linux/net/sched/cls_rsvp.h

775 lines
18 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* net/sched/cls_rsvp.h Template file for RSVPv[46] classifiers.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*/
/*
Comparing to general packet classification problem,
RSVP needs only sevaral relatively simple rules:
* (dst, protocol) are always specified,
so that we are able to hash them.
* src may be exact, or may be wildcard, so that
we can keep a hash table plus one wildcard entry.
* source port (or flow label) is important only if src is given.
IMPLEMENTATION.
We use a two level hash table: The top level is keyed by
destination address and protocol ID, every bucket contains a list
of "rsvp sessions", identified by destination address, protocol and
DPI(="Destination Port ID"): triple (key, mask, offset).
Every bucket has a smaller hash table keyed by source address
(cf. RSVP flowspec) and one wildcard entry for wildcard reservations.
Every bucket is again a list of "RSVP flows", selected by
source address and SPI(="Source Port ID" here rather than
"security parameter index"): triple (key, mask, offset).
NOTE 1. All the packets with IPv6 extension headers (but AH and ESP)
and all fragmented packets go to the best-effort traffic class.
NOTE 2. Two "port id"'s seems to be redundant, rfc2207 requires
only one "Generalized Port Identifier". So that for classic
ah, esp (and udp,tcp) both *pi should coincide or one of them
should be wildcard.
At first sight, this redundancy is just a waste of CPU
resources. But DPI and SPI add the possibility to assign different
priorities to GPIs. Look also at note 4 about tunnels below.
NOTE 3. One complication is the case of tunneled packets.
We implement it as following: if the first lookup
matches a special session with "tunnelhdr" value not zero,
flowid doesn't contain the true flow ID, but the tunnel ID (1...255).
In this case, we pull tunnelhdr bytes and restart lookup
with tunnel ID added to the list of keys. Simple and stupid 8)8)
It's enough for PIMREG and IPIP.
NOTE 4. Two GPIs make it possible to parse even GRE packets.
F.e. DPI can select ETH_P_IP (and necessary flags to make
tunnelhdr correct) in GRE protocol field and SPI matches
GRE key. Is it not nice? 8)8)
Well, as result, despite its simplicity, we get a pretty
powerful classification engine. */
struct rsvp_head {
u32 tmap[256/32];
u32 hgenerator;
u8 tgenerator;
struct rsvp_session __rcu *ht[256];
struct rcu_head rcu;
};
struct rsvp_session {
struct rsvp_session __rcu *next;
__be32 dst[RSVP_DST_LEN];
struct tc_rsvp_gpi dpi;
u8 protocol;
u8 tunnelid;
/* 16 (src,sport) hash slots, and one wildcard source slot */
struct rsvp_filter __rcu *ht[16 + 1];
struct rcu_head rcu;
};
struct rsvp_filter {
struct rsvp_filter __rcu *next;
__be32 src[RSVP_DST_LEN];
struct tc_rsvp_gpi spi;
u8 tunnelhdr;
struct tcf_result res;
struct tcf_exts exts;
u32 handle;
struct rsvp_session *sess;
struct rcu_work rwork;
};
static inline unsigned int hash_dst(__be32 *dst, u8 protocol, u8 tunnelid)
{
unsigned int h = (__force __u32)dst[RSVP_DST_LEN - 1];
h ^= h>>16;
h ^= h>>8;
return (h ^ protocol ^ tunnelid) & 0xFF;
}
static inline unsigned int hash_src(__be32 *src)
{
unsigned int h = (__force __u32)src[RSVP_DST_LEN-1];
h ^= h>>16;
h ^= h>>8;
h ^= h>>4;
return h & 0xF;
}
#define RSVP_APPLY_RESULT() \
{ \
int r = tcf_exts_exec(skb, &f->exts, res); \
if (r < 0) \
continue; \
else if (r > 0) \
return r; \
}
static int rsvp_classify(struct sk_buff *skb, const struct tcf_proto *tp,
struct tcf_result *res)
{
struct rsvp_head *head = rcu_dereference_bh(tp->root);
struct rsvp_session *s;
struct rsvp_filter *f;
unsigned int h1, h2;
__be32 *dst, *src;
u8 protocol;
u8 tunnelid = 0;
u8 *xprt;
#if RSVP_DST_LEN == 4
struct ipv6hdr *nhptr;
if (!pskb_network_may_pull(skb, sizeof(*nhptr)))
return -1;
nhptr = ipv6_hdr(skb);
#else
struct iphdr *nhptr;
if (!pskb_network_may_pull(skb, sizeof(*nhptr)))
return -1;
nhptr = ip_hdr(skb);
#endif
restart:
#if RSVP_DST_LEN == 4
src = &nhptr->saddr.s6_addr32[0];
dst = &nhptr->daddr.s6_addr32[0];
protocol = nhptr->nexthdr;
xprt = ((u8 *)nhptr) + sizeof(struct ipv6hdr);
#else
src = &nhptr->saddr;
dst = &nhptr->daddr;
protocol = nhptr->protocol;
xprt = ((u8 *)nhptr) + (nhptr->ihl<<2);
if (ip_is_fragment(nhptr))
return -1;
#endif
h1 = hash_dst(dst, protocol, tunnelid);
h2 = hash_src(src);
for (s = rcu_dereference_bh(head->ht[h1]); s;
s = rcu_dereference_bh(s->next)) {
if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN - 1] &&
protocol == s->protocol &&
!(s->dpi.mask &
(*(u32 *)(xprt + s->dpi.offset) ^ s->dpi.key)) &&
#if RSVP_DST_LEN == 4
dst[0] == s->dst[0] &&
dst[1] == s->dst[1] &&
dst[2] == s->dst[2] &&
#endif
tunnelid == s->tunnelid) {
for (f = rcu_dereference_bh(s->ht[h2]); f;
f = rcu_dereference_bh(f->next)) {
if (src[RSVP_DST_LEN-1] == f->src[RSVP_DST_LEN - 1] &&
!(f->spi.mask & (*(u32 *)(xprt + f->spi.offset) ^ f->spi.key))
#if RSVP_DST_LEN == 4
&&
src[0] == f->src[0] &&
src[1] == f->src[1] &&
src[2] == f->src[2]
#endif
) {
*res = f->res;
RSVP_APPLY_RESULT();
matched:
if (f->tunnelhdr == 0)
return 0;
tunnelid = f->res.classid;
nhptr = (void *)(xprt + f->tunnelhdr - sizeof(*nhptr));
goto restart;
}
}
/* And wildcard bucket... */
for (f = rcu_dereference_bh(s->ht[16]); f;
f = rcu_dereference_bh(f->next)) {
*res = f->res;
RSVP_APPLY_RESULT();
goto matched;
}
return -1;
}
}
return -1;
}
static void rsvp_replace(struct tcf_proto *tp, struct rsvp_filter *n, u32 h)
{
struct rsvp_head *head = rtnl_dereference(tp->root);
struct rsvp_session *s;
struct rsvp_filter __rcu **ins;
struct rsvp_filter *pins;
unsigned int h1 = h & 0xFF;
unsigned int h2 = (h >> 8) & 0xFF;
for (s = rtnl_dereference(head->ht[h1]); s;
s = rtnl_dereference(s->next)) {
for (ins = &s->ht[h2], pins = rtnl_dereference(*ins); ;
ins = &pins->next, pins = rtnl_dereference(*ins)) {
if (pins->handle == h) {
RCU_INIT_POINTER(n->next, pins->next);
rcu_assign_pointer(*ins, n);
return;
}
}
}
/* Something went wrong if we are trying to replace a non-existant
* node. Mind as well halt instead of silently failing.
*/
BUG_ON(1);
}
static void *rsvp_get(struct tcf_proto *tp, u32 handle)
{
struct rsvp_head *head = rtnl_dereference(tp->root);
struct rsvp_session *s;
struct rsvp_filter *f;
unsigned int h1 = handle & 0xFF;
unsigned int h2 = (handle >> 8) & 0xFF;
if (h2 > 16)
return NULL;
for (s = rtnl_dereference(head->ht[h1]); s;
s = rtnl_dereference(s->next)) {
for (f = rtnl_dereference(s->ht[h2]); f;
f = rtnl_dereference(f->next)) {
if (f->handle == handle)
return f;
}
}
return NULL;
}
static int rsvp_init(struct tcf_proto *tp)
{
struct rsvp_head *data;
data = kzalloc(sizeof(struct rsvp_head), GFP_KERNEL);
if (data) {
rcu_assign_pointer(tp->root, data);
return 0;
}
return -ENOBUFS;
}
static void __rsvp_delete_filter(struct rsvp_filter *f)
{
tcf_exts_destroy(&f->exts);
tcf_exts_put_net(&f->exts);
kfree(f);
}
static void rsvp_delete_filter_work(struct work_struct *work)
{
struct rsvp_filter *f = container_of(to_rcu_work(work),
struct rsvp_filter,
rwork);
rtnl_lock();
__rsvp_delete_filter(f);
rtnl_unlock();
}
static void rsvp_delete_filter(struct tcf_proto *tp, struct rsvp_filter *f)
{
tcf_unbind_filter(tp, &f->res);
/* all classifiers are required to call tcf_exts_destroy() after rcu
* grace period, since converted-to-rcu actions are relying on that
* in cleanup() callback
*/
if (tcf_exts_get_net(&f->exts))
tcf_queue_work(&f->rwork, rsvp_delete_filter_work);
else
__rsvp_delete_filter(f);
}
static void rsvp_destroy(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct rsvp_head *data = rtnl_dereference(tp->root);
int h1, h2;
if (data == NULL)
return;
for (h1 = 0; h1 < 256; h1++) {
struct rsvp_session *s;
while ((s = rtnl_dereference(data->ht[h1])) != NULL) {
RCU_INIT_POINTER(data->ht[h1], s->next);
for (h2 = 0; h2 <= 16; h2++) {
struct rsvp_filter *f;
while ((f = rtnl_dereference(s->ht[h2])) != NULL) {
rcu_assign_pointer(s->ht[h2], f->next);
rsvp_delete_filter(tp, f);
}
}
kfree_rcu(s, rcu);
}
}
kfree_rcu(data, rcu);
}
static int rsvp_delete(struct tcf_proto *tp, void *arg, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct rsvp_head *head = rtnl_dereference(tp->root);
struct rsvp_filter *nfp, *f = arg;
struct rsvp_filter __rcu **fp;
unsigned int h = f->handle;
struct rsvp_session __rcu **sp;
struct rsvp_session *nsp, *s = f->sess;
int i, h1;
fp = &s->ht[(h >> 8) & 0xFF];
for (nfp = rtnl_dereference(*fp); nfp;
fp = &nfp->next, nfp = rtnl_dereference(*fp)) {
if (nfp == f) {
RCU_INIT_POINTER(*fp, f->next);
rsvp_delete_filter(tp, f);
/* Strip tree */
for (i = 0; i <= 16; i++)
if (s->ht[i])
goto out;
/* OK, session has no flows */
sp = &head->ht[h & 0xFF];
for (nsp = rtnl_dereference(*sp); nsp;
sp = &nsp->next, nsp = rtnl_dereference(*sp)) {
if (nsp == s) {
RCU_INIT_POINTER(*sp, s->next);
kfree_rcu(s, rcu);
goto out;
}
}
break;
}
}
out:
*last = true;
for (h1 = 0; h1 < 256; h1++) {
if (rcu_access_pointer(head->ht[h1])) {
*last = false;
break;
}
}
return 0;
}
static unsigned int gen_handle(struct tcf_proto *tp, unsigned salt)
{
struct rsvp_head *data = rtnl_dereference(tp->root);
int i = 0xFFFF;
while (i-- > 0) {
u32 h;
if ((data->hgenerator += 0x10000) == 0)
data->hgenerator = 0x10000;
h = data->hgenerator|salt;
if (!rsvp_get(tp, h))
return h;
}
return 0;
}
static int tunnel_bts(struct rsvp_head *data)
{
int n = data->tgenerator >> 5;
u32 b = 1 << (data->tgenerator & 0x1F);
if (data->tmap[n] & b)
return 0;
data->tmap[n] |= b;
return 1;
}
static void tunnel_recycle(struct rsvp_head *data)
{
struct rsvp_session __rcu **sht = data->ht;
u32 tmap[256/32];
int h1, h2;
memset(tmap, 0, sizeof(tmap));
for (h1 = 0; h1 < 256; h1++) {
struct rsvp_session *s;
for (s = rtnl_dereference(sht[h1]); s;
s = rtnl_dereference(s->next)) {
for (h2 = 0; h2 <= 16; h2++) {
struct rsvp_filter *f;
for (f = rtnl_dereference(s->ht[h2]); f;
f = rtnl_dereference(f->next)) {
if (f->tunnelhdr == 0)
continue;
data->tgenerator = f->res.classid;
tunnel_bts(data);
}
}
}
}
memcpy(data->tmap, tmap, sizeof(tmap));
}
static u32 gen_tunnel(struct rsvp_head *data)
{
int i, k;
for (k = 0; k < 2; k++) {
for (i = 255; i > 0; i--) {
if (++data->tgenerator == 0)
data->tgenerator = 1;
if (tunnel_bts(data))
return data->tgenerator;
}
tunnel_recycle(data);
}
return 0;
}
static const struct nla_policy rsvp_policy[TCA_RSVP_MAX + 1] = {
[TCA_RSVP_CLASSID] = { .type = NLA_U32 },
[TCA_RSVP_DST] = { .type = NLA_BINARY,
.len = RSVP_DST_LEN * sizeof(u32) },
[TCA_RSVP_SRC] = { .type = NLA_BINARY,
.len = RSVP_DST_LEN * sizeof(u32) },
[TCA_RSVP_PINFO] = { .len = sizeof(struct tc_rsvp_pinfo) },
};
static int rsvp_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base,
u32 handle,
struct nlattr **tca,
void **arg, bool ovr, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct rsvp_head *data = rtnl_dereference(tp->root);
struct rsvp_filter *f, *nfp;
struct rsvp_filter __rcu **fp;
struct rsvp_session *nsp, *s;
struct rsvp_session __rcu **sp;
struct tc_rsvp_pinfo *pinfo = NULL;
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_RSVP_MAX + 1];
struct tcf_exts e;
unsigned int h1, h2;
__be32 *dst;
int err;
if (opt == NULL)
return handle ? -EINVAL : 0;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 12:07:28 +00:00
err = nla_parse_nested_deprecated(tb, TCA_RSVP_MAX, opt, rsvp_policy,
NULL);
if (err < 0)
return err;
err = tcf_exts_init(&e, net, TCA_RSVP_ACT, TCA_RSVP_POLICE);
if (err < 0)
return err;
err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &e, ovr, true,
extack);
if (err < 0)
goto errout2;
f = *arg;
if (f) {
/* Node exists: adjust only classid */
struct rsvp_filter *n;
if (f->handle != handle && handle)
goto errout2;
n = kmemdup(f, sizeof(*f), GFP_KERNEL);
if (!n) {
err = -ENOMEM;
goto errout2;
}
err = tcf_exts_init(&n->exts, net, TCA_RSVP_ACT,
TCA_RSVP_POLICE);
if (err < 0) {
kfree(n);
goto errout2;
}
if (tb[TCA_RSVP_CLASSID]) {
n->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID]);
tcf_bind_filter(tp, &n->res, base);
}
tcf_exts_change(&n->exts, &e);
rsvp_replace(tp, n, handle);
return 0;
}
/* Now more serious part... */
err = -EINVAL;
if (handle)
goto errout2;
if (tb[TCA_RSVP_DST] == NULL)
goto errout2;
err = -ENOBUFS;
f = kzalloc(sizeof(struct rsvp_filter), GFP_KERNEL);
if (f == NULL)
goto errout2;
err = tcf_exts_init(&f->exts, net, TCA_RSVP_ACT, TCA_RSVP_POLICE);
if (err < 0)
goto errout;
h2 = 16;
if (tb[TCA_RSVP_SRC]) {
memcpy(f->src, nla_data(tb[TCA_RSVP_SRC]), sizeof(f->src));
h2 = hash_src(f->src);
}
if (tb[TCA_RSVP_PINFO]) {
pinfo = nla_data(tb[TCA_RSVP_PINFO]);
f->spi = pinfo->spi;
f->tunnelhdr = pinfo->tunnelhdr;
}
if (tb[TCA_RSVP_CLASSID])
f->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID]);
dst = nla_data(tb[TCA_RSVP_DST]);
h1 = hash_dst(dst, pinfo ? pinfo->protocol : 0, pinfo ? pinfo->tunnelid : 0);
err = -ENOMEM;
if ((f->handle = gen_handle(tp, h1 | (h2<<8))) == 0)
goto errout;
if (f->tunnelhdr) {
err = -EINVAL;
if (f->res.classid > 255)
goto errout;
err = -ENOMEM;
if (f->res.classid == 0 &&
(f->res.classid = gen_tunnel(data)) == 0)
goto errout;
}
for (sp = &data->ht[h1];
(s = rtnl_dereference(*sp)) != NULL;
sp = &s->next) {
if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN-1] &&
pinfo && pinfo->protocol == s->protocol &&
memcmp(&pinfo->dpi, &s->dpi, sizeof(s->dpi)) == 0 &&
#if RSVP_DST_LEN == 4
dst[0] == s->dst[0] &&
dst[1] == s->dst[1] &&
dst[2] == s->dst[2] &&
#endif
pinfo->tunnelid == s->tunnelid) {
insert:
/* OK, we found appropriate session */
fp = &s->ht[h2];
f->sess = s;
if (f->tunnelhdr == 0)
tcf_bind_filter(tp, &f->res, base);
tcf_exts_change(&f->exts, &e);
fp = &s->ht[h2];
for (nfp = rtnl_dereference(*fp); nfp;
fp = &nfp->next, nfp = rtnl_dereference(*fp)) {
__u32 mask = nfp->spi.mask & f->spi.mask;
if (mask != f->spi.mask)
break;
}
RCU_INIT_POINTER(f->next, nfp);
rcu_assign_pointer(*fp, f);
*arg = f;
return 0;
}
}
/* No session found. Create new one. */
err = -ENOBUFS;
s = kzalloc(sizeof(struct rsvp_session), GFP_KERNEL);
if (s == NULL)
goto errout;
memcpy(s->dst, dst, sizeof(s->dst));
if (pinfo) {
s->dpi = pinfo->dpi;
s->protocol = pinfo->protocol;
s->tunnelid = pinfo->tunnelid;
}
sp = &data->ht[h1];
for (nsp = rtnl_dereference(*sp); nsp;
sp = &nsp->next, nsp = rtnl_dereference(*sp)) {
if ((nsp->dpi.mask & s->dpi.mask) != s->dpi.mask)
break;
}
RCU_INIT_POINTER(s->next, nsp);
rcu_assign_pointer(*sp, s);
goto insert;
errout:
tcf_exts_destroy(&f->exts);
kfree(f);
errout2:
tcf_exts_destroy(&e);
return err;
}
static void rsvp_walk(struct tcf_proto *tp, struct tcf_walker *arg,
bool rtnl_held)
{
struct rsvp_head *head = rtnl_dereference(tp->root);
unsigned int h, h1;
if (arg->stop)
return;
for (h = 0; h < 256; h++) {
struct rsvp_session *s;
for (s = rtnl_dereference(head->ht[h]); s;
s = rtnl_dereference(s->next)) {
for (h1 = 0; h1 <= 16; h1++) {
struct rsvp_filter *f;
for (f = rtnl_dereference(s->ht[h1]); f;
f = rtnl_dereference(f->next)) {
if (arg->count < arg->skip) {
arg->count++;
continue;
}
if (arg->fn(tp, f, arg) < 0) {
arg->stop = 1;
return;
}
arg->count++;
}
}
}
}
}
static int rsvp_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
{
struct rsvp_filter *f = fh;
struct rsvp_session *s;
struct nlattr *nest;
struct tc_rsvp_pinfo pinfo;
if (f == NULL)
return skb->len;
s = f->sess;
t->tcm_handle = f->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (nla_put(skb, TCA_RSVP_DST, sizeof(s->dst), &s->dst))
goto nla_put_failure;
pinfo.dpi = s->dpi;
pinfo.spi = f->spi;
pinfo.protocol = s->protocol;
pinfo.tunnelid = s->tunnelid;
pinfo.tunnelhdr = f->tunnelhdr;
pinfo.pad = 0;
if (nla_put(skb, TCA_RSVP_PINFO, sizeof(pinfo), &pinfo))
goto nla_put_failure;
if (f->res.classid &&
nla_put_u32(skb, TCA_RSVP_CLASSID, f->res.classid))
goto nla_put_failure;
if (((f->handle >> 8) & 0xFF) != 16 &&
nla_put(skb, TCA_RSVP_SRC, sizeof(f->src), f->src))
goto nla_put_failure;
if (tcf_exts_dump(skb, &f->exts) < 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &f->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static void rsvp_bind_class(void *fh, u32 classid, unsigned long cl)
{
struct rsvp_filter *f = fh;
if (f && f->res.classid == classid)
f->res.class = cl;
}
static struct tcf_proto_ops RSVP_OPS __read_mostly = {
.kind = RSVP_ID,
.classify = rsvp_classify,
.init = rsvp_init,
.destroy = rsvp_destroy,
.get = rsvp_get,
.change = rsvp_change,
.delete = rsvp_delete,
.walk = rsvp_walk,
.dump = rsvp_dump,
.bind_class = rsvp_bind_class,
.owner = THIS_MODULE,
};
static int __init init_rsvp(void)
{
return register_tcf_proto_ops(&RSVP_OPS);
}
static void __exit exit_rsvp(void)
{
unregister_tcf_proto_ops(&RSVP_OPS);
}
module_init(init_rsvp)
module_exit(exit_rsvp)