST!
**
** Use this function if you need to read a register from
** the MT2063.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
**
****************************************************************************/
static u32 MT2063_GetReg(void *h, u8 reg, u8 * val)
{
u32 status = MT2063_OK; /* Status to be returned */
struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h;
/* Verify that the handle passed points to a valid tuner */
if (MT2063_IsValidHandle(pInfo) == 0)
status |= MT2063_INV_HANDLE;
if (val == NULL)
status |= MT2063_ARG_NULL;
if (reg >= MT2063_REG_END_REGS)
status |= MT2063_ARG_RANGE;
if (MT2063_NO_ERROR(status)) {
status |=
MT2063_ReadSub(pInfo->hUserData, pInfo->address, reg,
&pInfo->reg[reg], 1);
if (MT2063_NO_ERROR(status))
*val = pInfo->reg[reg];
}
return (status);
}
/******************************************************************************
**
** Name: MT2063_SetReceiverMode
**
** Description: Set the MT2063 receiver mode
**
** --------------+----------------------------------------------
** Mode 0 : | MT2063_CABLE_QAM
** Mode 1 : | MT2063_CABLE_ANALOG
** Mode 2 : | MT2063_OFFAIR_COFDM
** Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
** Mode 4 : | MT2063_OFFAIR_ANALOG
** Mode 5 : | MT2063_OFFAIR_8VSB
** --------------+----+----+----+----+-----+--------------------
** (DNC1GC & DNC2GC are the values, which are used, when the specific
** DNC Output is selected, the other is always off)
**
** |<---------- Mode -------------->|
** Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
** ------------+-----+-----+-----+-----+-----+-----+
** RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
** LNARin | 0 | 0 | 3 | 3 | 3 | 3
** FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
** FIFFq | 0 | 0 | 0 | 0 | 0 | 0
** DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
** DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
** GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
** LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
** LNA Target | 44 | 43 | 43 | 43 | 43 | 43
** ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
** RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
** PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
** ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
** FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
** PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
**
**
** Parameters: pInfo - ptr to MT2063_Info_t structure
** Mode - desired reciever mode
**
** Usage: status = MT2063_SetReceiverMode(hMT2063, Mode);
**
** Returns: status:
** MT_OK - No errors
** MT_COMM_ERR - Serial bus communications error
**
** Dependencies: MT2063_SetReg - Write a byte of data to a HW register.
** Assumes that the tuner cache is valid.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
** N/A 01-10-2007 PINZ Added additional GCU Settings, FIFF Calib will be triggered
** 155 10-01-2007 DAD Ver 1.06: Add receiver mode for SECAM positive
** modulation
** (MT2063_ANALOG_TV_POS_NO_RFAGC_MODE)
** N/A 10-22-2007 PINZ Ver 1.07: Changed some Registers at init to have
** the same settings as with MT Launcher
** N/A 10-30-2007 PINZ Add SetParam VGAGC & VGAOI
** Add SetParam DNC_OUTPUT_ENABLE
** Removed VGAGC from receiver mode,
** default now 1
** N/A 10-31-2007 PINZ Ver 1.08: Add SetParam TAGC, removed from rcvr-mode
** Add SetParam AMPGC, removed from rcvr-mode
** Corrected names of GCU values
** reorganized receiver modes, removed,
** (MT2063_ANALOG_TV_POS_NO_RFAGC_MODE)
** Actualized Receiver-Mode values
** N/A 11-12-2007 PINZ Ver 1.09: Actualized Receiver-Mode values
** N/A 11-27-2007 PINZ Improved buffered writing
** 01-03-2008 PINZ Ver 1.10: Added a trigger of BYPATNUP for
** correct wakeup of the LNA after shutdown
** Set AFCsd = 1 as default
** Changed CAP1sel default
** 01-14-2008 PINZ Ver 1.11: Updated gain settings
** 04-18-2008 PINZ Ver 1.15: Add SetParam LNARIN & PDxTGT
** Split SetParam up to ACLNA / ACLNA_MAX
** removed ACLNA_INRC/DECR (+RF & FIF)
** removed GCUAUTO / BYPATNDN/UP
**
******************************************************************************/
static u32 MT2063_SetReceiverMode(struct MT2063_Info_t *pInfo,
enum MT2063_RCVR_MODES Mode)
{
u32 status = MT2063_OK; /* Status to be returned */
u8 val;
u32 longval;
if (Mode >= MT2063_NUM_RCVR_MODES)
status = MT2063_ARG_RANGE;
/* RFAGCen */
if (MT2063_NO_ERROR(status)) {
val =
(pInfo->
reg[MT2063_REG_PD1_TGT] & (u8) ~ 0x40) | (RFAGCEN[Mode]
? 0x40 :
0x00);
if (pInfo->reg[MT2063_REG_PD1_TGT] != val) {
status |= MT2063_SetReg(pInfo, MT2063_REG_PD1_TGT, val);
}
}
/* LNARin */
if (MT2063_NO_ERROR(status)) {
status |= MT2063_SetParam(pInfo, MT2063_LNA_RIN, LNARIN[Mode]);
}
/* FIFFQEN and FIFFQ */
if (MT2063_NO_ERROR(status)) {
val =
(pInfo->
reg[MT2063_REG_FIFF_CTRL2] & (u8) ~ 0xF0) |
(FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
if (pInfo->reg[MT2063_REG_FIFF_CTRL2] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_FIFF_CTRL2, val);
/* trigger FIFF calibration, needed after changing FIFFQ */
val =
(pInfo->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01);
status |=
MT2063_SetReg(pInfo, MT2063_REG_FIFF_CTRL, val);
val =
(pInfo->
reg[MT2063_REG_FIFF_CTRL] & (u8) ~ 0x01);
status |=
MT2063_SetReg(pInfo, MT2063_REG_FIFF_CTRL, val);
}
}
/* DNC1GC & DNC2GC */
status |= MT2063_GetParam(pInfo, MT2063_DNC_OUTPUT_ENABLE, &longval);
status |= MT2063_SetParam(pInfo, MT2063_DNC_OUTPUT_ENABLE, longval);
/* acLNAmax */
if (MT2063_NO_ERROR(status)) {
status |=
MT2063_SetParam(pInfo, MT2063_ACLNA_MAX, ACLNAMAX[Mode]);
}
/* LNATGT */
if (MT2063_NO_ERROR(status)) {
status |= MT2063_SetParam(pInfo, MT2063_LNA_TGT, LNATGT[Mode]);
}
/* ACRF */
if (MT2063_NO_ERROR(status)) {
status |=
MT2063_SetParam(pInfo, MT2063_ACRF_MAX, ACRFMAX[Mode]);
}
/* PD1TGT */
if (MT2063_NO_ERROR(status)) {
status |= MT2063_SetParam(pInfo, MT2063_PD1_TGT, PD1TGT[Mode]);
}
/* FIFATN */
if (MT2063_NO_ERROR(status)) {
status |=
MT2063_SetParam(pInfo, MT2063_ACFIF_MAX, ACFIFMAX[Mode]);
}
/* PD2TGT */
if (MT2063_NO_ERROR(status)) {
status |= MT2063_SetParam(pInfo, MT2063_PD2_TGT, PD2TGT[Mode]);
}
/* Ignore ATN Overload */
if (MT2063_NO_ERROR(status)) {
val =
(pInfo->
reg[MT2063_REG_LNA_TGT] & (u8) ~ 0x80) | (RFOVDIS[Mode]
? 0x80 :
0x00);
if (pInfo->reg[MT2063_REG_LNA_TGT] != val) {
status |= MT2063_SetReg(pInfo, MT2063_REG_LNA_TGT, val);
}
}
/* Ignore FIF Overload */
if (MT2063_NO_ERROR(status)) {
val =
(pInfo->
reg[MT2063_REG_PD1_TGT] & (u8) ~ 0x80) |
(FIFOVDIS[Mode] ? 0x80 : 0x00);
if (pInfo->reg[MT2063_REG_PD1_TGT] != val) {
status |= MT2063_SetReg(pInfo, MT2063_REG_PD1_TGT, val);
}
}
if (MT2063_NO_ERROR(status))
pInfo->rcvr_mode = Mode;
return (status);
}
/******************************************************************************
**
** Name: MT2063_ReInit
**
** Description: Initialize the tuner's register values.
**
** Parameters: h - Tuner handle (returned by MT2063_Open)
**
** Returns: status:
** MT_OK - No errors
** MT_TUNER_ID_ERR - Tuner Part/Rev code mismatch
** MT_INV_HANDLE - Invalid tuner handle
** MT_COMM_ERR - Serial bus communications error
**
** Dependencies: MT_ReadSub - Read byte(s) of data from the two-wire bus
** MT_WriteSub - Write byte(s) of data to the two-wire bus
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
** 148 09-04-2007 RSK Ver 1.02: Corrected logic of Reg 3B Reference
** 153 09-07-2007 RSK Ver 1.03: Lock Time improvements
** N/A 10-31-2007 PINZ Ver 1.08: Changed values suitable to rcvr-mode 0
** N/A 11-12-2007 PINZ Ver 1.09: Changed values suitable to rcvr-mode 0
** N/A 01-03-2007 PINZ Ver 1.10: Added AFCsd = 1 into defaults
** N/A 01-04-2007 PINZ Ver 1.10: Changed CAP1sel default
** 01-14-2008 PINZ Ver 1.11: Updated gain settings
** 03-18-2008 PINZ Ver 1.13: Added Support for B3
** 175 I 06-19-2008 RSK Ver 1.17: Refactor DECT control to SpurAvoid.
** 06-24-2008 PINZ Ver 1.18: Add Get/SetParam CTFILT_SW
**
******************************************************************************/
static u32 MT2063_ReInit(void *h)
{
u8 all_resets = 0xF0; /* reset/load bits */
u32 status = MT2063_OK; /* Status to be returned */
struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h;
u8 *def = NULL;
u8 MT2063B0_defaults[] = { /* Reg, Value */
0x19, 0x05,
0x1B, 0x1D,
0x1C, 0x1F,
0x1D, 0x0F,
0x1E, 0x3F,
0x1F, 0x0F,
0x20, 0x3F,
0x22, 0x21,
0x23, 0x3F,
0x24, 0x20,
0x25, 0x3F,
0x27, 0xEE,
0x2C, 0x27, /* bit at 0x20 is cleared below */
0x30, 0x03,
0x2C, 0x07, /* bit at 0x20 is cleared here */
0x2D, 0x87,
0x2E, 0xAA,
0x28, 0xE1, /* Set the FIFCrst bit here */
0x28, 0xE0, /* Clear the FIFCrst bit here */
0x00
};
/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
u8 MT2063B1_defaults[] = { /* Reg, Value */
0x05, 0xF0,
0x11, 0x10, /* New Enable AFCsd */
0x19, 0x05,
0x1A, 0x6C,
0x1B, 0x24,
0x1C, 0x28,
0x1D, 0x8F,
0x1E, 0x14,
0x1F, 0x8F,
0x20, 0x57,
0x22, 0x21, /* New - ver 1.03 */
0x23, 0x3C, /* New - ver 1.10 */
0x24, 0x20, /* New - ver 1.03 */
0x2C, 0x24, /* bit at 0x20 is cleared below */
0x2D, 0x87, /* FIFFQ=0 */
0x2F, 0xF3,
0x30, 0x0C, /* New - ver 1.11 */
0x31, 0x1B, /* New - ver 1.11 */
0x2C, 0x04, /* bit at 0x20 is cleared here */
0x28, 0xE1, /* Set the FIFCrst bit here */
0x28, 0xE0, /* Clear the FIFCrst bit here */
0x00
};
/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
u8 MT2063B3_defaults[] = { /* Reg, Value */
0x05, 0xF0,
0x19, 0x3D,
0x2C, 0x24, /* bit at 0x20 is cleared below */
0x2C, 0x04, /* bit at 0x20 is cleared here */
0x28, 0xE1, /* Set the FIFCrst bit here */
0x28, 0xE0, /* Clear the FIFCrst bit here */
0x00
};
/* Verify that the handle passed points to a valid tuner */
if (MT2063_IsValidHandle(pInfo) == 0)
status |= MT2063_INV_HANDLE;
/* Read the Part/Rev code from the tuner */
if (MT2063_NO_ERROR(status)) {
status |=
MT2063_ReadSub(pInfo->hUserData, pInfo->address,
MT2063_REG_PART_REV, pInfo->reg, 1);
}
if (MT2063_NO_ERROR(status) /* Check the part/rev code */
&&((pInfo->reg[MT2063_REG_PART_REV] != MT2063_B0) /* MT2063 B0 */
&&(pInfo->reg[MT2063_REG_PART_REV] != MT2063_B1) /* MT2063 B1 */
&&(pInfo->reg[MT2063_REG_PART_REV] != MT2063_B3))) /* MT2063 B3 */
status |= MT2063_TUNER_ID_ERR; /* Wrong tuner Part/Rev code */
/* Read the Part/Rev code (2nd byte) from the tuner */
if (MT2063_NO_ERROR(status))
status |=
MT2063_ReadSub(pInfo->hUserData, pInfo->address,
MT2063_REG_RSVD_3B,
&pInfo->reg[MT2063_REG_RSVD_3B], 1);
if (MT2063_NO_ERROR(status) /* Check the 2nd part/rev code */
&&((pInfo->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) /* b7 != 0 ==> NOT MT2063 */
status |= MT2063_TUNER_ID_ERR; /* Wrong tuner Part/Rev code */
/* Reset the tuner */
if (MT2063_NO_ERROR(status))
status |= MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO2CQ_3, &all_resets, 1);
/* change all of the default values that vary from the HW reset values */
/* def = (pInfo->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
switch (pInfo->reg[MT2063_REG_PART_REV]) {
case MT2063_B3:
def = MT2063B3_defaults;
break;
case MT2063_B1:
def = MT2063B1_defaults;
break;
case MT2063_B0:
def = MT2063B0_defaults;
break;
default:
status |= MT2063_TUNER_ID_ERR;
break;
}
while (MT2063_NO_ERROR(status) && *def) {
u8 reg = *def++;
u8 val = *def++;
status |=
MT2063_WriteSub(pInfo->hUserData, pInfo->address, reg, &val,
1);
}
/* Wait for FIFF location to complete. */
if (MT2063_NO_ERROR(status)) {
u32 FCRUN = 1;
s32 maxReads = 10;
while (MT2063_NO_ERROR(status) && (FCRUN != 0)
&& (maxReads-- > 0)) {
msleep(2);
status |= MT2063_ReadSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_XO_STATUS,
&pInfo->
reg[MT2063_REG_XO_STATUS], 1);
FCRUN = (pInfo->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
}
if (FCRUN != 0)
status |= MT2063_TUNER_INIT_ERR | MT2063_TUNER_TIMEOUT;
if (MT2063_NO_ERROR(status)) /* Re-read FIFFC value */
status |=
MT2063_ReadSub(pInfo->hUserData, pInfo->address,
MT2063_REG_FIFFC,
&pInfo->reg[MT2063_REG_FIFFC], 1);
}
/* Read back all the registers from the tuner */
if (MT2063_NO_ERROR(status))
status |= MT2063_ReadSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_PART_REV,
pInfo->reg, MT2063_REG_END_REGS);
if (MT2063_NO_ERROR(status)) {
/* Initialize the tuner state. */
pInfo->version = MT2063_VERSION;
pInfo->tuner_id = pInfo->reg[MT2063_REG_PART_REV];
pInfo->AS_Data.f_ref = MT2063_REF_FREQ;
pInfo->AS_Data.f_if1_Center =
(pInfo->AS_Data.f_ref / 8) *
((u32) pInfo->reg[MT2063_REG_FIFFC] + 640);
pInfo->AS_Data.f_if1_bw = MT2063_IF1_BW;
pInfo->AS_Data.f_out = 43750000UL;
pInfo->AS_Data.f_out_bw = 6750000UL;
pInfo->AS_Data.f_zif_bw = MT2063_ZIF_BW;
pInfo->AS_Data.f_LO1_Step = pInfo->AS_Data.f_ref / 64;
pInfo->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
pInfo->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
pInfo->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
pInfo->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
pInfo->AS_Data.f_if1_Request = pInfo->AS_Data.f_if1_Center;
pInfo->AS_Data.f_LO1 = 2181000000UL;
pInfo->AS_Data.f_LO2 = 1486249786UL;
pInfo->f_IF1_actual = pInfo->AS_Data.f_if1_Center;
pInfo->AS_Data.f_in =
pInfo->AS_Data.f_LO1 - pInfo->f_IF1_actual;
pInfo->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
pInfo->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
pInfo->num_regs = MT2063_REG_END_REGS;
pInfo->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
pInfo->ctfilt_sw = 0;
}
if (MT2063_NO_ERROR(status)) {
pInfo->CTFiltMax[0] = 69230000;
pInfo->CTFiltMax[1] = 105770000;
pInfo->CTFiltMax[2] = 140350000;
pInfo->CTFiltMax[3] = 177110000;
pInfo->CTFiltMax[4] = 212860000;
pInfo->CTFiltMax[5] = 241130000;
pInfo->CTFiltMax[6] = 274370000;
pInfo->CTFiltMax[7] = 309820000;
pInfo->CTFiltMax[8] = 342450000;
pInfo->CTFiltMax[9] = 378870000;
pInfo->CTFiltMax[10] = 416210000;
pInfo->CTFiltMax[11] = 456500000;
pInfo->CTFiltMax[12] = 495790000;
pInfo->CTFiltMax[13] = 534530000;
pInfo->CTFiltMax[14] = 572610000;
pInfo->CTFiltMax[15] = 598970000;
pInfo->CTFiltMax[16] = 635910000;
pInfo->CTFiltMax[17] = 672130000;
pInfo->CTFiltMax[18] = 714840000;
pInfo->CTFiltMax[19] = 739660000;
pInfo->CTFiltMax[20] = 770410000;
pInfo->CTFiltMax[21] = 814660000;
pInfo->CTFiltMax[22] = 846950000;
pInfo->CTFiltMax[23] = 867820000;
pInfo->CTFiltMax[24] = 915980000;
pInfo->CTFiltMax[25] = 947450000;
pInfo->CTFiltMax[26] = 983110000;
pInfo->CTFiltMax[27] = 1021630000;
pInfo->CTFiltMax[28] = 1061870000;
pInfo->CTFiltMax[29] = 1098330000;
pInfo->CTFiltMax[30] = 1138990000;
}
/*
** Fetch the FCU osc value and use it and the fRef value to
** scale all of the Band Max values
*/
if (MT2063_NO_ERROR(status)) {
u32 fcu_osc;
u32 i;
pInfo->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
status |=
MT2063_WriteSub(pInfo->hUserData, pInfo->address,
MT2063_REG_CTUNE_CTRL,
&pInfo->reg[MT2063_REG_CTUNE_CTRL], 1);
/* Read the ClearTune filter calibration value */
status |=
MT2063_ReadSub(pInfo->hUserData, pInfo->address,
MT2063_REG_FIFFC,
&pInfo->reg[MT2063_REG_FIFFC], 1);
fcu_osc = pInfo->reg[MT2063_REG_FIFFC];
pInfo->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
status |=
MT2063_WriteSub(pInfo->hUserData, pInfo->address,
MT2063_REG_CTUNE_CTRL,
&pInfo->reg[MT2063_REG_CTUNE_CTRL], 1);
/* Adjust each of the values in the ClearTune filter cross-over table */
for (i = 0; i < 31; i++) {
pInfo->CTFiltMax[i] =
(pInfo->CTFiltMax[i] / 768) * (fcu_osc + 640);
}
}
return (status);
}
/****************************************************************************
**
** Name: MT2063_SetParam
**
** Description: Sets a tuning algorithm parameter.
**
** This function provides access to the internals of the
** tuning algorithm. You can override many of the tuning
** algorithm defaults using this function.
**
** Parameters: h - Tuner handle (returned by MT2063_Open)
** param - Tuning algorithm parameter
** (see enum MT2063_Param)
** nValue - value to be set
**
** param Description
** ---------------------- --------------------------------
** MT2063_SRO_FREQ crystal frequency
** MT2063_STEPSIZE minimum tuning step size
** MT2063_LO1_FREQ LO1 frequency
** MT2063_LO1_STEPSIZE LO1 minimum step size
** MT2063_LO1_FRACN_AVOID LO1 FracN keep-out region
** MT2063_IF1_REQUEST Requested 1st IF
** MT2063_ZIF_BW zero-IF bandwidth
** MT2063_LO2_FREQ LO2 frequency
** MT2063_LO2_STEPSIZE LO2 minimum step size
** MT2063_LO2_FRACN_AVOID LO2 FracN keep-out region
** MT2063_OUTPUT_FREQ output center frequency
** MT2063_OUTPUT_BW output bandwidth
** MT2063_LO_SEPARATION min inter-tuner LO separation
** MT2063_MAX_HARM1 max # of intra-tuner harmonics
** MT2063_MAX_HARM2 max # of inter-tuner harmonics
** MT2063_RCVR_MODE Predefined modes
** MT2063_LNA_RIN Set LNA Rin (*)
** MT2063_LNA_TGT Set target power level at LNA (*)
** MT2063_PD1_TGT Set target power level at PD1 (*)
** MT2063_PD2_TGT Set target power level at PD2 (*)
** MT2063_ACLNA_MAX LNA attenuator limit (*)
** MT2063_ACRF_MAX RF attenuator limit (*)
** MT2063_ACFIF_MAX FIF attenuator limit (*)
** MT2063_DNC_OUTPUT_ENABLE DNC output selection
** MT2063_VGAGC VGA gain code
** MT2063_VGAOI VGA output current
** MT2063_TAGC TAGC setting
** MT2063_AMPGC AMP gain code
** MT2063_AVOID_DECT Avoid DECT Frequencies
** MT2063_CTFILT_SW Cleartune filter selection
**
** (*) This parameter is set by MT2063_RCVR_MODE, do not call
** additionally.
**
** Usage: status |= MT2063_SetParam(hMT2063,
** MT2063_STEPSIZE,
** 50000);
**
** Returns: status:
** MT_OK - No errors
** MT_INV_HANDLE - Invalid tuner handle
** MT_ARG_NULL - Null pointer argument passed
** MT_ARG_RANGE - Invalid parameter requested
** or set value out of range
** or non-writable parameter
**
** Dependencies: USERS MUST CALL MT2063_Open() FIRST!
**
** See Also: MT2063_GetParam, MT2063_Open
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
** 154 09-13-2007 RSK Ver 1.05: Get/SetParam changes for LOx_FREQ
** 10-31-2007 PINZ Ver 1.08: Get/SetParam add VGAGC, VGAOI, AMPGC, TAGC
** 04-18-2008 PINZ Ver 1.15: Add SetParam LNARIN & PDxTGT
** Split SetParam up to ACLNA / ACLNA_MAX
** removed ACLNA_INRC/DECR (+RF & FIF)
** removed GCUAUTO / BYPATNDN/UP
** 175 I 06-06-2008 PINZ Ver 1.16: Add control to avoid US DECT freqs.
** 175 I 06-19-2008 RSK Ver 1.17: Refactor DECT control to SpurAvoid.
** 06-24-2008 PINZ Ver 1.18: Add Get/SetParam CTFILT_SW
**
****************************************************************************/
static u32 MT2063_SetParam(void *h, enum MT2063_Param param, u32 nValue)
{
u32 status = MT2063_OK; /* Status to be returned */
u8 val = 0;
struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h;
/* Verify that the handle passed points to a valid tuner */
if (MT2063_IsValidHandle(pInfo) == 0)
status |= MT2063_INV_HANDLE;
if (MT2063_NO_ERROR(status)) {
switch (param) {
/* crystal frequency */
case MT2063_SRO_FREQ:
pInfo->AS_Data.f_ref = nValue;
pInfo->AS_Data.f_LO1_FracN_Avoid = 0;
pInfo->AS_Data.f_LO2_FracN_Avoid = nValue / 80 - 1;
pInfo->AS_Data.f_LO1_Step = nValue / 64;
pInfo->AS_Data.f_if1_Center =
(pInfo->AS_Data.f_ref / 8) *
(pInfo->reg[MT2063_REG_FIFFC] + 640);
break;
/* minimum tuning step size */
case MT2063_STEPSIZE:
pInfo->AS_Data.f_LO2_Step = nValue;
break;
/* LO1 frequency */
case MT2063_LO1_FREQ:
{
/* Note: LO1 and LO2 are BOTH written at toggle of LDLOos */
/* Capture the Divider and Numerator portions of other LO */
u8 tempLO2CQ[3];
u8 tempLO2C[3];
u8 tmpOneShot;
u32 Div, FracN;
u8 restore = 0;
/* Buffer the queue for restoration later and get actual LO2 values. */
status |=
MT2063_ReadSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO2CQ_1,
&(tempLO2CQ[0]), 3);
status |=
MT2063_ReadSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO2C_1,
&(tempLO2C[0]), 3);
/* clear the one-shot bits */
tempLO2CQ[2] = tempLO2CQ[2] & 0x0F;
tempLO2C[2] = tempLO2C[2] & 0x0F;
/* only write the queue values if they are different from the actual. */
if ((tempLO2CQ[0] != tempLO2C[0]) ||
(tempLO2CQ[1] != tempLO2C[1]) ||
(tempLO2CQ[2] != tempLO2C[2])) {
/* put actual LO2 value into queue (with 0 in one-shot bits) */
status |=
MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO2CQ_1,
&(tempLO2C[0]), 3);
if (status == MT2063_OK) {
/* cache the bytes just written. */
pInfo->reg[MT2063_REG_LO2CQ_1] =
tempLO2C[0];
pInfo->reg[MT2063_REG_LO2CQ_2] =
tempLO2C[1];
pInfo->reg[MT2063_REG_LO2CQ_3] =
tempLO2C[2];
}
restore = 1;
}
/* Calculate the Divider and Numberator components of LO1 */
status =
MT2063_CalcLO1Mult(&Div, &FracN, nValue,
pInfo->AS_Data.f_ref /
64,
pInfo->AS_Data.f_ref);
pInfo->reg[MT2063_REG_LO1CQ_1] =
(u8) (Div & 0x00FF);
pInfo->reg[MT2063_REG_LO1CQ_2] =
(u8) (FracN);
status |=
MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO1CQ_1,
&pInfo->
reg[MT2063_REG_LO1CQ_1], 2);
/* set the one-shot bit to load the pair of LO values */
tmpOneShot = tempLO2CQ[2] | 0xE0;
status |=
MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO2CQ_3,
&tmpOneShot, 1);
/* only restore the queue values if they were different from the actual. */
if (restore) {
/* put actual LO2 value into queue (0 in one-shot bits) */
status |=
MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO2CQ_1,
&(tempLO2CQ[0]), 3);
/* cache the bytes just written. */
pInfo->reg[MT2063_REG_LO2CQ_1] =
tempLO2CQ[0];
pInfo->reg[MT2063_REG_LO2CQ_2] =
tempLO2CQ[1];
pInfo->reg[MT2063_REG_LO2CQ_3] =
tempLO2CQ[2];
}
MT2063_GetParam(pInfo->hUserData,
MT2063_LO1_FREQ,
&pInfo->AS_Data.f_LO1);
}
break;
/* LO1 minimum step size */
case MT2063_LO1_STEPSIZE:
pInfo->AS_Data.f_LO1_Step = nValue;
break;
/* LO1 FracN keep-out region */
case MT2063_LO1_FRACN_AVOID_PARAM:
pInfo->AS_Data.f_LO1_FracN_Avoid = nValue;
break;
/* Requested 1st IF */
case MT2063_IF1_REQUEST:
pInfo->AS_Data.f_if1_Request = nValue;
break;
/* zero-IF bandwidth */
case MT2063_ZIF_BW:
pInfo->AS_Data.f_zif_bw = nValue;
break;
/* LO2 frequency */
case MT2063_LO2_FREQ:
{
/* Note: LO1 and LO2 are BOTH written at toggle of LDLOos */
/* Capture the Divider and Numerator portions of other LO */
u8 tempLO1CQ[2];
u8 tempLO1C[2];
u32 Div2;
u32 FracN2;
u8 tmpOneShot;
u8 restore = 0;
/* Buffer the queue for restoration later and get actual LO2 values. */
status |=
MT2063_ReadSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO1CQ_1,
&(tempLO1CQ[0]), 2);
status |=
MT2063_ReadSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO1C_1,
&(tempLO1C[0]), 2);
/* only write the queue values if they are different from the actual. */
if ((tempLO1CQ[0] != tempLO1C[0])
|| (tempLO1CQ[1] != tempLO1C[1])) {
/* put actual LO1 value into queue */
status |=
MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO1CQ_1,
&(tempLO1C[0]), 2);
/* cache the bytes just written. */
pInfo->reg[MT2063_REG_LO1CQ_1] =
tempLO1C[0];
pInfo->reg[MT2063_REG_LO1CQ_2] =
tempLO1C[1];
restore = 1;
}
/* Calculate the Divider and Numberator components of LO2 */
status =
MT2063_CalcLO2Mult(&Div2, &FracN2, nValue,
pInfo->AS_Data.f_ref /
8191,
pInfo->AS_Data.f_ref);
pInfo->reg[MT2063_REG_LO2CQ_1] =
(u8) ((Div2 << 1) |
((FracN2 >> 12) & 0x01)) & 0xFF;
pInfo->reg[MT2063_REG_LO2CQ_2] =
(u8) ((FracN2 >> 4) & 0xFF);
pInfo->reg[MT2063_REG_LO2CQ_3] =
(u8) ((FracN2 & 0x0F));
status |=
MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO1CQ_1,
&pInfo->
reg[MT2063_REG_LO1CQ_1], 3);
/* set the one-shot bit to load the LO values */
tmpOneShot =
pInfo->reg[MT2063_REG_LO2CQ_3] | 0xE0;
status |=
MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO2CQ_3,
&tmpOneShot, 1);
/* only restore LO1 queue value if they were different from the actual. */
if (restore) {
/* put previous LO1 queue value back into queue */
status |=
MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_LO1CQ_1,
&(tempLO1CQ[0]), 2);
/* cache the bytes just written. */
pInfo->reg[MT2063_REG_LO1CQ_1] =
tempLO1CQ[0];
pInfo->reg[MT2063_REG_LO1CQ_2] =
tempLO1CQ[1];
}
MT2063_GetParam(pInfo->hUserData,
MT2063_LO2_FREQ,
&pInfo->AS_Data.f_LO2);
}
break;
/* LO2 minimum step size */
case MT2063_LO2_STEPSIZE:
pInfo->AS_Data.f_LO2_Step = nValue;
break;
/* LO2 FracN keep-out region */
case MT2063_LO2_FRACN_AVOID:
pInfo->AS_Data.f_LO2_FracN_Avoid = nValue;
break;
/* output center frequency */
case MT2063_OUTPUT_FREQ:
pInfo->AS_Data.f_out = nValue;
break;
/* output bandwidth */
case MT2063_OUTPUT_BW:
pInfo->AS_Data.f_out_bw = nValue + 750000;
break;
/* min inter-tuner LO separation */
case MT2063_LO_SEPARATION:
pInfo->AS_Data.f_min_LO_Separation = nValue;
break;
/* max # of intra-tuner harmonics */
case MT2063_MAX_HARM1:
pInfo->AS_Data.maxH1 = nValue;
break;
/* max # of inter-tuner harmonics */
case MT2063_MAX_HARM2:
pInfo->AS_Data.maxH2 = nValue;
break;
case MT2063_RCVR_MODE:
status |=
MT2063_SetReceiverMode(pInfo,
(enum MT2063_RCVR_MODES)
nValue);
break;
/* Set LNA Rin -- nValue is desired value */
case MT2063_LNA_RIN:
val =
(pInfo->
reg[MT2063_REG_CTRL_2C] & (u8) ~ 0x03) |
(nValue & 0x03);
if (pInfo->reg[MT2063_REG_CTRL_2C] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_CTRL_2C,
val);
}
break;
/* Set target power level at LNA -- nValue is desired value */
case MT2063_LNA_TGT:
val =
(pInfo->
reg[MT2063_REG_LNA_TGT] & (u8) ~ 0x3F) |
(nValue & 0x3F);
if (pInfo->reg[MT2063_REG_LNA_TGT] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_LNA_TGT,
val);
}
break;
/* Set target power level at PD1 -- nValue is desired value */
case MT2063_PD1_TGT:
val =
(pInfo->
reg[MT2063_REG_PD1_TGT] & (u8) ~ 0x3F) |
(nValue & 0x3F);
if (pInfo->reg[MT2063_REG_PD1_TGT] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_PD1_TGT,
val);
}
break;
/* Set target power level at PD2 -- nValue is desired value */
case MT2063_PD2_TGT:
val =
(pInfo->
reg[MT2063_REG_PD2_TGT] & (u8) ~ 0x3F) |
(nValue & 0x3F);
if (pInfo->reg[MT2063_REG_PD2_TGT] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_PD2_TGT,
val);
}
break;
/* Set LNA atten limit -- nValue is desired value */
case MT2063_ACLNA_MAX:
val =
(pInfo->
reg[MT2063_REG_LNA_OV] & (u8) ~ 0x1F) | (nValue
&
0x1F);
if (pInfo->reg[MT2063_REG_LNA_OV] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_LNA_OV,
val);
}
break;
/* Set RF atten limit -- nValue is desired value */
case MT2063_ACRF_MAX:
val =
(pInfo->
reg[MT2063_REG_RF_OV] & (u8) ~ 0x1F) | (nValue
&
0x1F);
if (pInfo->reg[MT2063_REG_RF_OV] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_RF_OV, val);
}
break;
/* Set FIF atten limit -- nValue is desired value, max. 5 if no B3 */
case MT2063_ACFIF_MAX:
if (pInfo->reg[MT2063_REG_PART_REV] != MT2063_B3
&& nValue > 5)
nValue = 5;
val =
(pInfo->
reg[MT2063_REG_FIF_OV] & (u8) ~ 0x1F) | (nValue
&
0x1F);
if (pInfo->reg[MT2063_REG_FIF_OV] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_FIF_OV,
val);
}
break;
case MT2063_DNC_OUTPUT_ENABLE:
/* selects, which DNC output is used */
switch ((enum MT2063_DNC_Output_Enable)nValue) {
case MT2063_DNC_NONE:
{
val = (pInfo->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
if (pInfo->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_DNC_GAIN,
val);
val = (pInfo->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
if (pInfo->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_VGA_GAIN,
val);
val = (pInfo->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
if (pInfo->reg[MT2063_REG_RSVD_20] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_RSVD_20,
val);
break;
}
case MT2063_DNC_1:
{
val = (pInfo->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[pInfo->rcvr_mode] & 0x03); /* Set DNC1GC=x */
if (pInfo->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_DNC_GAIN,
val);
val = (pInfo->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
if (pInfo->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_VGA_GAIN,
val);
val = (pInfo->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
if (pInfo->reg[MT2063_REG_RSVD_20] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_RSVD_20,
val);
break;
}
case MT2063_DNC_2:
{
val = (pInfo->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
if (pInfo->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_DNC_GAIN,
val);
val = (pInfo->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[pInfo->rcvr_mode] & 0x03); /* Set DNC2GC=x */
if (pInfo->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_VGA_GAIN,
val);
val = (pInfo->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
if (pInfo->reg[MT2063_REG_RSVD_20] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_RSVD_20,
val);
break;
}
case MT2063_DNC_BOTH:
{
val = (pInfo->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[pInfo->rcvr_mode] & 0x03); /* Set DNC1GC=x */
if (pInfo->reg[MT2063_REG_DNC_GAIN] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_DNC_GAIN,
val);
val = (pInfo->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[pInfo->rcvr_mode] & 0x03); /* Set DNC2GC=x */
if (pInfo->reg[MT2063_REG_VGA_GAIN] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_VGA_GAIN,
val);
val = (pInfo->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
if (pInfo->reg[MT2063_REG_RSVD_20] !=
val)
status |=
MT2063_SetReg(h,
MT2063_REG_RSVD_20,
val);
break;
}
default:
break;
}
break;
case MT2063_VGAGC:
/* Set VGA gain code */
val =
(pInfo->
reg[MT2063_REG_VGA_GAIN] & (u8) ~ 0x0C) |
((nValue & 0x03) << 2);
if (pInfo->reg[MT2063_REG_VGA_GAIN] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_VGA_GAIN,
val);
}
break;
case MT2063_VGAOI:
/* Set VGA bias current */
val =
(pInfo->
reg[MT2063_REG_RSVD_31] & (u8) ~ 0x07) |
(nValue & 0x07);
if (pInfo->reg[MT2063_REG_RSVD_31] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_RSVD_31,
val);
}
break;
case MT2063_TAGC:
/* Set TAGC */
val =
(pInfo->
reg[MT2063_REG_RSVD_1E] & (u8) ~ 0x03) |
(nValue & 0x03);
if (pInfo->reg[MT2063_REG_RSVD_1E] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_RSVD_1E,
val);
}
break;
case MT2063_AMPGC:
/* Set Amp gain code */
val =
(pInfo->
reg[MT2063_REG_TEMP_SEL] & (u8) ~ 0x03) |
(nValue & 0x03);
if (pInfo->reg[MT2063_REG_TEMP_SEL] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_TEMP_SEL,
val);
}
break;
/* Avoid DECT Frequencies */
case MT2063_AVOID_DECT:
{
enum MT2063_DECT_Avoid_Type newAvoidSetting =
(enum MT2063_DECT_Avoid_Type)nValue;
if ((newAvoidSetting >=
MT2063_NO_DECT_AVOIDANCE)
&& (newAvoidSetting <= MT2063_AVOID_BOTH)) {
pInfo->AS_Data.avoidDECT =
newAvoidSetting;
}
}
break;
/* Cleartune filter selection: 0 - by IC (default), 1 - by software */
case MT2063_CTFILT_SW:
pInfo->ctfilt_sw = (nValue & 0x01);
break;
/* These parameters are read-only */
case MT2063_IC_ADDR:
case MT2063_MAX_OPEN:
case MT2063_NUM_OPEN:
case MT2063_INPUT_FREQ:
case MT2063_IF1_ACTUAL:
case MT2063_IF1_CENTER:
case MT2063_IF1_BW:
case MT2063_AS_ALG:
case MT2063_EXCL_ZONES:
case MT2063_SPUR_AVOIDED:
case MT2063_NUM_SPURS:
case MT2063_SPUR_PRESENT:
case MT2063_ACLNA:
case MT2063_ACRF:
case MT2063_ACFIF:
case MT2063_EOP:
default:
status |= MT2063_ARG_RANGE;
}
}
return (status);
}
/****************************************************************************
**
** Name: MT2063_ClearPowerMaskBits
**
** Description: Clears the power-down mask bits for various sections of
** the MT2063
**
** Parameters: h - Tuner handle (returned by MT2063_Open)
** Bits - Mask bits to be cleared.
**
** See definition of MT2063_Mask_Bits type for description
** of each of the power bits.
**
** Returns: status:
** MT_OK - No errors
** MT_INV_HANDLE - Invalid tuner handle
** MT_COMM_ERR - Serial bus communications error
**
** Dependencies: USERS MUST CALL MT2063_Open() FIRST!
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
**
****************************************************************************/
static u32 MT2063_ClearPowerMaskBits(struct MT2063_Info_t *pInfo, enum MT2063_Mask_Bits Bits)
{
u32 status = MT2063_OK; /* Status to be returned */
/* Verify that the handle passed points to a valid tuner */
if (MT2063_IsValidHandle(pInfo) == 0)
status = MT2063_INV_HANDLE;
else {
Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */
if ((Bits & 0xFF00) != 0) {
pInfo->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
status |=
MT2063_WriteSub(pInfo->hUserData, pInfo->address,
MT2063_REG_PWR_2,
&pInfo->reg[MT2063_REG_PWR_2], 1);
}
if ((Bits & 0xFF) != 0) {
pInfo->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
status |=
MT2063_WriteSub(pInfo->hUserData, pInfo->address,
MT2063_REG_PWR_1,
&pInfo->reg[MT2063_REG_PWR_1], 1);
}
}
return (status);
}
/****************************************************************************
**
** Name: MT2063_SoftwareShutdown
**
** Description: Enables or disables software shutdown function. When
** Shutdown==1, any section whose power mask is set will be
** shutdown.
**
** Parameters: h - Tuner handle (returned by MT2063_Open)
** Shutdown - 1 = shutdown the masked sections, otherwise
** power all sections on
**
** Returns: status:
** MT_OK - No errors
** MT_INV_HANDLE - Invalid tuner handle
** MT_COMM_ERR - Serial bus communications error
**
** Dependencies: USERS MUST CALL MT2063_Open() FIRST!
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
** 01-03-2008 PINZ Ver 1.xx: Added a trigger of BYPATNUP for
** correct wakeup of the LNA
**
****************************************************************************/
static u32 MT2063_SoftwareShutdown(struct MT2063_Info_t *pInfo, u8 Shutdown)
{
u32 status = MT2063_OK; /* Status to be returned */
/* Verify that the handle passed points to a valid tuner */
if (MT2063_IsValidHandle(pInfo) == 0) {
status = MT2063_INV_HANDLE;
} else {
if (Shutdown == 1)
pInfo->reg[MT2063_REG_PWR_1] |= 0x04; /* Turn the bit on */
else
pInfo->reg[MT2063_REG_PWR_1] &= ~0x04; /* Turn off the bit */
status |=
MT2063_WriteSub(pInfo->hUserData, pInfo->address,
MT2063_REG_PWR_1,
&pInfo->reg[MT2063_REG_PWR_1], 1);
if (Shutdown != 1) {
pInfo->reg[MT2063_REG_BYP_CTRL] =
(pInfo->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
status |=
MT2063_WriteSub(pInfo->hUserData, pInfo->address,
MT2063_REG_BYP_CTRL,
&pInfo->reg[MT2063_REG_BYP_CTRL],
1);
pInfo->reg[MT2063_REG_BYP_CTRL] =
(pInfo->reg[MT2063_REG_BYP_CTRL] & 0x9F);
status |=
MT2063_WriteSub(pInfo->hUserData, pInfo->address,
MT2063_REG_BYP_CTRL,
&pInfo->reg[MT2063_REG_BYP_CTRL],
1);
}
}
return (status);
}
/****************************************************************************
**
** Name: MT2063_SetReg
**
** Description: Sets an MT2063 register.
**
** Parameters: h - Tuner handle (returned by MT2063_Open)
** reg - MT2063 register/subaddress location
** val - MT2063 register/subaddress value
**
** Returns: status:
** MT_OK - No errors
** MT_COMM_ERR - Serial bus communications error
** MT_INV_HANDLE - Invalid tuner handle
** MT_ARG_RANGE - Argument out of range
**
** Dependencies: USERS MUST CALL MT2063_Open() FIRST!
**
** Use this function if you need to override a default
** register value
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
**
****************************************************************************/
static u32 MT2063_SetReg(void *h, u8 reg, u8 val)
{
u32 status = MT2063_OK; /* Status to be returned */
struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h;
/* Verify that the handle passed points to a valid tuner */
if (MT2063_IsValidHandle(pInfo) == 0)
status |= MT2063_INV_HANDLE;
if (reg >= MT2063_REG_END_REGS)
status |= MT2063_ARG_RANGE;
if (MT2063_NO_ERROR(status)) {
status |=
MT2063_WriteSub(pInfo->hUserData, pInfo->address, reg, &val,
1);
if (MT2063_NO_ERROR(status))
pInfo->reg[reg] = val;
}
return (status);
}
static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
{
return f_ref * (f_LO / f_ref)
+ f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
}
/****************************************************************************
**
** Name: fLO_FractionalTerm
**
** Description: Calculates the portion contributed by FracN / denom.
**
** This function preserves maximum precision without
** risk of overflow. It accurately calculates
** f_ref * num / denom to within 1 HZ with fixed math.
**
** Parameters: num - Fractional portion of the multiplier
** denom - denominator portion of the ratio
** This routine successfully handles denom values
** up to and including 2^18.
** f_Ref - SRO frequency. This calculation handles
** f_ref as two separate 14-bit fields.
** Therefore, a maximum value of 2^28-1
** may safely be used for f_ref. This is
** the genesis of the magic number "14" and the
** magic mask value of 0x03FFF.
**
** Returns: f_ref * num / denom
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
**
****************************************************************************/
static u32 MT2063_fLO_FractionalTerm(u32 f_ref,
u32 num, u32 denom)
{
u32 t1 = (f_ref >> 14) * num;
u32 term1 = t1 / denom;
u32 loss = t1 % denom;
u32 term2 =
(((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
return ((term1 << 14) + term2);
}
/****************************************************************************
**
** Name: CalcLO1Mult
**
** Description: Calculates Integer divider value and the numerator
** value for a FracN PLL.
**
** This function assumes that the f_LO and f_Ref are
** evenly divisible by f_LO_Step.
**
** Parameters: Div - OUTPUT: Whole number portion of the multiplier
** FracN - OUTPUT: Fractional portion of the multiplier
** f_LO - desired LO frequency.
** f_LO_Step - Minimum step size for the LO (in Hz).
** f_Ref - SRO frequency.
** f_Avoid - Range of PLL frequencies to avoid near
** integer multiples of f_Ref (in Hz).
**
** Returns: Recalculated LO frequency.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
**
****************************************************************************/
static u32 MT2063_CalcLO1Mult(u32 * Div,
u32 * FracN,
u32 f_LO,
u32 f_LO_Step, u32 f_Ref)
{
/* Calculate the whole number portion of the divider */
*Div = f_LO / f_Ref;
/* Calculate the numerator value (round to nearest f_LO_Step) */
*FracN =
(64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
(f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
}
/****************************************************************************
**
** Name: CalcLO2Mult
**
** Description: Calculates Integer divider value and the numerator
** value for a FracN PLL.
**
** This function assumes that the f_LO and f_Ref are
** evenly divisible by f_LO_Step.
**
** Parameters: Div - OUTPUT: Whole number portion of the multiplier
** FracN - OUTPUT: Fractional portion of the multiplier
** f_LO - desired LO frequency.
** f_LO_Step - Minimum step size for the LO (in Hz).
** f_Ref - SRO frequency.
** f_Avoid - Range of PLL frequencies to avoid near
** integer multiples of f_Ref (in Hz).
**
** Returns: Recalculated LO frequency.
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
**
****************************************************************************/
static u32 MT2063_CalcLO2Mult(u32 * Div,
u32 * FracN,
u32 f_LO,
u32 f_LO_Step, u32 f_Ref)
{
/* Calculate the whole number portion of the divider */
*Div = f_LO / f_Ref;
/* Calculate the numerator value (round to nearest f_LO_Step) */
*FracN =
(8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
(f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
8191);
}
/****************************************************************************
**
** Name: FindClearTuneFilter
**
** Description: Calculate the corrrect ClearTune filter to be used for
** a given input frequency.
**
** Parameters: pInfo - ptr to tuner data structure
** f_in - RF input center frequency (in Hz).
**
** Returns: ClearTune filter number (0-31)
**
** Dependencies: MUST CALL MT2064_Open BEFORE FindClearTuneFilter!
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 04-10-2008 PINZ Ver 1.14: Use software-controlled ClearTune
** cross-over frequency values.
**
****************************************************************************/
static u32 FindClearTuneFilter(struct MT2063_Info_t *pInfo, u32 f_in)
{
u32 RFBand;
u32 idx; /* index loop */
/*
** Find RF Band setting
*/
RFBand = 31; /* def when f_in > all */
for (idx = 0; idx < 31; ++idx) {
if (pInfo->CTFiltMax[idx] >= f_in) {
RFBand = idx;
break;
}
}
return (RFBand);
}
/****************************************************************************
**
** Name: MT2063_Tune
**
** Description: Change the tuner's tuned frequency to RFin.
**
** Parameters: h - Open handle to the tuner (from MT2063_Open).
** f_in - RF input center frequency (in Hz).
**
** Returns: status:
** MT_OK - No errors
** MT_INV_HANDLE - Invalid tuner handle
** MT_UPC_UNLOCK - Upconverter PLL unlocked
** MT_DNC_UNLOCK - Downconverter PLL unlocked
** MT_COMM_ERR - Serial bus communications error
** MT_SPUR_CNT_MASK - Count of avoided LO spurs
** MT_SPUR_PRESENT - LO spur possible in output
** MT_FIN_RANGE - Input freq out of range
** MT_FOUT_RANGE - Output freq out of range
** MT_UPC_RANGE - Upconverter freq out of range
** MT_DNC_RANGE - Downconverter freq out of range
**
** Dependencies: MUST CALL MT2063_Open BEFORE MT2063_Tune!
**
** MT_ReadSub - Read data from the two-wire serial bus
** MT_WriteSub - Write data to the two-wire serial bus
** MT_Sleep - Delay execution for x milliseconds
** MT2063_GetLocked - Checks to see if LO1 and LO2 are locked
**
** Revision History:
**
** SCR Date Author Description
** -------------------------------------------------------------------------
** 138 06-19-2007 DAD Ver 1.00: Initial, derived from mt2067_b.
** 04-10-2008 PINZ Ver 1.05: Use software-controlled ClearTune
** cross-over frequency values.
** 175 I 16-06-2008 PINZ Ver 1.16: Add control to avoid US DECT freqs.
** 175 I 06-19-2008 RSK Ver 1.17: Refactor DECT control to SpurAvoid.
** 06-24-2008 PINZ Ver 1.18: Add Get/SetParam CTFILT_SW
**
****************************************************************************/
static u32 MT2063_Tune(void *h, u32 f_in)
{ /* RF input center frequency */
struct MT2063_Info_t *pInfo = (struct MT2063_Info_t *)h;
u32 status = MT2063_OK; /* status of operation */
u32 LO1; /* 1st LO register value */
u32 Num1; /* Numerator for LO1 reg. value */
u32 f_IF1; /* 1st IF requested */
u32 LO2; /* 2nd LO register value */
u32 Num2; /* Numerator for LO2 reg. value */
u32 ofLO1, ofLO2; /* last time's LO frequencies */
u32 ofin, ofout; /* last time's I/O frequencies */
u8 fiffc = 0x80; /* FIFF center freq from tuner */
u32 fiffof; /* Offset from FIFF center freq */
const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */
u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */
u8 val;
u32 RFBand;
/* Verify that the handle passed points to a valid tuner */
if (MT2063_IsValidHandle(pInfo) == 0)
return MT2063_INV_HANDLE;
/* Check the input and output frequency ranges */
if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
status |= MT2063_FIN_RANGE;
if ((pInfo->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
|| (pInfo->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
status |= MT2063_FOUT_RANGE;
/*
** Save original LO1 and LO2 register values
*/
ofLO1 = pInfo->AS_Data.f_LO1;
ofLO2 = pInfo->AS_Data.f_LO2;
ofin = pInfo->AS_Data.f_in;
ofout = pInfo->AS_Data.f_out;
/*
** Find and set RF Band setting
*/
if (pInfo->ctfilt_sw == 1) {
val = (pInfo->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
if (pInfo->reg[MT2063_REG_CTUNE_CTRL] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_CTUNE_CTRL, val);
}
val = pInfo->reg[MT2063_REG_CTUNE_OV];
RFBand = FindClearTuneFilter(pInfo, f_in);
pInfo->reg[MT2063_REG_CTUNE_OV] =
(u8) ((pInfo->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
| RFBand);
if (pInfo->reg[MT2063_REG_CTUNE_OV] != val) {
status |=
MT2063_SetReg(pInfo, MT2063_REG_CTUNE_OV, val);
}
}
/*
** Read the FIFF Center Frequency from the tuner
*/
if (MT2063_NO_ERROR(status)) {
status |=
MT2063_ReadSub(pInfo->hUserData, pInfo->address,
MT2063_REG_FIFFC,
&pInfo->reg[MT2063_REG_FIFFC], 1);
fiffc = pInfo->reg[MT2063_REG_FIFFC];
}
/*
** Assign in the requested values
*/
pInfo->AS_Data.f_in = f_in;
/* Request a 1st IF such that LO1 is on a step size */
pInfo->AS_Data.f_if1_Request =
MT2063_Round_fLO(pInfo->AS_Data.f_if1_Request + f_in,
pInfo->AS_Data.f_LO1_Step,
pInfo->AS_Data.f_ref) - f_in;
/*
** Calculate frequency settings. f_IF1_FREQ + f_in is the
** desired LO1 frequency
*/
MT2063_ResetExclZones(&pInfo->AS_Data);
f_IF1 = MT2063_ChooseFirstIF(&pInfo->AS_Data);
pInfo->AS_Data.f_LO1 =
MT2063_Round_fLO(f_IF1 + f_in, pInfo->AS_Data.f_LO1_Step,
pInfo->AS_Data.f_ref);
pInfo->AS_Data.f_LO2 =
MT2063_Round_fLO(pInfo->AS_Data.f_LO1 - pInfo->AS_Data.f_out - f_in,
pInfo->AS_Data.f_LO2_Step, pInfo->AS_Data.f_ref);
/*
** Check for any LO spurs in the output bandwidth and adjust
** the LO settings to avoid them if needed
*/
status |= MT2063_AvoidSpurs(h, &pInfo->AS_Data);
/*
** MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
** Recalculate the LO frequencies and the values to be placed
** in the tuning registers.
*/
pInfo->AS_Data.f_LO1 =
MT2063_CalcLO1Mult(&LO1, &Num1, pInfo->AS_Data.f_LO1,
pInfo->AS_Data.f_LO1_Step, pInfo->AS_Data.f_ref);
pInfo->AS_Data.f_LO2 =
MT2063_Round_fLO(pInfo->AS_Data.f_LO1 - pInfo->AS_Data.f_out - f_in,
pInfo->AS_Data.f_LO2_Step, pInfo->AS_Data.f_ref);
pInfo->AS_Data.f_LO2 =
MT2063_CalcLO2Mult(&LO2, &Num2, pInfo->AS_Data.f_LO2,
pInfo->AS_Data.f_LO2_Step, pInfo->AS_Data.f_ref);
/*
** Check the upconverter and downconverter frequency ranges
*/
if ((pInfo->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
|| (pInfo->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
status |= MT2063_UPC_RANGE;
if ((pInfo->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
|| (pInfo->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
status |= MT2063_DNC_RANGE;
/* LO2 Lock bit was in a different place for B0 version */
if (pInfo->tuner_id == MT2063_B0)
LO2LK = 0x40;
/*
** If we have the same LO frequencies and we're already locked,
** then skip re-programming the LO registers.
*/
if ((ofLO1 != pInfo->AS_Data.f_LO1)
|| (ofLO2 != pInfo->AS_Data.f_LO2)
|| ((pInfo->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
(LO1LK | LO2LK))) {
/*
** Calculate the FIFFOF register value
**
** IF1_Actual
** FIFFOF = ------------ - 8 * FIFFC - 4992
** f_ref/64
*/
fiffof =
(pInfo->AS_Data.f_LO1 -
f_in) / (pInfo->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
4992;
if (fiffof > 0xFF)
fiffof = 0xFF;
/*
** Place all of the calculated values into the local tuner
** register fields.
*/
if (MT2063_NO_ERROR(status)) {
pInfo->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */
pInfo->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */
pInfo->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */
|(Num2 >> 12)); /* NUM2q (hi) */
pInfo->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */
pInfo->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */
/*
** Now write out the computed register values
** IMPORTANT: There is a required order for writing
** (0x05 must follow all the others).
*/
status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO1CQ_1, &pInfo->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */
if (pInfo->tuner_id == MT2063_B0) {
/* Re-write the one-shot bits to trigger the tune operation */
status |= MT2063_WriteSub(pInfo->hUserData, pInfo->address, MT2063_REG_LO2CQ_3, &pInfo->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */
}
/* Write out the FIFF offset only if it's changing */
if (pInfo->reg[MT2063_REG_FIFF_OFFSET] !=
(u8) fiffof) {
pInfo->reg[MT2063_REG_FIFF_OFFSET] =
(u8) fiffof;
status |=
MT2063_WriteSub(pInfo->hUserData,
pInfo->address,
MT2063_REG_FIFF_OFFSET,
&pInfo->
reg[MT2063_REG_FIFF_OFFSET],
1);
}
}
/*
** Check for LO's locking
*/
if (MT2063_NO_ERROR(status)) {
status |= MT2063_GetLocked(h);
}
/*
** If we locked OK, assign calculated data to MT2063_Info_t structure
*/
if (MT2063_NO_ERROR(status)) {
pInfo->f_IF1_actual = pInfo->AS_Data.f_LO1 - f_in;
}
}
return (status);
}
static u32 MT_Tune_atv(void *h, u32 f_in, u32 bw_in,
enum MTTune_atv_standard tv_type)
{
u32 status = MT2063_OK;
s32 pict_car = 0;
s32 pict2chanb_vsb = 0;
s32 pict2chanb_snd = 0;
s32 pict2snd1 = 0;
s32 pict2snd2 = 0;
s32 ch_bw = 0;
s32 if_mid = 0;
s32 rcvr_mode = 0;
u32 mode_get = 0;
switch (tv_type) {
case MTTUNEA_PAL_B:{
pict_car = 38900000;
ch_bw = 8000000;
pict2chanb_vsb = -1250000;
pict2snd1 = 5500000;
pict2snd2 = 5742000;
rcvr_mode = 1;
break;
}
case MTTUNEA_PAL_G:{
pict_car = 38900000;
ch_bw = 7000000;
pict2chanb_vsb = -1250000;
pict2snd1 = 5500000;
pict2snd2 = 0;
rcvr_mode = 1;
break;
}
case MTTUNEA_PAL_I:{
pict_car = 38900000;
ch_bw = 8000000;
pict2chanb_vsb = -1250000;
pict2snd1 = 6000000;
pict2snd2 = 0;
rcvr_mode = 1;
break;
}
case MTTUNEA_PAL_L:{
pict_car = 38900000;
ch_bw = 8000000;
pict2chanb_vsb = -1250000;
pict2snd1 = 6500000;
pict2snd2 = 0;
rcvr_mode = 1;
break;
}
case MTTUNEA_PAL_MN:{
pict_car = 38900000;
ch_bw = 6000000;
pict2chanb_vsb = -1250000;
pict2snd1 = 4500000;
pict2snd2 = 0;
rcvr_mode = 1;
break;
}
case MTTUNEA_PAL_DK:{
pict_car = 38900000;
ch_bw = 8000000;
pict2chanb_vsb = -1250000;
pict2snd1 = 6500000;
pict2snd2 = 0;
rcvr_mode = 1;
break;
}
case MTTUNEA_DIGITAL:{
pict_car = 36125000;
ch_bw = 8000000;
pict2chanb_vsb = -(ch_bw / 2);
pict2snd1 = 0;
pict2snd2 = 0;
rcvr_mode = 2;
break;
}
case MTTUNEA_FMRADIO:{
pict_car = 38900000;
ch_bw = 8000000;
pict2chanb_vsb = -(ch_bw / 2);
pict2snd1 = 0;
pict2snd2 = 0;
rcvr_mode = 4;
//f_in -= 2900000;
break;
}
case MTTUNEA_DVBC:{
pict_car = 36125000;
ch_bw = 8000000;
pict2chanb_vsb = -(ch_bw / 2);
pict2snd1 = 0;
pict2snd2 = 0;
rcvr_mode = MT2063_CABLE_QAM;
break;
}
case MTTUNEA_DVBT:{
pict_car = 36125000;
ch_bw = bw_in; //8000000
pict2chanb_vsb = -(ch_bw / 2);
pict2snd1 = 0;
pict2snd2 = 0;
rcvr_mode = MT2063_OFFAIR_COFDM;
break;
}
case MTTUNEA_UNKNOWN:
break;
default:
break;
}
pict2chanb_snd = pict2chanb_vsb - ch_bw;
if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
status |= MT2063_SetParam(h, MT2063_STEPSIZE, 125000);
status |= MT2063_SetParam(h, MT2063_OUTPUT_FREQ, if_mid);
status |= MT2063_SetParam(h, MT2063_OUTPUT_BW, ch_bw);
status |= MT2063_GetParam(h, MT2063_RCVR_MODE, &mode_get);
status |= MT2063_SetParam(h, MT2063_RCVR_MODE, rcvr_mode);
status |= MT2063_Tune(h, (f_in + (pict2chanb_vsb + (ch_bw / 2))));
status |= MT2063_GetParam(h, MT2063_RCVR_MODE, &mode_get);
return (u32) status;
}
static int mt2063_init(struct dvb_frontend *fe)
{
u32 status = MT2063_ERROR;
struct mt2063_state *state = fe->tuner_priv;
status = MT2063_Open(0xC0, &(state->MT2063_ht), fe);
status |= MT2063_SoftwareShutdown(state->MT2063_ht, 1);
status |= MT2063_ClearPowerMaskBits(state->MT2063_ht, MT2063_ALL_SD);
if (MT2063_OK != status) {
printk("%s %d error status = 0x%x!!\n", __func__, __LINE__,
status);
return -1;
}
return 0;
}
static int mt2063_get_status(struct dvb_frontend *fe, u32 * status)
{
int rc = 0;
//get tuner lock status
return rc;
}
static int mt2063_get_state(struct dvb_frontend *fe,
enum tuner_param param, struct tuner_state *state)
{
struct mt2063_state *mt2063State = fe->tuner_priv;
switch (param) {
case DVBFE_TUNER_FREQUENCY:
//get frequency
break;
case DVBFE_TUNER_TUNERSTEP:
break;
case DVBFE_TUNER_IFFREQ:
break;
case DVBFE_TUNER_BANDWIDTH:
//get bandwidth
break;
case DVBFE_TUNER_REFCLOCK:
state->refclock =
(u32)
MT2063_GetLocked((void *) (mt2063State->MT2063_ht));
break;
default:
break;
}
return (int)state->refclock;
}
static int mt2063_set_state(struct dvb_frontend *fe,
enum tuner_param param, struct tuner_state *state)
{
struct mt2063_state *mt2063State = fe->tuner_priv;
u32 status = MT2063_OK;
switch (param) {
case DVBFE_TUNER_FREQUENCY:
//set frequency
status =
MT_Tune_atv((void *) (mt2063State->MT2063_ht),
state->frequency, state->bandwidth,
mt2063State->tv_type);
mt2063State->frequency = state->frequency;
break;
case DVBFE_TUNER_TUNERSTEP:
break;
case DVBFE_TUNER_IFFREQ:
break;
case DVBFE_TUNER_BANDWIDTH:
//set bandwidth
mt2063State->bandwidth = state->bandwidth;
break;
case DVBFE_TUNER_REFCLOCK:
break;
case DVBFE_TUNER_OPEN:
status = MT2063_Open(MT2063_I2C, &(mt2063State->MT2063_ht), fe);
break;
case DVBFE_TUNER_SOFTWARE_SHUTDOWN:
status = MT2063_SoftwareShutdown(mt2063State->MT2063_ht, 1);
break;
case DVBFE_TUNER_CLEAR_POWER_MASKBITS:
status =
MT2063_ClearPowerMaskBits(mt2063State->MT2063_ht,
MT2063_ALL_SD);
break;
default:
break;
}
return (int)status;
}
static int mt2063_release(struct dvb_frontend *fe)
{
struct mt2063_state *state = fe->tuner_priv;
fe->tuner_priv = NULL;
kfree(state);
return 0;
}
static struct dvb_tuner_ops mt2063_ops = {
.info = {
.name = "MT2063 Silicon Tuner",
.frequency_min = 45000000,
.frequency_max = 850000000,
.frequency_step = 0,
},
.init = mt2063_init,
.sleep = MT2063_Sleep,
.get_status = mt2063_get_status,
.get_state = mt2063_get_state,
.set_state = mt2063_set_state,
.release = mt2063_release
};
struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
struct mt2063_config *config,
struct i2c_adapter *i2c)
{
struct mt2063_state *state = NULL;
state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
if (state == NULL)
goto error;
state->config = config;
state->i2c = i2c;
state->frontend = fe;
state->reference = config->refclock / 1000; /* kHz */
state->MT2063_init = false;
fe->tuner_priv = state;
fe->ops.tuner_ops = mt2063_ops;
printk("%s: Attaching MT2063 \n", __func__);
return fe;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(mt2063_attach);
MODULE_PARM_DESC(verbose, "Set Verbosity level");
MODULE_AUTHOR("Henry");
MODULE_DESCRIPTION("MT2063 Silicon tuner");
MODULE_LICENSE("GPL");