linux/drivers/hid/hid-core.c

2444 lines
82 KiB
C
Raw Normal View History

/*
* HID support for Linux
*
* Copyright (c) 1999 Andreas Gal
* Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
* Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
* Copyright (c) 2006-2012 Jiri Kosina
*/
/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <asm/unaligned.h>
#include <asm/byteorder.h>
#include <linux/input.h>
#include <linux/wait.h>
#include <linux/vmalloc.h>
#include <linux/sched.h>
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
#include <linux/semaphore.h>
#include <linux/hid.h>
#include <linux/hiddev.h>
#include <linux/hid-debug.h>
#include <linux/hidraw.h>
#include "hid-ids.h"
/*
* Version Information
*/
#define DRIVER_DESC "HID core driver"
#define DRIVER_LICENSE "GPL"
int hid_debug = 0;
module_param_named(debug, hid_debug, int, 0600);
MODULE_PARM_DESC(debug, "toggle HID debugging messages");
EXPORT_SYMBOL_GPL(hid_debug);
static int hid_ignore_special_drivers = 0;
module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
MODULE_PARM_DESC(debug, "Ignore any special drivers and handle all devices by generic driver");
/*
* Register a new report for a device.
*/
struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
{
struct hid_report_enum *report_enum = device->report_enum + type;
struct hid_report *report;
if (report_enum->report_id_hash[id])
return report_enum->report_id_hash[id];
report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
if (!report)
return NULL;
if (id != 0)
report_enum->numbered = 1;
report->id = id;
report->type = type;
report->size = 0;
report->device = device;
report_enum->report_id_hash[id] = report;
list_add_tail(&report->list, &report_enum->report_list);
return report;
}
EXPORT_SYMBOL_GPL(hid_register_report);
/*
* Register a new field for this report.
*/
static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
{
struct hid_field *field;
int i;
if (report->maxfield == HID_MAX_FIELDS) {
hid_err(report->device, "too many fields in report\n");
return NULL;
}
field = kzalloc((sizeof(struct hid_field) +
usages * sizeof(struct hid_usage) +
values * sizeof(unsigned)), GFP_KERNEL);
if (!field)
return NULL;
field->index = report->maxfield++;
report->field[field->index] = field;
field->usage = (struct hid_usage *)(field + 1);
field->value = (s32 *)(field->usage + usages);
field->report = report;
for (i = 0; i < usages; i++)
field->usage[i].usage_index = i;
return field;
}
/*
* Open a collection. The type/usage is pushed on the stack.
*/
static int open_collection(struct hid_parser *parser, unsigned type)
{
struct hid_collection *collection;
unsigned usage;
usage = parser->local.usage[0];
if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
hid_err(parser->device, "collection stack overflow\n");
return -EINVAL;
}
if (parser->device->maxcollection == parser->device->collection_size) {
collection = kmalloc(sizeof(struct hid_collection) *
parser->device->collection_size * 2, GFP_KERNEL);
if (collection == NULL) {
hid_err(parser->device, "failed to reallocate collection array\n");
return -ENOMEM;
}
memcpy(collection, parser->device->collection,
sizeof(struct hid_collection) *
parser->device->collection_size);
memset(collection + parser->device->collection_size, 0,
sizeof(struct hid_collection) *
parser->device->collection_size);
kfree(parser->device->collection);
parser->device->collection = collection;
parser->device->collection_size *= 2;
}
parser->collection_stack[parser->collection_stack_ptr++] =
parser->device->maxcollection;
collection = parser->device->collection +
parser->device->maxcollection++;
collection->type = type;
collection->usage = usage;
collection->level = parser->collection_stack_ptr - 1;
if (type == HID_COLLECTION_APPLICATION)
parser->device->maxapplication++;
return 0;
}
/*
* Close a collection.
*/
static int close_collection(struct hid_parser *parser)
{
if (!parser->collection_stack_ptr) {
hid_err(parser->device, "collection stack underflow\n");
return -EINVAL;
}
parser->collection_stack_ptr--;
return 0;
}
/*
* Climb up the stack, search for the specified collection type
* and return the usage.
*/
static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
{
struct hid_collection *collection = parser->device->collection;
int n;
for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
unsigned index = parser->collection_stack[n];
if (collection[index].type == type)
return collection[index].usage;
}
return 0; /* we know nothing about this usage type */
}
/*
* Add a usage to the temporary parser table.
*/
static int hid_add_usage(struct hid_parser *parser, unsigned usage)
{
if (parser->local.usage_index >= HID_MAX_USAGES) {
hid_err(parser->device, "usage index exceeded\n");
return -1;
}
parser->local.usage[parser->local.usage_index] = usage;
parser->local.collection_index[parser->local.usage_index] =
parser->collection_stack_ptr ?
parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
parser->local.usage_index++;
return 0;
}
/*
* Register a new field for this report.
*/
static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
{
struct hid_report *report;
struct hid_field *field;
int usages;
unsigned offset;
int i;
report = hid_register_report(parser->device, report_type, parser->global.report_id);
if (!report) {
hid_err(parser->device, "hid_register_report failed\n");
return -1;
}
/* Handle both signed and unsigned cases properly */
if ((parser->global.logical_minimum < 0 &&
parser->global.logical_maximum <
parser->global.logical_minimum) ||
(parser->global.logical_minimum >= 0 &&
(__u32)parser->global.logical_maximum <
(__u32)parser->global.logical_minimum)) {
dbg_hid("logical range invalid 0x%x 0x%x\n",
parser->global.logical_minimum,
parser->global.logical_maximum);
return -1;
}
offset = report->size;
report->size += parser->global.report_size * parser->global.report_count;
if (!parser->local.usage_index) /* Ignore padding fields */
return 0;
usages = max_t(int, parser->local.usage_index, parser->global.report_count);
field = hid_register_field(report, usages, parser->global.report_count);
if (!field)
return 0;
field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
for (i = 0; i < usages; i++) {
int j = i;
/* Duplicate the last usage we parsed if we have excess values */
if (i >= parser->local.usage_index)
j = parser->local.usage_index - 1;
field->usage[i].hid = parser->local.usage[j];
field->usage[i].collection_index =
parser->local.collection_index[j];
}
field->maxusage = usages;
field->flags = flags;
field->report_offset = offset;
field->report_type = report_type;
field->report_size = parser->global.report_size;
field->report_count = parser->global.report_count;
field->logical_minimum = parser->global.logical_minimum;
field->logical_maximum = parser->global.logical_maximum;
field->physical_minimum = parser->global.physical_minimum;
field->physical_maximum = parser->global.physical_maximum;
field->unit_exponent = parser->global.unit_exponent;
field->unit = parser->global.unit;
return 0;
}
/*
* Read data value from item.
*/
static u32 item_udata(struct hid_item *item)
{
switch (item->size) {
case 1: return item->data.u8;
case 2: return item->data.u16;
case 4: return item->data.u32;
}
return 0;
}
static s32 item_sdata(struct hid_item *item)
{
switch (item->size) {
case 1: return item->data.s8;
case 2: return item->data.s16;
case 4: return item->data.s32;
}
return 0;
}
/*
* Process a global item.
*/
static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
{
__u32 raw_value;
switch (item->tag) {
case HID_GLOBAL_ITEM_TAG_PUSH:
if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
hid_err(parser->device, "global environment stack overflow\n");
return -1;
}
memcpy(parser->global_stack + parser->global_stack_ptr++,
&parser->global, sizeof(struct hid_global));
return 0;
case HID_GLOBAL_ITEM_TAG_POP:
if (!parser->global_stack_ptr) {
hid_err(parser->device, "global environment stack underflow\n");
return -1;
}
memcpy(&parser->global, parser->global_stack +
--parser->global_stack_ptr, sizeof(struct hid_global));
return 0;
case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
parser->global.usage_page = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
parser->global.logical_minimum = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
if (parser->global.logical_minimum < 0)
parser->global.logical_maximum = item_sdata(item);
else
parser->global.logical_maximum = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
parser->global.physical_minimum = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
if (parser->global.physical_minimum < 0)
parser->global.physical_maximum = item_sdata(item);
else
parser->global.physical_maximum = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
/* Units exponent negative numbers are given through a
* two's complement.
* See "6.2.2.7 Global Items" for more information. */
raw_value = item_udata(item);
if (!(raw_value & 0xfffffff0))
parser->global.unit_exponent = hid_snto32(raw_value, 4);
else
parser->global.unit_exponent = raw_value;
return 0;
case HID_GLOBAL_ITEM_TAG_UNIT:
parser->global.unit = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
parser->global.report_size = item_udata(item);
if (parser->global.report_size > 128) {
hid_err(parser->device, "invalid report_size %d\n",
parser->global.report_size);
return -1;
}
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
parser->global.report_count = item_udata(item);
if (parser->global.report_count > HID_MAX_USAGES) {
hid_err(parser->device, "invalid report_count %d\n",
parser->global.report_count);
return -1;
}
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_ID:
parser->global.report_id = item_udata(item);
if (parser->global.report_id == 0) {
hid_err(parser->device, "report_id 0 is invalid\n");
return -1;
}
return 0;
default:
hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
return -1;
}
}
/*
* Process a local item.
*/
static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
{
__u32 data;
unsigned n;
data = item_udata(item);
switch (item->tag) {
case HID_LOCAL_ITEM_TAG_DELIMITER:
if (data) {
/*
* We treat items before the first delimiter
* as global to all usage sets (branch 0).
* In the moment we process only these global
* items and the first delimiter set.
*/
if (parser->local.delimiter_depth != 0) {
hid_err(parser->device, "nested delimiters\n");
return -1;
}
parser->local.delimiter_depth++;
parser->local.delimiter_branch++;
} else {
if (parser->local.delimiter_depth < 1) {
hid_err(parser->device, "bogus close delimiter\n");
return -1;
}
parser->local.delimiter_depth--;
}
return 1;
case HID_LOCAL_ITEM_TAG_USAGE:
if (parser->local.delimiter_branch > 1) {
dbg_hid("alternative usage ignored\n");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
return hid_add_usage(parser, data);
case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
if (parser->local.delimiter_branch > 1) {
dbg_hid("alternative usage ignored\n");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
parser->local.usage_minimum = data;
return 0;
case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
if (parser->local.delimiter_branch > 1) {
dbg_hid("alternative usage ignored\n");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
for (n = parser->local.usage_minimum; n <= data; n++)
if (hid_add_usage(parser, n)) {
dbg_hid("hid_add_usage failed\n");
return -1;
}
return 0;
default:
dbg_hid("unknown local item tag 0x%x\n", item->tag);
return 0;
}
return 0;
}
/*
* Process a main item.
*/
static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
{
__u32 data;
int ret;
data = item_udata(item);
switch (item->tag) {
case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
ret = open_collection(parser, data & 0xff);
break;
case HID_MAIN_ITEM_TAG_END_COLLECTION:
ret = close_collection(parser);
break;
case HID_MAIN_ITEM_TAG_INPUT:
ret = hid_add_field(parser, HID_INPUT_REPORT, data);
break;
case HID_MAIN_ITEM_TAG_OUTPUT:
ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
break;
case HID_MAIN_ITEM_TAG_FEATURE:
ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
break;
default:
hid_err(parser->device, "unknown main item tag 0x%x\n", item->tag);
ret = 0;
}
memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
return ret;
}
/*
* Process a reserved item.
*/
static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
{
dbg_hid("reserved item type, tag 0x%x\n", item->tag);
return 0;
}
/*
* Free a report and all registered fields. The field->usage and
* field->value table's are allocated behind the field, so we need
* only to free(field) itself.
*/
static void hid_free_report(struct hid_report *report)
{
unsigned n;
for (n = 0; n < report->maxfield; n++)
kfree(report->field[n]);
kfree(report);
}
/*
* Close report. This function returns the device
* state to the point prior to hid_open_report().
*/
static void hid_close_report(struct hid_device *device)
{
unsigned i, j;
for (i = 0; i < HID_REPORT_TYPES; i++) {
struct hid_report_enum *report_enum = device->report_enum + i;
for (j = 0; j < 256; j++) {
struct hid_report *report = report_enum->report_id_hash[j];
if (report)
hid_free_report(report);
}
memset(report_enum, 0, sizeof(*report_enum));
INIT_LIST_HEAD(&report_enum->report_list);
}
kfree(device->rdesc);
device->rdesc = NULL;
device->rsize = 0;
kfree(device->collection);
device->collection = NULL;
device->collection_size = 0;
device->maxcollection = 0;
device->maxapplication = 0;
device->status &= ~HID_STAT_PARSED;
}
/*
* Free a device structure, all reports, and all fields.
*/
static void hid_device_release(struct device *dev)
{
struct hid_device *hid = container_of(dev, struct hid_device, dev);
hid_close_report(hid);
kfree(hid->dev_rdesc);
kfree(hid);
}
/*
* Fetch a report description item from the data stream. We support long
* items, though they are not used yet.
*/
static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
{
u8 b;
if ((end - start) <= 0)
return NULL;
b = *start++;
item->type = (b >> 2) & 3;
item->tag = (b >> 4) & 15;
if (item->tag == HID_ITEM_TAG_LONG) {
item->format = HID_ITEM_FORMAT_LONG;
if ((end - start) < 2)
return NULL;
item->size = *start++;
item->tag = *start++;
if ((end - start) < item->size)
return NULL;
item->data.longdata = start;
start += item->size;
return start;
}
item->format = HID_ITEM_FORMAT_SHORT;
item->size = b & 3;
switch (item->size) {
case 0:
return start;
case 1:
if ((end - start) < 1)
return NULL;
item->data.u8 = *start++;
return start;
case 2:
if ((end - start) < 2)
return NULL;
item->data.u16 = get_unaligned_le16(start);
start = (__u8 *)((__le16 *)start + 1);
return start;
case 3:
item->size++;
if ((end - start) < 4)
return NULL;
item->data.u32 = get_unaligned_le32(start);
start = (__u8 *)((__le32 *)start + 1);
return start;
}
return NULL;
}
static void hid_scan_usage(struct hid_device *hid, u32 usage)
{
if (usage == HID_DG_CONTACTID)
hid->group = HID_GROUP_MULTITOUCH;
}
/*
* Scan a report descriptor before the device is added to the bus.
* Sets device groups and other properties that determine what driver
* to load.
*/
static int hid_scan_report(struct hid_device *hid)
{
unsigned int page = 0, delim = 0;
__u8 *start = hid->dev_rdesc;
__u8 *end = start + hid->dev_rsize;
unsigned int u, u_min = 0, u_max = 0;
struct hid_item item;
hid->group = HID_GROUP_GENERIC;
while ((start = fetch_item(start, end, &item)) != NULL) {
if (item.format != HID_ITEM_FORMAT_SHORT)
return -EINVAL;
if (item.type == HID_ITEM_TYPE_GLOBAL) {
if (item.tag == HID_GLOBAL_ITEM_TAG_USAGE_PAGE)
page = item_udata(&item) << 16;
} else if (item.type == HID_ITEM_TYPE_LOCAL) {
if (delim > 1)
break;
u = item_udata(&item);
if (item.size <= 2)
u += page;
switch (item.tag) {
case HID_LOCAL_ITEM_TAG_DELIMITER:
delim += !!u;
break;
case HID_LOCAL_ITEM_TAG_USAGE:
hid_scan_usage(hid, u);
break;
case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
u_min = u;
break;
case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
u_max = u;
for (u = u_min; u <= u_max; u++)
hid_scan_usage(hid, u);
break;
}
} else if (page == HID_UP_SENSOR &&
item.type == HID_ITEM_TYPE_MAIN &&
item.tag == HID_MAIN_ITEM_TAG_BEGIN_COLLECTION &&
(item_udata(&item) & 0xff) == HID_COLLECTION_PHYSICAL &&
hid->bus == BUS_USB)
hid->group = HID_GROUP_SENSOR_HUB;
}
return 0;
}
/**
* hid_parse_report - parse device report
*
* @device: hid device
* @start: report start
* @size: report size
*
* Allocate the device report as read by the bus driver. This function should
* only be called from parse() in ll drivers.
*/
int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
{
hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
if (!hid->dev_rdesc)
return -ENOMEM;
hid->dev_rsize = size;
return 0;
}
EXPORT_SYMBOL_GPL(hid_parse_report);
/**
* hid_open_report - open a driver-specific device report
*
* @device: hid device
*
* Parse a report description into a hid_device structure. Reports are
* enumerated, fields are attached to these reports.
* 0 returned on success, otherwise nonzero error value.
*
* This function (or the equivalent hid_parse() macro) should only be
* called from probe() in drivers, before starting the device.
*/
int hid_open_report(struct hid_device *device)
{
struct hid_parser *parser;
struct hid_item item;
unsigned int size;
__u8 *start;
__u8 *buf;
__u8 *end;
int ret;
static int (*dispatch_type[])(struct hid_parser *parser,
struct hid_item *item) = {
hid_parser_main,
hid_parser_global,
hid_parser_local,
hid_parser_reserved
};
if (WARN_ON(device->status & HID_STAT_PARSED))
return -EBUSY;
start = device->dev_rdesc;
if (WARN_ON(!start))
return -ENODEV;
size = device->dev_rsize;
buf = kmemdup(start, size, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
if (device->driver->report_fixup)
start = device->driver->report_fixup(device, buf, &size);
else
start = buf;
start = kmemdup(start, size, GFP_KERNEL);
kfree(buf);
if (start == NULL)
return -ENOMEM;
device->rdesc = start;
device->rsize = size;
parser = vzalloc(sizeof(struct hid_parser));
if (!parser) {
ret = -ENOMEM;
goto err;
}
parser->device = device;
end = start + size;
device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
sizeof(struct hid_collection), GFP_KERNEL);
if (!device->collection) {
ret = -ENOMEM;
goto err;
}
device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
ret = -EINVAL;
while ((start = fetch_item(start, end, &item)) != NULL) {
if (item.format != HID_ITEM_FORMAT_SHORT) {
hid_err(device, "unexpected long global item\n");
goto err;
}
if (dispatch_type[item.type](parser, &item)) {
hid_err(device, "item %u %u %u %u parsing failed\n",
item.format, (unsigned)item.size,
(unsigned)item.type, (unsigned)item.tag);
goto err;
}
if (start == end) {
if (parser->collection_stack_ptr) {
hid_err(device, "unbalanced collection at end of report description\n");
goto err;
}
if (parser->local.delimiter_depth) {
hid_err(device, "unbalanced delimiter at end of report description\n");
goto err;
}
vfree(parser);
device->status |= HID_STAT_PARSED;
return 0;
}
}
hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
err:
vfree(parser);
hid_close_report(device);
return ret;
}
EXPORT_SYMBOL_GPL(hid_open_report);
/*
* Convert a signed n-bit integer to signed 32-bit integer. Common
* cases are done through the compiler, the screwed things has to be
* done by hand.
*/
static s32 snto32(__u32 value, unsigned n)
{
switch (n) {
case 8: return ((__s8)value);
case 16: return ((__s16)value);
case 32: return ((__s32)value);
}
return value & (1 << (n - 1)) ? value | (-1 << n) : value;
}
s32 hid_snto32(__u32 value, unsigned n)
{
return snto32(value, n);
}
EXPORT_SYMBOL_GPL(hid_snto32);
/*
* Convert a signed 32-bit integer to a signed n-bit integer.
*/
static u32 s32ton(__s32 value, unsigned n)
{
s32 a = value >> (n - 1);
if (a && a != -1)
return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
return value & ((1 << n) - 1);
}
/*
* Extract/implement a data field from/to a little endian report (bit array).
*
* Code sort-of follows HID spec:
* http://www.usb.org/developers/devclass_docs/HID1_11.pdf
*
* While the USB HID spec allows unlimited length bit fields in "report
* descriptors", most devices never use more than 16 bits.
* One model of UPS is claimed to report "LINEV" as a 32-bit field.
* Search linux-kernel and linux-usb-devel archives for "hid-core extract".
*/
static __u32 extract(const struct hid_device *hid, __u8 *report,
unsigned offset, unsigned n)
{
u64 x;
if (n > 32)
hid_warn(hid, "extract() called with n (%d) > 32! (%s)\n",
n, current->comm);
report += offset >> 3; /* adjust byte index */
offset &= 7; /* now only need bit offset into one byte */
x = get_unaligned_le64(report);
x = (x >> offset) & ((1ULL << n) - 1); /* extract bit field */
return (u32) x;
}
/*
* "implement" : set bits in a little endian bit stream.
* Same concepts as "extract" (see comments above).
* The data mangled in the bit stream remains in little endian
* order the whole time. It make more sense to talk about
* endianness of register values by considering a register
* a "cached" copy of the little endiad bit stream.
*/
static void implement(const struct hid_device *hid, __u8 *report,
unsigned offset, unsigned n, __u32 value)
{
u64 x;
u64 m = (1ULL << n) - 1;
if (n > 32)
hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
__func__, n, current->comm);
if (value > m)
hid_warn(hid, "%s() called with too large value %d! (%s)\n",
__func__, value, current->comm);
WARN_ON(value > m);
value &= m;
report += offset >> 3;
offset &= 7;
x = get_unaligned_le64(report);
x &= ~(m << offset);
x |= ((u64)value) << offset;
put_unaligned_le64(x, report);
}
/*
* Search an array for a value.
*/
static int search(__s32 *array, __s32 value, unsigned n)
{
while (n--) {
if (*array++ == value)
return 0;
}
return -1;
}
/**
* hid_match_report - check if driver's raw_event should be called
*
* @hid: hid device
* @report_type: type to match against
*
* compare hid->driver->report_table->report_type to report->type
*/
static int hid_match_report(struct hid_device *hid, struct hid_report *report)
{
const struct hid_report_id *id = hid->driver->report_table;
if (!id) /* NULL means all */
return 1;
for (; id->report_type != HID_TERMINATOR; id++)
if (id->report_type == HID_ANY_ID ||
id->report_type == report->type)
return 1;
return 0;
}
/**
* hid_match_usage - check if driver's event should be called
*
* @hid: hid device
* @usage: usage to match against
*
* compare hid->driver->usage_table->usage_{type,code} to
* usage->usage_{type,code}
*/
static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
{
const struct hid_usage_id *id = hid->driver->usage_table;
if (!id) /* NULL means all */
return 1;
for (; id->usage_type != HID_ANY_ID - 1; id++)
if ((id->usage_hid == HID_ANY_ID ||
id->usage_hid == usage->hid) &&
(id->usage_type == HID_ANY_ID ||
id->usage_type == usage->type) &&
(id->usage_code == HID_ANY_ID ||
id->usage_code == usage->code))
return 1;
return 0;
}
static void hid_process_event(struct hid_device *hid, struct hid_field *field,
struct hid_usage *usage, __s32 value, int interrupt)
{
struct hid_driver *hdrv = hid->driver;
int ret;
if (!list_empty(&hid->debug_list))
hid_dump_input(hid, usage, value);
if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
ret = hdrv->event(hid, field, usage, value);
if (ret != 0) {
if (ret < 0)
hid_err(hid, "%s's event failed with %d\n",
hdrv->name, ret);
return;
}
}
if (hid->claimed & HID_CLAIMED_INPUT)
hidinput_hid_event(hid, field, usage, value);
if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
hid->hiddev_hid_event(hid, field, usage, value);
}
/*
* Analyse a received field, and fetch the data from it. The field
* content is stored for next report processing (we do differential
* reporting to the layer).
*/
static void hid_input_field(struct hid_device *hid, struct hid_field *field,
__u8 *data, int interrupt)
{
unsigned n;
unsigned count = field->report_count;
unsigned offset = field->report_offset;
unsigned size = field->report_size;
__s32 min = field->logical_minimum;
__s32 max = field->logical_maximum;
__s32 *value;
value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
if (!value)
return;
for (n = 0; n < count; n++) {
value[n] = min < 0 ?
snto32(extract(hid, data, offset + n * size, size),
size) :
extract(hid, data, offset + n * size, size);
/* Ignore report if ErrorRollOver */
if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
value[n] >= min && value[n] <= max &&
field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
goto exit;
}
for (n = 0; n < count; n++) {
if (HID_MAIN_ITEM_VARIABLE & field->flags) {
hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
continue;
}
if (field->value[n] >= min && field->value[n] <= max
&& field->usage[field->value[n] - min].hid
&& search(value, field->value[n], count))
hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
if (value[n] >= min && value[n] <= max
&& field->usage[value[n] - min].hid
&& search(field->value, value[n], count))
hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
}
memcpy(field->value, value, count * sizeof(__s32));
exit:
kfree(value);
}
/*
* Output the field into the report.
*/
static void hid_output_field(const struct hid_device *hid,
struct hid_field *field, __u8 *data)
{
unsigned count = field->report_count;
unsigned offset = field->report_offset;
unsigned size = field->report_size;
unsigned n;
for (n = 0; n < count; n++) {
if (field->logical_minimum < 0) /* signed values */
implement(hid, data, offset + n * size, size,
s32ton(field->value[n], size));
else /* unsigned values */
implement(hid, data, offset + n * size, size,
field->value[n]);
}
}
/*
* Create a report.
*/
void hid_output_report(struct hid_report *report, __u8 *data)
{
unsigned n;
if (report->id > 0)
*data++ = report->id;
memset(data, 0, ((report->size - 1) >> 3) + 1);
for (n = 0; n < report->maxfield; n++)
hid_output_field(report->device, report->field[n], data);
}
EXPORT_SYMBOL_GPL(hid_output_report);
/*
* Set a field value. The report this field belongs to has to be
* created and transferred to the device, to set this value in the
* device.
*/
int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
{
unsigned size = field->report_size;
hid_dump_input(field->report->device, field->usage + offset, value);
if (offset >= field->report_count) {
hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
offset, field->report_count);
return -1;
}
if (field->logical_minimum < 0) {
if (value != snto32(s32ton(value, size), size)) {
hid_err(field->report->device, "value %d is out of range\n", value);
return -1;
}
}
field->value[offset] = value;
return 0;
}
EXPORT_SYMBOL_GPL(hid_set_field);
static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
const u8 *data)
{
struct hid_report *report;
unsigned int n = 0; /* Normally report number is 0 */
/* Device uses numbered reports, data[0] is report number */
if (report_enum->numbered)
n = *data;
report = report_enum->report_id_hash[n];
if (report == NULL)
dbg_hid("undefined report_id %u received\n", n);
return report;
}
int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
int interrupt)
{
struct hid_report_enum *report_enum = hid->report_enum + type;
struct hid_report *report;
unsigned int a;
int rsize, csize = size;
u8 *cdata = data;
int ret = 0;
report = hid_get_report(report_enum, data);
if (!report)
goto out;
if (report_enum->numbered) {
cdata++;
csize--;
}
rsize = ((report->size - 1) >> 3) + 1;
if (rsize > HID_MAX_BUFFER_SIZE)
rsize = HID_MAX_BUFFER_SIZE;
if (csize < rsize) {
dbg_hid("report %d is too short, (%d < %d)\n", report->id,
csize, rsize);
memset(cdata + csize, 0, rsize - csize);
}
if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
hid->hiddev_report_event(hid, report);
if (hid->claimed & HID_CLAIMED_HIDRAW) {
ret = hidraw_report_event(hid, data, size);
if (ret)
goto out;
}
if (hid->claimed != HID_CLAIMED_HIDRAW) {
for (a = 0; a < report->maxfield; a++)
hid_input_field(hid, report->field[a], cdata, interrupt);
}
if (hid->claimed & HID_CLAIMED_INPUT)
hidinput_report_event(hid, report);
out:
return ret;
}
EXPORT_SYMBOL_GPL(hid_report_raw_event);
/**
* hid_input_report - report data from lower layer (usb, bt...)
*
* @hid: hid device
* @type: HID report type (HID_*_REPORT)
* @data: report contents
* @size: size of data parameter
* @interrupt: distinguish between interrupt and control transfers
*
* This is data entry for lower layers.
*/
int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
{
struct hid_report_enum *report_enum;
struct hid_driver *hdrv;
struct hid_report *report;
char *buf;
unsigned int i;
int ret = 0;
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
if (!hid)
return -ENODEV;
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
if (down_trylock(&hid->driver_lock))
return -EBUSY;
if (!hid->driver) {
ret = -ENODEV;
goto unlock;
}
report_enum = hid->report_enum + type;
hdrv = hid->driver;
if (!size) {
dbg_hid("empty report\n");
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
ret = -1;
goto unlock;
}
/* Avoid unnecessary overhead if debugfs is disabled */
if (list_empty(&hid->debug_list))
goto nomem;
buf = kmalloc(sizeof(char) * HID_DEBUG_BUFSIZE, GFP_ATOMIC);
if (!buf)
goto nomem;
/* dump the report */
snprintf(buf, HID_DEBUG_BUFSIZE - 1,
"\nreport (size %u) (%snumbered) = ", size, report_enum->numbered ? "" : "un");
hid_debug_event(hid, buf);
for (i = 0; i < size; i++) {
snprintf(buf, HID_DEBUG_BUFSIZE - 1,
" %02x", data[i]);
hid_debug_event(hid, buf);
}
hid_debug_event(hid, "\n");
kfree(buf);
nomem:
report = hid_get_report(report_enum, data);
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
if (!report) {
ret = -1;
goto unlock;
}
if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
ret = hdrv->raw_event(hid, report, data, size);
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
if (ret != 0) {
ret = ret < 0 ? ret : 0;
goto unlock;
}
}
ret = hid_report_raw_event(hid, type, data, size, interrupt);
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
unlock:
up(&hid->driver_lock);
return ret;
}
EXPORT_SYMBOL_GPL(hid_input_report);
static bool hid_match_one_id(struct hid_device *hdev,
const struct hid_device_id *id)
{
return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
(id->product == HID_ANY_ID || id->product == hdev->product);
}
const struct hid_device_id *hid_match_id(struct hid_device *hdev,
const struct hid_device_id *id)
{
for (; id->bus; id++)
if (hid_match_one_id(hdev, id))
return id;
return NULL;
}
static const struct hid_device_id hid_hiddev_list[] = {
{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
{ }
};
static bool hid_hiddev(struct hid_device *hdev)
{
return !!hid_match_id(hdev, hid_hiddev_list);
}
static ssize_t
read_report_descriptor(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct hid_device *hdev = container_of(dev, struct hid_device, dev);
if (off >= hdev->rsize)
return 0;
if (off + count > hdev->rsize)
count = hdev->rsize - off;
memcpy(buf, hdev->rdesc + off, count);
return count;
}
static struct bin_attribute dev_bin_attr_report_desc = {
.attr = { .name = "report_descriptor", .mode = 0444 },
.read = read_report_descriptor,
.size = HID_MAX_DESCRIPTOR_SIZE,
};
int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
{
static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
"Joystick", "Gamepad", "Keyboard", "Keypad",
"Multi-Axis Controller"
};
const char *type, *bus;
char buf[64];
unsigned int i;
int len;
int ret;
if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
if (hdev->bus != BUS_USB)
connect_mask &= ~HID_CONNECT_HIDDEV;
if (hid_hiddev(hdev))
connect_mask |= HID_CONNECT_HIDDEV_FORCE;
if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
connect_mask & HID_CONNECT_HIDINPUT_FORCE))
hdev->claimed |= HID_CLAIMED_INPUT;
if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
!hdev->hiddev_connect(hdev,
connect_mask & HID_CONNECT_HIDDEV_FORCE))
hdev->claimed |= HID_CLAIMED_HIDDEV;
if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
hdev->claimed |= HID_CLAIMED_HIDRAW;
/* Drivers with the ->raw_event callback set are not required to connect
* to any other listener. */
if (!hdev->claimed && !hdev->driver->raw_event) {
hid_err(hdev, "device has no listeners, quitting\n");
return -ENODEV;
}
if ((hdev->claimed & HID_CLAIMED_INPUT) &&
(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
hdev->ff_init(hdev);
len = 0;
if (hdev->claimed & HID_CLAIMED_INPUT)
len += sprintf(buf + len, "input");
if (hdev->claimed & HID_CLAIMED_HIDDEV)
len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
hdev->minor);
if (hdev->claimed & HID_CLAIMED_HIDRAW)
len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
((struct hidraw *)hdev->hidraw)->minor);
type = "Device";
for (i = 0; i < hdev->maxcollection; i++) {
struct hid_collection *col = &hdev->collection[i];
if (col->type == HID_COLLECTION_APPLICATION &&
(col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
(col->usage & 0xffff) < ARRAY_SIZE(types)) {
type = types[col->usage & 0xffff];
break;
}
}
switch (hdev->bus) {
case BUS_USB:
bus = "USB";
break;
case BUS_BLUETOOTH:
bus = "BLUETOOTH";
break;
default:
bus = "<UNKNOWN>";
}
ret = device_create_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
if (ret)
hid_warn(hdev,
"can't create sysfs report descriptor attribute err: %d\n", ret);
hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
buf, bus, hdev->version >> 8, hdev->version & 0xff,
type, hdev->name, hdev->phys);
return 0;
}
EXPORT_SYMBOL_GPL(hid_connect);
void hid_disconnect(struct hid_device *hdev)
{
device_remove_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
if (hdev->claimed & HID_CLAIMED_INPUT)
hidinput_disconnect(hdev);
if (hdev->claimed & HID_CLAIMED_HIDDEV)
hdev->hiddev_disconnect(hdev);
if (hdev->claimed & HID_CLAIMED_HIDRAW)
hidraw_disconnect(hdev);
}
EXPORT_SYMBOL_GPL(hid_disconnect);
/*
* A list of devices for which there is a specialized driver on HID bus.
*
* Please note that for multitouch devices (driven by hid-multitouch driver),
* there is a proper autodetection and autoloading in place (based on presence
* of HID_DG_CONTACTID), so those devices don't need to be added to this list,
* as we are doing the right thing in hid_scan_usage().
*
* Autodetection for (USB) HID sensor hubs exists too. If a collection of type
* physical is found inside a usage page of type sensor, hid-sensor-hub will be
* used as a driver. See hid_scan_report().
*/
static const struct hid_device_id hid_have_special_driver[] = {
{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU) },
{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_X5_005D) },
{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ATV_IRCONTROL) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_JIS) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_JIS) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ANSI) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
{ HID_USB_DEVICE(USB_VENDOR_ID_AUREAL, USB_DEVICE_ID_AUREAL_W01RN) },
{ HID_USB_DEVICE(USB_VENDOR_ID_BELKIN, USB_DEVICE_ID_FLIP_KVM) },
{ HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE_2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION_SOLAR) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_TACTICAL_PAD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_AK1D) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CREATIVELABS, USB_DEVICE_ID_PRODIKEYS_PCMIDI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_3) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_4) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0006) },
{ HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0011) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, USB_DEVICE_ID_ELECOM_BM084) },
{ HID_USB_DEVICE(USB_VENDOR_ID_EMS, USB_DEVICE_ID_EMS_TRIO_LINKER_PLUS_II) },
{ HID_USB_DEVICE(USB_VENDOR_ID_EZKEY, USB_DEVICE_ID_BTC_8193) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PSX_ADAPTOR) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PCS_ADAPTOR) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0003) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0012) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_3) },
{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK, USB_DEVICE_ID_HOLTEK_ON_LINE_GRIP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_KEYBOARD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_JESS2, USB_DEVICE_ID_JESS2_COLOR_RUMBLE_PAD) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ION, USB_DEVICE_ID_ICADE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_KENSINGTON, USB_DEVICE_ID_KS_SLIMBLADE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_KEYTOUCH, USB_DEVICE_ID_KEYTOUCH_IEC) },
{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_ERGO_525V) },
{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_EASYPEN_I405X) },
{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_MOUSEPEN_I608X) },
{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_EASYPEN_M610X) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LABTEC, USB_DEVICE_ID_LABTEC_WIRELESS_KEYBOARD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LCPOWER, USB_DEVICE_ID_LCPOWER_LC1000 ) },
#if IS_ENABLED(CONFIG_HID_LENOVO_TPKBD)
{ HID_USB_DEVICE(USB_VENDOR_ID_LENOVO, USB_DEVICE_ID_LENOVO_TPKBD) },
#endif
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_HARMONY_PS3) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD_CORD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2_2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_F3D) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_FFG ) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FORCE3D_PRO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FLIGHT_SYSTEM_G940) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFP_WHEEL) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFGT_WHEEL) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G25_WHEEL) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G27_WHEEL) },
#if IS_ENABLED(CONFIG_HID_LOGITECH_DJ)
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_UNIFYING_RECEIVER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_UNIFYING_RECEIVER_2) },
#endif
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WII_WHEEL) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACETRAVELLER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACENAVIGATOR) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_MOUSE_4500) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3K) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MONTEREY, USB_DEVICE_ID_GENIUS_KB29E) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_1) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_3) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_4) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_5) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_6) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_7) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_8) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_9) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_10) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_11) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_12) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_13) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_14) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_15) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_16) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_17) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_18) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_PKB1700) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_WKB2000) },
{ HID_USB_DEVICE(USB_VENDOR_ID_PETALYNX, USB_DEVICE_ID_PETALYNX_MAXTER_REMOTE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_PRIMAX, USB_DEVICE_ID_PRIMAX_KEYBOARD) },
#if IS_ENABLED(CONFIG_HID_ROCCAT)
HID: add driver for Roccat Kone gaming mouse This Patch adds support for Kone gaming mouse from Roccat. It provides access to profiles, settings, firmware, weight, actual settings etc. through sysfs attributes. Event handling of this mouse differs from standard hid behaviour in that tilt button press is reported in each move event which results in strange behaviour if not handled by the driver. This is a heavily reworked version of the previously introduced driver. The changes include most of the previously raised concerns, memory leak and other fixes, code cleanups, adoption of additional achieved knowlege about the hardware and is (IMHO) a much better version than before even when I exchanged reduced USB-IO with a bigger memory consumption. I refused to implement one mentioned point: Removing the 'just-because-we-can' attributes. Motivation: Reading the clipped in weight: I'm no gamer and can't determine the usefulness of this feature but if the manufacturer implements such a feature it might make sense to someone and I would unwillingly limit the functionality besides its such a small feature. Reading the actual profile and dpi settings: Here I can testify that one can get lost of the actual settings when switching back and forth. The manufacturers windows driver has the ability for on-screen-display of the values and there is a mouse in the market that has an lcd on the underside of it to show these values. So I think this feature makes sense not only for me and shouldn't be removed. Signed-off-by: Stefan Achatz <erazor_de@users.sourceforge.net> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-03-18 15:19:43 +00:00
{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ARVO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ISKU) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPLUS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KOVAPLUS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_LUA) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRED) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRELESS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_SAVU) },
#endif
{ HID_USB_DEVICE(USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_PS1000) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_IR_REMOTE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_WIRELESS_KBD_MOUSE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SKYCABLE, USB_DEVICE_ID_SKYCABLE_WIRELESS_PRESENTER) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_BDREMOTE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb300) },
{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb304) },
{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb323) },
{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb324) },
{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb651) },
{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb653) },
{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb654) },
{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb65a) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE_BT) },
{ HID_USB_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED, USB_DEVICE_ID_TOPSEED_CYBERLINK) },
{ HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED2, USB_DEVICE_ID_TOPSEED2_RF_COMBO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_TWINHAN, USB_DEVICE_ID_TWINHAN_IR_REMOTE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_PF1209) },
{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP4030U) },
{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP5540U) },
{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP8060U) },
{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP1062) },
{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_WIRELESS_TABLET_TWHL850) },
{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_TWHA60) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SMARTJOY_PLUS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SUPER_JOY_BOX_3) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_DUAL_USB_JOYPAD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_JOY_BOX_3_PRO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_DUAL_BOX_PRO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_JOY_BOX_5_PRO) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE_BLUETOOTH) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS4_BLUETOOTH) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_5_8_INCH) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_12_1_INCH) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_Q_PAD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_PID_0038) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_10_6_INCH) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_14_1_INCH) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SIRIUS_BATTERY_FREE_TABLET) },
{ HID_USB_DEVICE(USB_VENDOR_ID_X_TENSIONS, USB_DEVICE_ID_SPEEDLINK_VAD_CEZANNE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0005) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0030) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ZYDACRON, USB_DEVICE_ID_ZYDACRON_REMOTE_CONTROL) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE) },
{ }
};
struct hid_dynid {
struct list_head list;
struct hid_device_id id;
};
/**
* store_new_id - add a new HID device ID to this driver and re-probe devices
* @driver: target device driver
* @buf: buffer for scanning device ID data
* @count: input size
*
* Adds a new dynamic hid device ID to this driver,
* and causes the driver to probe for all devices again.
*/
static ssize_t store_new_id(struct device_driver *drv, const char *buf,
size_t count)
{
struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
struct hid_dynid *dynid;
__u32 bus, vendor, product;
unsigned long driver_data = 0;
int ret;
ret = sscanf(buf, "%x %x %x %lx",
&bus, &vendor, &product, &driver_data);
if (ret < 3)
return -EINVAL;
dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
if (!dynid)
return -ENOMEM;
dynid->id.bus = bus;
dynid->id.group = HID_GROUP_ANY;
dynid->id.vendor = vendor;
dynid->id.product = product;
dynid->id.driver_data = driver_data;
spin_lock(&hdrv->dyn_lock);
list_add_tail(&dynid->list, &hdrv->dyn_list);
spin_unlock(&hdrv->dyn_lock);
ret = driver_attach(&hdrv->driver);
return ret ? : count;
}
static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
static void hid_free_dynids(struct hid_driver *hdrv)
{
struct hid_dynid *dynid, *n;
spin_lock(&hdrv->dyn_lock);
list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
list_del(&dynid->list);
kfree(dynid);
}
spin_unlock(&hdrv->dyn_lock);
}
static const struct hid_device_id *hid_match_device(struct hid_device *hdev,
struct hid_driver *hdrv)
{
struct hid_dynid *dynid;
spin_lock(&hdrv->dyn_lock);
list_for_each_entry(dynid, &hdrv->dyn_list, list) {
if (hid_match_one_id(hdev, &dynid->id)) {
spin_unlock(&hdrv->dyn_lock);
return &dynid->id;
}
}
spin_unlock(&hdrv->dyn_lock);
return hid_match_id(hdev, hdrv->id_table);
}
static int hid_bus_match(struct device *dev, struct device_driver *drv)
{
struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
struct hid_device *hdev = container_of(dev, struct hid_device, dev);
return hid_match_device(hdev, hdrv) != NULL;
}
static int hid_device_probe(struct device *dev)
{
struct hid_driver *hdrv = container_of(dev->driver,
struct hid_driver, driver);
struct hid_device *hdev = container_of(dev, struct hid_device, dev);
const struct hid_device_id *id;
int ret = 0;
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
if (down_interruptible(&hdev->driver_lock))
return -EINTR;
if (!hdev->driver) {
id = hid_match_device(hdev, hdrv);
if (id == NULL) {
ret = -ENODEV;
goto unlock;
}
hdev->driver = hdrv;
if (hdrv->probe) {
ret = hdrv->probe(hdev, id);
} else { /* default probe */
ret = hid_open_report(hdev);
if (!ret)
ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
}
if (ret) {
hid_close_report(hdev);
hdev->driver = NULL;
}
}
unlock:
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
up(&hdev->driver_lock);
return ret;
}
static int hid_device_remove(struct device *dev)
{
struct hid_device *hdev = container_of(dev, struct hid_device, dev);
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
struct hid_driver *hdrv;
if (down_interruptible(&hdev->driver_lock))
return -EINTR;
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
hdrv = hdev->driver;
if (hdrv) {
if (hdrv->remove)
hdrv->remove(hdev);
else /* default remove */
hid_hw_stop(hdev);
hid_close_report(hdev);
hdev->driver = NULL;
}
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
up(&hdev->driver_lock);
return 0;
}
static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
char *buf)
{
struct hid_device *hdev = container_of(dev, struct hid_device, dev);
int len;
len = snprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
hdev->bus, hdev->group, hdev->vendor, hdev->product);
return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len;
}
static struct device_attribute hid_dev_attrs[] = {
__ATTR_RO(modalias),
__ATTR_NULL,
};
static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct hid_device *hdev = container_of(dev, struct hid_device, dev);
if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
hdev->bus, hdev->vendor, hdev->product))
return -ENOMEM;
if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
return -ENOMEM;
if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
return -ENOMEM;
if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
return -ENOMEM;
if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
hdev->bus, hdev->group, hdev->vendor, hdev->product))
return -ENOMEM;
return 0;
}
static struct bus_type hid_bus_type = {
.name = "hid",
.dev_attrs = hid_dev_attrs,
.match = hid_bus_match,
.probe = hid_device_probe,
.remove = hid_device_remove,
.uevent = hid_uevent,
};
/* a list of devices that shouldn't be handled by HID core at all */
static const struct hid_device_id hid_ignore_list[] = {
{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
{ HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM)},
{ HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM2)},
{ HID_USB_DEVICE(USB_VENDOR_ID_AVERMEDIA, USB_DEVICE_ID_AVER_FM_MR800) },
{ HID_USB_DEVICE(USB_VENDOR_ID_AXENTIA, USB_DEVICE_ID_AXENTIA_FM_RADIO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_DEALEXTREAME, USB_DEVICE_ID_DEALEXTREAME_RADIO_SI4701) },
{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
USB: add support for Dream Cheeky DL100B Webmail Notifier (1d34:0004) So far the USBLED driver only supports Delcom's "USB Visual Signal Indicator" (http://www.delcomproducts.com/products_USBLMP.asp). The driver generates virtual files "red", "green", and "blue" under the device's /sys/ directory, where color values can be read from and written to. This patch adds support for Dream Cheeky's "DL100B Webmail Notifier" (http://www.dreamcheeky.com/webmail-notifier -- available from several shops, such as http://www.conrad.at/ce/de/product/777048/USB-WEBMAIL). This device isn't as pretty as Delcom's, but it's *far* cheaper, and its 3 LEDs can be set in 32 brightness steps each. The grey envelope contour can easily be removed, leaving a rather neutral white box (with a few small holes), which is useful for generic signalling purposes. Of course, the small circuit board can easily be put into a prettier case. The DL100B device pretends to be a HID, but the HID descriptor shows that it's not overly useful as such (see below). The patch therefore removes the "HID-ness" (hid-core.c, hid-ids.h), and adds the necessary commands to usbled.c. The protocol info comes from the developer's manual that Dream Cheeky kindly provided (815DeveloperManual.pdf). HID descriptor: 0: 05 01 Usage Page 'Generic Desktop Controls' 2: 09 10 Usage 'Reserved' 4: a1 01 Collection 'Application (mouse, keyboard)' 6: 05 00 Usage Page 'Undefined' 8: 19 10 Usage Minimum = 16 10: 29 11 Usage Maximum = 17 12: 15 00 Logical Minimum = 0 14: 25 0f Logical Maximum = 15 16: 75 08 Report Size = 8 18: 95 08 Report Count = 8 20: 91 02 Output data *var abs lin pref-state null-pos non-vol bit-field 22: 19 10 Usage Minimum = 16 24: 29 11 Usage Maximum = 17 26: 15 00 Logical Minimum = 0 28: 25 0f Logical Maximum = 15 30: 75 08 Report Size = 8 32: 95 08 Report Count = 8 34: 81 00 Input data array abs lin pref-state null-pos non-vol bit-field 36: c0 End Collection Signed-off-by: Melchior FRANZ <mfranz@aon.at> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-12-22 01:04:33 +00:00
{ HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x0004) },
{ HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x000a) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC5UH) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC4UM) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0001) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_16_16_IF_KIT) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_7_IF_KIT) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_PHIDGET_MOTORCONTROL) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_RADIOSHARK) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
{ HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
{ HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_KWORLD, USB_DEVICE_ID_KWORLD_RADIO_FM700) },
{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_KYE, 0x0058) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) },
{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MADCATZ, USB_DEVICE_ID_MADCATZ_BEATPAD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
{ HID_USB_DEVICE(USB_VENDOR_ID_PHILIPS, USB_DEVICE_ID_PHILIPS_IEEE802154_DONGLE) },
{ HID_USB_DEVICE(USB_VENDOR_ID_POWERCOM, USB_DEVICE_ID_POWERCOM_UPS) },
#if defined(CONFIG_MOUSE_SYNAPTICS_USB) || defined(CONFIG_MOUSE_SYNAPTICS_USB_MODULE)
{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_TP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_INT_TP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_CPAD) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_STICK) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_WP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_COMP_TP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_WTP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_DPAD) },
#endif
{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LABPRO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_GOTEMP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_SKIP) },
{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_CYCLOPS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LCSPEC) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WACOM, HID_ANY_ID) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20) },
{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_8_8_4_IF_KIT) },
{ HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
{ }
};
/**
* hid_mouse_ignore_list - mouse devices which should not be handled by the hid layer
*
* There are composite devices for which we want to ignore only a certain
* interface. This is a list of devices for which only the mouse interface will
* be ignored. This allows a dedicated driver to take care of the interface.
*/
static const struct hid_device_id hid_mouse_ignore_list[] = {
/* appletouch driver */
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ANSI) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ISO) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_JIS) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
{ }
};
bool hid_ignore(struct hid_device *hdev)
{
if (hdev->quirks & HID_QUIRK_NO_IGNORE)
return false;
if (hdev->quirks & HID_QUIRK_IGNORE)
return true;
switch (hdev->vendor) {
case USB_VENDOR_ID_CODEMERCS:
/* ignore all Code Mercenaries IOWarrior devices */
if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
return true;
break;
case USB_VENDOR_ID_LOGITECH:
if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
return true;
/*
* The Keene FM transmitter USB device has the same USB ID as
* the Logitech AudioHub Speaker, but it should ignore the hid.
* Check if the name is that of the Keene device.
* For reference: the name of the AudioHub is
* "HOLTEK AudioHub Speaker".
*/
if (hdev->product == USB_DEVICE_ID_LOGITECH_AUDIOHUB &&
!strcmp(hdev->name, "HOLTEK B-LINK USB Audio "))
return true;
break;
case USB_VENDOR_ID_SOUNDGRAPH:
if (hdev->product >= USB_DEVICE_ID_SOUNDGRAPH_IMON_FIRST &&
hdev->product <= USB_DEVICE_ID_SOUNDGRAPH_IMON_LAST)
return true;
break;
case USB_VENDOR_ID_HANWANG:
if (hdev->product >= USB_DEVICE_ID_HANWANG_TABLET_FIRST &&
hdev->product <= USB_DEVICE_ID_HANWANG_TABLET_LAST)
return true;
break;
HID: yurex: recognize GeneralKeys wireless presenter as generic HID Unfortunately, the device seems to have the same Vendor ID and Product ID as YUREX leg-shakes sensors, and the commit 6bc235a2e2 ("USB: add driver for Meywa-Denki & Kayac YUREX") added the ID to hid_ignore_list. I believe that we can distinguish YUREX and the Wireless Presenter by device type. The patch below makes the driver ignore only YUREX (bInterfaceProtocol==0), and recognize Wireless Presenter (bInterfaceProtocol is keyboard or mouse) as generic HID. (I don't have the Wireless Presenter, so not yet ested.) ** YUREX lsusb information: Bus 002 Device 007: ID 0c45:1010 Microdia Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 8 idVendor 0x0c45 Microdia idProduct 0x1010 bcdDevice 0.03 iManufacturer 1 JESS iProduct 2 YUREX iSerial 3 10000269 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 34 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xa0 (Bus Powered) Remote Wakeup MaxPower 100mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 0 None iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 31 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Device Status: 0x0002 (Bus Powered) Remote Wakeup Enabled Addresses https://bugzilla.kernel.org/show_bug.cgi?id=26922 Signed-off-by: Tomoki Sekiyama <tomoki.sekiyama@gmail.com> Cc: Greg KH <gregkh@suse.de> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Maciej Rutecki <maciej.rutecki@gmail.com> Reported-by: Thomas B?chler <thomas@archlinux.org> Tested-by: Thomas B?chler <thomas@archlinux.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-05-23 22:45:44 +00:00
case USB_VENDOR_ID_JESS:
if (hdev->product == USB_DEVICE_ID_JESS_YUREX &&
hdev->type == HID_TYPE_USBNONE)
return true;
break;
case USB_VENDOR_ID_DWAV:
/* These are handled by usbtouchscreen. hdev->type is probably
* HID_TYPE_USBNONE, but we say !HID_TYPE_USBMOUSE to match
* usbtouchscreen. */
if ((hdev->product == USB_DEVICE_ID_EGALAX_TOUCHCONTROLLER ||
hdev->product == USB_DEVICE_ID_DWAV_TOUCHCONTROLLER) &&
hdev->type != HID_TYPE_USBMOUSE)
return true;
break;
}
if (hdev->type == HID_TYPE_USBMOUSE &&
hid_match_id(hdev, hid_mouse_ignore_list))
return true;
return !!hid_match_id(hdev, hid_ignore_list);
}
EXPORT_SYMBOL_GPL(hid_ignore);
int hid_add_device(struct hid_device *hdev)
{
static atomic_t id = ATOMIC_INIT(0);
int ret;
if (WARN_ON(hdev->status & HID_STAT_ADDED))
return -EBUSY;
/* we need to kill them here, otherwise they will stay allocated to
* wait for coming driver */
if (hid_ignore(hdev))
return -ENODEV;
/*
* Read the device report descriptor once and use as template
* for the driver-specific modifications.
*/
ret = hdev->ll_driver->parse(hdev);
if (ret)
return ret;
if (!hdev->dev_rdesc)
return -ENODEV;
/*
* Scan generic devices for group information
*/
if (hid_ignore_special_drivers ||
!hid_match_id(hdev, hid_have_special_driver)) {
ret = hid_scan_report(hdev);
if (ret)
hid_warn(hdev, "bad device descriptor (%d)\n", ret);
}
/* XXX hack, any other cleaner solution after the driver core
* is converted to allow more than 20 bytes as the device name? */
dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
hdev->vendor, hdev->product, atomic_inc_return(&id));
hid_debug_register(hdev, dev_name(&hdev->dev));
ret = device_add(&hdev->dev);
if (!ret)
hdev->status |= HID_STAT_ADDED;
else
hid_debug_unregister(hdev);
return ret;
}
EXPORT_SYMBOL_GPL(hid_add_device);
/**
* hid_allocate_device - allocate new hid device descriptor
*
* Allocate and initialize hid device, so that hid_destroy_device might be
* used to free it.
*
* New hid_device pointer is returned on success, otherwise ERR_PTR encoded
* error value.
*/
struct hid_device *hid_allocate_device(void)
{
struct hid_device *hdev;
int ret = -ENOMEM;
hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
if (hdev == NULL)
return ERR_PTR(ret);
device_initialize(&hdev->dev);
hdev->dev.release = hid_device_release;
hdev->dev.bus = &hid_bus_type;
hid_close_report(hdev);
init_waitqueue_head(&hdev->debug_wait);
INIT_LIST_HEAD(&hdev->debug_list);
HID: Fix race condition between driver core and ll-driver HID low level drivers register new devices with the HID core which then adds the devices to the HID bus. The HID bus normally immediately probes an appropriate driver which then handles HID input for this device. The ll driver now uses the hid_input_report() function to report input events for a specific device. However, if the HID bus unloads the driver at the same time (for instance via a call to /sys/bus/hid/devices/<dev>/unbind) then the hdev->driver pointer may be used by hid_input_report() and hid_device_remove() at the same time which may cause hdev->driver to point to invalid memory. This fix adds a semaphore to every hid device which protects hdev->driver from asynchronous access. This semaphore is locked during driver *_probe and *_remove and also inside hid_input_report(). The *_probe and *_remove functions may sleep so the semaphore is good here, however, hid_input_report() is in atomic context and hence only uses down_trylock(). If it cannot acquire the lock it simply drops the input package. The low-level drivers report input events synchronously so hid_input_report() should never be entered twice at the same time on the same device. Hence, the lock should always be available. But if the driver is currently probed/removed then the lock is not available and dropping the package should be safe because this is what would have happened if the package arrived some milliseconds earlier/later. This also fixes another race condition while probing drivers: First the *_probe function of the driver is called and only if that succeeds, the related input device of hidinput is registered. If the low level driver reports input events after the *_probe function returned but before the input device is registered, then a NULL pointer dereference will occur. (Equivalently on driver remove function). This is not possible anymore, since the semaphore lock drops all incoming packages until the driver/device is fully initialized. Signed-off-by: David Herrmann <dh.herrmann@googlemail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2011-08-10 12:02:07 +00:00
sema_init(&hdev->driver_lock, 1);
return hdev;
}
EXPORT_SYMBOL_GPL(hid_allocate_device);
static void hid_remove_device(struct hid_device *hdev)
{
if (hdev->status & HID_STAT_ADDED) {
device_del(&hdev->dev);
hid_debug_unregister(hdev);
hdev->status &= ~HID_STAT_ADDED;
}
kfree(hdev->dev_rdesc);
hdev->dev_rdesc = NULL;
hdev->dev_rsize = 0;
}
/**
* hid_destroy_device - free previously allocated device
*
* @hdev: hid device
*
* If you allocate hid_device through hid_allocate_device, you should ever
* free by this function.
*/
void hid_destroy_device(struct hid_device *hdev)
{
hid_remove_device(hdev);
put_device(&hdev->dev);
}
EXPORT_SYMBOL_GPL(hid_destroy_device);
int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
const char *mod_name)
{
int ret;
hdrv->driver.name = hdrv->name;
hdrv->driver.bus = &hid_bus_type;
hdrv->driver.owner = owner;
hdrv->driver.mod_name = mod_name;
INIT_LIST_HEAD(&hdrv->dyn_list);
spin_lock_init(&hdrv->dyn_lock);
ret = driver_register(&hdrv->driver);
if (ret)
return ret;
ret = driver_create_file(&hdrv->driver, &driver_attr_new_id);
if (ret)
driver_unregister(&hdrv->driver);
return ret;
}
EXPORT_SYMBOL_GPL(__hid_register_driver);
void hid_unregister_driver(struct hid_driver *hdrv)
{
driver_remove_file(&hdrv->driver, &driver_attr_new_id);
driver_unregister(&hdrv->driver);
hid_free_dynids(hdrv);
}
EXPORT_SYMBOL_GPL(hid_unregister_driver);
int hid_check_keys_pressed(struct hid_device *hid)
{
struct hid_input *hidinput;
int i;
if (!(hid->claimed & HID_CLAIMED_INPUT))
return 0;
list_for_each_entry(hidinput, &hid->inputs, list) {
for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
if (hidinput->input->key[i])
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
static int __init hid_init(void)
{
int ret;
if (hid_debug)
pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
"debugfs is now used for inspecting the device (report descriptor, reports)\n");
ret = bus_register(&hid_bus_type);
if (ret) {
pr_err("can't register hid bus\n");
goto err;
}
ret = hidraw_init();
if (ret)
goto err_bus;
hid_debug_init();
return 0;
err_bus:
bus_unregister(&hid_bus_type);
err:
return ret;
}
static void __exit hid_exit(void)
{
hid_debug_exit();
hidraw_exit();
bus_unregister(&hid_bus_type);
}
module_init(hid_init);
module_exit(hid_exit);
MODULE_AUTHOR("Andreas Gal");
MODULE_AUTHOR("Vojtech Pavlik");
MODULE_AUTHOR("Jiri Kosina");
MODULE_LICENSE(DRIVER_LICENSE);