linux/fs/btrfs/Makefile

48 lines
2.0 KiB
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
# SPDX-License-Identifier: GPL-2.0
# Subset of W=1 warnings
subdir-ccflags-y += -Wextra -Wunused -Wno-unused-parameter
subdir-ccflags-y += -Wmissing-declarations
subdir-ccflags-y += -Wmissing-format-attribute
subdir-ccflags-y += -Wmissing-prototypes
subdir-ccflags-y += -Wold-style-definition
subdir-ccflags-y += -Wmissing-include-dirs
condflags := \
$(call cc-option, -Wunused-but-set-variable) \
$(call cc-option, -Wunused-const-variable) \
$(call cc-option, -Wpacked-not-aligned) \
$(call cc-option, -Wstringop-truncation) \
$(call cc-option, -Wmaybe-uninitialized)
subdir-ccflags-y += $(condflags)
# The following turn off the warnings enabled by -Wextra
subdir-ccflags-y += -Wno-missing-field-initializers
subdir-ccflags-y += -Wno-sign-compare
subdir-ccflags-y += -Wno-type-limits
subdir-ccflags-y += -Wno-shift-negative-value
obj-$(CONFIG_BTRFS_FS) := btrfs.o
btrfs-y += super.o ctree.o extent-tree.o print-tree.o root-tree.o dir-item.o \
file-item.o inode-item.o disk-io.o \
transaction.o inode.o file.o defrag.o \
extent_map.o sysfs.o accessors.o xattr.o ordered-data.o \
extent_io.o volumes.o async-thread.o ioctl.o locking.o orphan.o \
btrfs: Add zstd support Add zstd compression and decompression support to BtrFS. zstd at its fastest level compresses almost as well as zlib, while offering much faster compression and decompression, approaching lzo speeds. I benchmarked btrfs with zstd compression against no compression, lzo compression, and zlib compression. I benchmarked two scenarios. Copying a set of files to btrfs, and then reading the files. Copying a tarball to btrfs, extracting it to btrfs, and then reading the extracted files. After every operation, I call `sync` and include the sync time. Between every pair of operations I unmount and remount the filesystem to avoid caching. The benchmark files can be found in the upstream zstd source repository under `contrib/linux-kernel/{btrfs-benchmark.sh,btrfs-extract-benchmark.sh}` [1] [2]. I ran the benchmarks on a Ubuntu 14.04 VM with 2 cores and 4 GiB of RAM. The VM is running on a MacBook Pro with a 3.1 GHz Intel Core i7 processor, 16 GB of RAM, and a SSD. The first compression benchmark is copying 10 copies of the unzipped Silesia corpus [3] into a BtrFS filesystem mounted with `-o compress-force=Method`. The decompression benchmark times how long it takes to `tar` all 10 copies into `/dev/null`. The compression ratio is measured by comparing the output of `df` and `du`. See the benchmark file [1] for details. I benchmarked multiple zstd compression levels, although the patch uses zstd level 1. | Method | Ratio | Compression MB/s | Decompression speed | |---------|-------|------------------|---------------------| | None | 0.99 | 504 | 686 | | lzo | 1.66 | 398 | 442 | | zlib | 2.58 | 65 | 241 | | zstd 1 | 2.57 | 260 | 383 | | zstd 3 | 2.71 | 174 | 408 | | zstd 6 | 2.87 | 70 | 398 | | zstd 9 | 2.92 | 43 | 406 | | zstd 12 | 2.93 | 21 | 408 | | zstd 15 | 3.01 | 11 | 354 | The next benchmark first copies `linux-4.11.6.tar` [4] to btrfs. Then it measures the compression ratio, extracts the tar, and deletes the tar. Then it measures the compression ratio again, and `tar`s the extracted files into `/dev/null`. See the benchmark file [2] for details. | Method | Tar Ratio | Extract Ratio | Copy (s) | Extract (s)| Read (s) | |--------|-----------|---------------|----------|------------|----------| | None | 0.97 | 0.78 | 0.981 | 5.501 | 8.807 | | lzo | 2.06 | 1.38 | 1.631 | 8.458 | 8.585 | | zlib | 3.40 | 1.86 | 7.750 | 21.544 | 11.744 | | zstd 1 | 3.57 | 1.85 | 2.579 | 11.479 | 9.389 | [1] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/btrfs-benchmark.sh [2] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/btrfs-extract-benchmark.sh [3] http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia [4] https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.11.6.tar.xz zstd source repository: https://github.com/facebook/zstd Signed-off-by: Nick Terrell <terrelln@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2017-08-10 02:39:02 +00:00
export.o tree-log.o free-space-cache.o zlib.o lzo.o zstd.o \
btrfs: initial readahead code and prototypes This is the implementation for the generic read ahead framework. To trigger a readahead, btrfs_reada_add must be called. It will start a read ahead for the given range [start, end) on tree root. The returned handle can either be used to wait on the readahead to finish (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach). The read ahead works as follows: On btrfs_reada_add, the root of the tree is inserted into a radix_tree. reada_start_machine will then search for extents to prefetch and trigger some reads. When a read finishes for a node, all contained node/leaf pointers that lie in the given range will also be enqueued. The reads will be triggered in sequential order, thus giving a big win over a naive enumeration. It will also make use of multi-device layouts. Each disk will have its on read pointer and all disks will by utilized in parallel. Also will no two disks read both sides of a mirror simultaneously, as this would waste seeking capacity. Instead both disks will read different parts of the filesystem. Any number of readaheads can be started in parallel. The read order will be determined globally, i.e. 2 parallel readaheads will normally finish faster than the 2 started one after another. Changes v2: - protect root->node by transaction instead of node_lock - fix missed branches: The readahead had a too simple check to determine if a branch from a node should be checked or not. It now also records the upper bound of each node to see if the requested RA range lies within. - use KERN_CONT to debug output, to avoid line breaks - defer reada_start_machine to worker to avoid deadlock Changes v3: - protect root->node by rcu Changes v5: - changed EIO-semantics of reada_tree_block_flagged - remove spin_lock from reada_control and make elems an atomic_t - remove unused read_total from reada_control - kill reada_key_cmp, use btrfs_comp_cpu_keys instead - use kref-style release functions where possible - return struct reada_control * instead of void * from btrfs_reada_add Signed-off-by: Arne Jansen <sensille@gmx.net>
2011-05-23 12:33:49 +00:00
compression.o delayed-ref.o relocation.o delayed-inode.o scrub.o \
btrfs: remove reada infrastructure Currently there is only one user for btrfs metadata readahead, and that's scrub. But even for the single user, it's not providing the correct functionality it needs, as scrub needs reada for commit root, which current readahead can't provide. (Although it's pretty easy to add such feature). Despite this, there are some extra problems related to metadata readahead: - Duplicated feature with btrfs_path::reada - Partly duplicated feature of btrfs_fs_info::buffer_radix Btrfs already caches its metadata in buffer_radix, while readahead tries to read the tree block no matter if it's already cached. - Poor layer separation Metadata readahead works kinda at device level. This is definitely not the correct layer it should be, since metadata is at btrfs logical address space, it should not bother device at all. This brings extra chance for bugs to sneak in, while brings unnecessary complexity. - Dead code In the very beginning of scrub.c we have #undef DEBUG, rendering all the debug related code useless and unable to test. Thus here I purpose to remove the metadata readahead mechanism completely. [BENCHMARK] There is a full benchmark for the scrub performance difference using the old btrfs_reada_add() and btrfs_path::reada. For the worst case (no dirty metadata, slow HDD), there could be a 5% performance drop for scrub. For other cases (even SATA SSD), there is no distinguishable performance difference. The number is reported scrub speed, in MiB/s. The resolution is limited by the reported duration, which only has a resolution of 1 second. Old New Diff SSD 455.3 466.332 +2.42% HDD 103.927 98.012 -5.69% Comprehensive test methodology is in the cover letter of the patch. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-14 13:01:45 +00:00
backref.o ulist.o qgroup.o send.o dev-replace.o raid56.o \
uuid-tree.o props.o free-space-tree.o tree-checker.o space-info.o \
block-rsv.o delalloc-space.o block-group.o discard.o reflink.o \
btrfs: send: genericize the backref cache to allow it to be reused The backref cache is a cache backed by a maple tree and a linked list to keep track of temporal access to cached entries (the LRU entry always at the head of the list). This type of caching method is going to be useful in other scenarios, so make the cache implementation more generic and move it into its own header and source files. This patch is part of a larger patchset and the changelog of the last patch in the series contains a sample performance test and results. The patches that comprise the patchset are the following: btrfs: send: directly return from did_overwrite_ref() and simplify it btrfs: send: avoid unnecessary generation search at did_overwrite_ref() btrfs: send: directly return from will_overwrite_ref() and simplify it btrfs: send: avoid extra b+tree searches when checking reference overrides btrfs: send: remove send_progress argument from can_rmdir() btrfs: send: avoid duplicated orphan dir allocation and initialization btrfs: send: avoid unnecessary orphan dir rbtree search at can_rmdir() btrfs: send: reduce searches on parent root when checking if dir can be removed btrfs: send: iterate waiting dir move rbtree only once when processing refs btrfs: send: initialize all the red black trees earlier btrfs: send: genericize the backref cache to allow it to be reused btrfs: adapt lru cache to allow for 64 bits keys on 32 bits systems btrfs: send: cache information about created directories btrfs: allow a generation number to be associated with lru cache entries btrfs: add an api to delete a specific entry from the lru cache btrfs: send: use the lru cache to implement the name cache btrfs: send: update size of roots array for backref cache entries btrfs: send: cache utimes operations for directories if possible Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-11 11:36:13 +00:00
subpage.o tree-mod-log.o extent-io-tree.o fs.o messages.o bio.o \
lru_cache.o
btrfs-$(CONFIG_BTRFS_FS_POSIX_ACL) += acl.o
btrfs-$(CONFIG_BTRFS_FS_CHECK_INTEGRITY) += check-integrity.o
btrfs-$(CONFIG_BTRFS_FS_REF_VERIFY) += ref-verify.o
btrfs-$(CONFIG_BLK_DEV_ZONED) += zoned.o
btrfs: initial fsverity support Add support for fsverity in btrfs. To support the generic interface in fs/verity, we add two new item types in the fs tree for inodes with verity enabled. One stores the per-file verity descriptor and btrfs verity item and the other stores the Merkle tree data itself. Verity checking is done in end_page_read just before a page is marked uptodate. This naturally handles a variety of edge cases like holes, preallocated extents, and inline extents. Some care needs to be taken to not try to verity pages past the end of the file, which are accessed by the generic buffered file reading code under some circumstances like reading to the end of the last page and trying to read again. Direct IO on a verity file falls back to buffered reads. Verity relies on PageChecked for the Merkle tree data itself to avoid re-walking up shared paths in the tree. For this reason, we need to cache the Merkle tree data. Since the file is immutable after verity is turned on, we can cache it at an index past EOF. Use the new inode ro_flags to store verity on the inode item, so that we can enable verity on a file, then rollback to an older kernel and still mount the file system and read the file. Since we can't safely write the file anymore without ruining the invariants of the Merkle tree, we mark a ro_compat flag on the file system when a file has verity enabled. Acked-by: Eric Biggers <ebiggers@google.com> Co-developed-by: Chris Mason <clm@fb.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-30 20:01:49 +00:00
btrfs-$(CONFIG_FS_VERITY) += verity.o
btrfs-$(CONFIG_BTRFS_FS_RUN_SANITY_TESTS) += tests/free-space-tests.o \
tests/extent-buffer-tests.o tests/btrfs-tests.o \
tests/extent-io-tests.o tests/inode-tests.o tests/qgroup-tests.o \
tests/free-space-tree-tests.o tests/extent-map-tests.o