mirror of
https://github.com/torvalds/linux.git
synced 2024-11-18 10:01:43 +00:00
144 lines
3.8 KiB
C
144 lines
3.8 KiB
C
|
#ifndef _ASM_PGALLOC_H
|
||
|
#define _ASM_PGALLOC_H
|
||
|
|
||
|
#include <linux/gfp.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/threads.h>
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/fixmap.h>
|
||
|
|
||
|
#include <asm/cache.h>
|
||
|
|
||
|
/* Allocate the top level pgd (page directory)
|
||
|
*
|
||
|
* Here (for 64 bit kernels) we implement a Hybrid L2/L3 scheme: we
|
||
|
* allocate the first pmd adjacent to the pgd. This means that we can
|
||
|
* subtract a constant offset to get to it. The pmd and pgd sizes are
|
||
|
* arranged so that a single pmd covers 4GB (giving a full LP64
|
||
|
* process access to 8TB) so our lookups are effectively L2 for the
|
||
|
* first 4GB of the kernel (i.e. for all ILP32 processes and all the
|
||
|
* kernel for machines with under 4GB of memory) */
|
||
|
static inline pgd_t *pgd_alloc(struct mm_struct *mm)
|
||
|
{
|
||
|
pgd_t *pgd = (pgd_t *)__get_free_pages(GFP_KERNEL,
|
||
|
PGD_ALLOC_ORDER);
|
||
|
pgd_t *actual_pgd = pgd;
|
||
|
|
||
|
if (likely(pgd != NULL)) {
|
||
|
memset(pgd, 0, PAGE_SIZE<<PGD_ALLOC_ORDER);
|
||
|
#ifdef __LP64__
|
||
|
actual_pgd += PTRS_PER_PGD;
|
||
|
/* Populate first pmd with allocated memory. We mark it
|
||
|
* with PxD_FLAG_ATTACHED as a signal to the system that this
|
||
|
* pmd entry may not be cleared. */
|
||
|
__pgd_val_set(*actual_pgd, (PxD_FLAG_PRESENT |
|
||
|
PxD_FLAG_VALID |
|
||
|
PxD_FLAG_ATTACHED)
|
||
|
+ (__u32)(__pa((unsigned long)pgd) >> PxD_VALUE_SHIFT));
|
||
|
/* The first pmd entry also is marked with _PAGE_GATEWAY as
|
||
|
* a signal that this pmd may not be freed */
|
||
|
__pgd_val_set(*pgd, PxD_FLAG_ATTACHED);
|
||
|
#endif
|
||
|
}
|
||
|
return actual_pgd;
|
||
|
}
|
||
|
|
||
|
static inline void pgd_free(pgd_t *pgd)
|
||
|
{
|
||
|
#ifdef __LP64__
|
||
|
pgd -= PTRS_PER_PGD;
|
||
|
#endif
|
||
|
free_pages((unsigned long)pgd, PGD_ALLOC_ORDER);
|
||
|
}
|
||
|
|
||
|
#if PT_NLEVELS == 3
|
||
|
|
||
|
/* Three Level Page Table Support for pmd's */
|
||
|
|
||
|
static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmd)
|
||
|
{
|
||
|
__pgd_val_set(*pgd, (PxD_FLAG_PRESENT | PxD_FLAG_VALID) +
|
||
|
(__u32)(__pa((unsigned long)pmd) >> PxD_VALUE_SHIFT));
|
||
|
}
|
||
|
|
||
|
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long address)
|
||
|
{
|
||
|
pmd_t *pmd = (pmd_t *)__get_free_pages(GFP_KERNEL|__GFP_REPEAT,
|
||
|
PMD_ORDER);
|
||
|
if (pmd)
|
||
|
memset(pmd, 0, PAGE_SIZE<<PMD_ORDER);
|
||
|
return pmd;
|
||
|
}
|
||
|
|
||
|
static inline void pmd_free(pmd_t *pmd)
|
||
|
{
|
||
|
#ifdef __LP64__
|
||
|
if(pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
|
||
|
/* This is the permanent pmd attached to the pgd;
|
||
|
* cannot free it */
|
||
|
return;
|
||
|
#endif
|
||
|
free_pages((unsigned long)pmd, PMD_ORDER);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Two Level Page Table Support for pmd's */
|
||
|
|
||
|
/*
|
||
|
* allocating and freeing a pmd is trivial: the 1-entry pmd is
|
||
|
* inside the pgd, so has no extra memory associated with it.
|
||
|
*/
|
||
|
|
||
|
#define pmd_alloc_one(mm, addr) ({ BUG(); ((pmd_t *)2); })
|
||
|
#define pmd_free(x) do { } while (0)
|
||
|
#define pgd_populate(mm, pmd, pte) BUG()
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static inline void
|
||
|
pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, pte_t *pte)
|
||
|
{
|
||
|
#ifdef __LP64__
|
||
|
/* preserve the gateway marker if this is the beginning of
|
||
|
* the permanent pmd */
|
||
|
if(pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
|
||
|
__pmd_val_set(*pmd, (PxD_FLAG_PRESENT |
|
||
|
PxD_FLAG_VALID |
|
||
|
PxD_FLAG_ATTACHED)
|
||
|
+ (__u32)(__pa((unsigned long)pte) >> PxD_VALUE_SHIFT));
|
||
|
else
|
||
|
#endif
|
||
|
__pmd_val_set(*pmd, (PxD_FLAG_PRESENT | PxD_FLAG_VALID)
|
||
|
+ (__u32)(__pa((unsigned long)pte) >> PxD_VALUE_SHIFT));
|
||
|
}
|
||
|
|
||
|
#define pmd_populate(mm, pmd, pte_page) \
|
||
|
pmd_populate_kernel(mm, pmd, page_address(pte_page))
|
||
|
|
||
|
static inline struct page *
|
||
|
pte_alloc_one(struct mm_struct *mm, unsigned long address)
|
||
|
{
|
||
|
struct page *page = alloc_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
static inline pte_t *
|
||
|
pte_alloc_one_kernel(struct mm_struct *mm, unsigned long addr)
|
||
|
{
|
||
|
pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static inline void pte_free_kernel(pte_t *pte)
|
||
|
{
|
||
|
free_page((unsigned long)pte);
|
||
|
}
|
||
|
|
||
|
#define pte_free(page) pte_free_kernel(page_address(page))
|
||
|
|
||
|
extern int do_check_pgt_cache(int, int);
|
||
|
#define check_pgt_cache() do { } while (0)
|
||
|
|
||
|
#endif
|