linux/net/mac80211/tx.c

1871 lines
53 KiB
C
Raw Normal View History

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*
* Transmit and frame generation functions.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/bitmap.h>
#include <net/ieee80211_radiotap.h>
#include <net/cfg80211.h>
#include <net/mac80211.h>
#include <asm/unaligned.h>
#include "ieee80211_i.h"
#include "ieee80211_led.h"
#include "wep.h"
#include "wpa.h"
#include "wme.h"
#include "ieee80211_rate.h"
#define IEEE80211_TX_OK 0
#define IEEE80211_TX_AGAIN 1
#define IEEE80211_TX_FRAG_AGAIN 2
/* misc utils */
static inline void ieee80211_include_sequence(struct ieee80211_sub_if_data *sdata,
struct ieee80211_hdr *hdr)
{
/* Set the sequence number for this frame. */
hdr->seq_ctrl = cpu_to_le16(sdata->sequence);
/* Increase the sequence number. */
sdata->sequence = (sdata->sequence + 0x10) & IEEE80211_SCTL_SEQ;
}
#ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP
static void ieee80211_dump_frame(const char *ifname, const char *title,
const struct sk_buff *skb)
{
const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u16 fc;
int hdrlen;
printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len);
if (skb->len < 4) {
printk("\n");
return;
}
fc = le16_to_cpu(hdr->frame_control);
hdrlen = ieee80211_get_hdrlen(fc);
if (hdrlen > skb->len)
hdrlen = skb->len;
if (hdrlen >= 4)
printk(" FC=0x%04x DUR=0x%04x",
fc, le16_to_cpu(hdr->duration_id));
if (hdrlen >= 10)
printk(" A1=" MAC_FMT, MAC_ARG(hdr->addr1));
if (hdrlen >= 16)
printk(" A2=" MAC_FMT, MAC_ARG(hdr->addr2));
if (hdrlen >= 24)
printk(" A3=" MAC_FMT, MAC_ARG(hdr->addr3));
if (hdrlen >= 30)
printk(" A4=" MAC_FMT, MAC_ARG(hdr->addr4));
printk("\n");
}
#else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */
static inline void ieee80211_dump_frame(const char *ifname, const char *title,
struct sk_buff *skb)
{
}
#endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */
static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr,
int next_frag_len)
{
int rate, mrate, erp, dur, i;
struct ieee80211_rate *txrate = tx->u.tx.rate;
struct ieee80211_local *local = tx->local;
struct ieee80211_hw_mode *mode = tx->u.tx.mode;
erp = txrate->flags & IEEE80211_RATE_ERP;
/*
* data and mgmt (except PS Poll):
* - during CFP: 32768
* - during contention period:
* if addr1 is group address: 0
* if more fragments = 0 and addr1 is individual address: time to
* transmit one ACK plus SIFS
* if more fragments = 1 and addr1 is individual address: time to
* transmit next fragment plus 2 x ACK plus 3 x SIFS
*
* IEEE 802.11, 9.6:
* - control response frame (CTS or ACK) shall be transmitted using the
* same rate as the immediately previous frame in the frame exchange
* sequence, if this rate belongs to the PHY mandatory rates, or else
* at the highest possible rate belonging to the PHY rates in the
* BSSBasicRateSet
*/
if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) {
/* TODO: These control frames are not currently sent by
* 80211.o, but should they be implemented, this function
* needs to be updated to support duration field calculation.
*
* RTS: time needed to transmit pending data/mgmt frame plus
* one CTS frame plus one ACK frame plus 3 x SIFS
* CTS: duration of immediately previous RTS minus time
* required to transmit CTS and its SIFS
* ACK: 0 if immediately previous directed data/mgmt had
* more=0, with more=1 duration in ACK frame is duration
* from previous frame minus time needed to transmit ACK
* and its SIFS
* PS Poll: BIT(15) | BIT(14) | aid
*/
return 0;
}
/* data/mgmt */
if (0 /* FIX: data/mgmt during CFP */)
return 32768;
if (group_addr) /* Group address as the destination - no ACK */
return 0;
/* Individual destination address:
* IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
* CTS and ACK frames shall be transmitted using the highest rate in
* basic rate set that is less than or equal to the rate of the
* immediately previous frame and that is using the same modulation
* (CCK or OFDM). If no basic rate set matches with these requirements,
* the highest mandatory rate of the PHY that is less than or equal to
* the rate of the previous frame is used.
* Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
*/
rate = -1;
mrate = 10; /* use 1 Mbps if everything fails */
for (i = 0; i < mode->num_rates; i++) {
struct ieee80211_rate *r = &mode->rates[i];
if (r->rate > txrate->rate)
break;
if (IEEE80211_RATE_MODULATION(txrate->flags) !=
IEEE80211_RATE_MODULATION(r->flags))
continue;
if (r->flags & IEEE80211_RATE_BASIC)
rate = r->rate;
else if (r->flags & IEEE80211_RATE_MANDATORY)
mrate = r->rate;
}
if (rate == -1) {
/* No matching basic rate found; use highest suitable mandatory
* PHY rate */
rate = mrate;
}
/* Time needed to transmit ACK
* (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
* to closest integer */
dur = ieee80211_frame_duration(local, 10, rate, erp,
local->short_preamble);
if (next_frag_len) {
/* Frame is fragmented: duration increases with time needed to
* transmit next fragment plus ACK and 2 x SIFS. */
dur *= 2; /* ACK + SIFS */
/* next fragment */
dur += ieee80211_frame_duration(local, next_frag_len,
txrate->rate, erp,
local->short_preamble);
}
return dur;
}
static inline int __ieee80211_queue_stopped(const struct ieee80211_local *local,
int queue)
{
return test_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]);
}
static inline int __ieee80211_queue_pending(const struct ieee80211_local *local,
int queue)
{
return test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue]);
}
static int inline is_ieee80211_device(struct net_device *dev,
struct net_device *master)
{
return (wdev_priv(dev->ieee80211_ptr) ==
wdev_priv(master->ieee80211_ptr));
}
/* tx handlers */
static ieee80211_txrx_result
ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx)
{
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
struct sk_buff *skb = tx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
u32 sta_flags;
if (unlikely(tx->local->sta_scanning != 0) &&
((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
(tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ))
return TXRX_DROP;
if (tx->u.tx.ps_buffered)
return TXRX_CONTINUE;
sta_flags = tx->sta ? tx->sta->flags : 0;
if (likely(tx->u.tx.unicast)) {
if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
tx->sdata->type != IEEE80211_IF_TYPE_IBSS &&
(tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: dropped data frame to not "
"associated station " MAC_FMT "\n",
tx->dev->name, MAC_ARG(hdr->addr1));
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
return TXRX_DROP;
}
} else {
if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
tx->local->num_sta == 0 &&
!tx->local->allow_broadcast_always &&
tx->sdata->type != IEEE80211_IF_TYPE_IBSS)) {
/*
* No associated STAs - no need to send multicast
* frames.
*/
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
if (unlikely(!tx->u.tx.mgmt_interface && tx->sdata->ieee802_1x &&
!(sta_flags & WLAN_STA_AUTHORIZED))) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: dropped frame to " MAC_FMT
" (unauthorized port)\n", tx->dev->name,
MAC_ARG(hdr->addr1));
#endif
I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port);
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_sequence(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
if (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)) >= 24)
ieee80211_include_sequence(tx->sdata, hdr);
return TXRX_CONTINUE;
}
/* This function is called whenever the AP is about to exceed the maximum limit
* of buffered frames for power saving STAs. This situation should not really
* happen often during normal operation, so dropping the oldest buffered packet
* from each queue should be OK to make some room for new frames. */
static void purge_old_ps_buffers(struct ieee80211_local *local)
{
int total = 0, purged = 0;
struct sk_buff *skb;
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
read_lock(&local->sub_if_lock);
list_for_each_entry(sdata, &local->sub_if_list, list) {
struct ieee80211_if_ap *ap;
if (sdata->dev == local->mdev ||
sdata->type != IEEE80211_IF_TYPE_AP)
continue;
ap = &sdata->u.ap;
skb = skb_dequeue(&ap->ps_bc_buf);
if (skb) {
purged++;
dev_kfree_skb(skb);
}
total += skb_queue_len(&ap->ps_bc_buf);
}
read_unlock(&local->sub_if_lock);
read_lock_bh(&local->sta_lock);
list_for_each_entry(sta, &local->sta_list, list) {
skb = skb_dequeue(&sta->ps_tx_buf);
if (skb) {
purged++;
dev_kfree_skb(skb);
}
total += skb_queue_len(&sta->ps_tx_buf);
}
read_unlock_bh(&local->sta_lock);
local->total_ps_buffered = total;
printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
local->mdev->name, purged);
}
static inline ieee80211_txrx_result
ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx)
{
/* broadcast/multicast frame */
/* If any of the associated stations is in power save mode,
* the frame is buffered to be sent after DTIM beacon frame */
if ((tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) &&
tx->sdata->type != IEEE80211_IF_TYPE_WDS &&
tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) &&
!(tx->fc & IEEE80211_FCTL_ORDER)) {
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
purge_old_ps_buffers(tx->local);
if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
AP_MAX_BC_BUFFER) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: BC TX buffer full - "
"dropping the oldest frame\n",
tx->dev->name);
}
dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
} else
tx->local->total_ps_buffered++;
skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
return TXRX_QUEUED;
}
return TXRX_CONTINUE;
}
static inline ieee80211_txrx_result
ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx)
{
struct sta_info *sta = tx->sta;
if (unlikely(!sta ||
((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT &&
(tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP)))
return TXRX_CONTINUE;
if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) {
struct ieee80211_tx_packet_data *pkt_data;
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS buffer (entries "
"before %d)\n",
MAC_ARG(sta->addr), sta->aid,
skb_queue_len(&sta->ps_tx_buf));
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
sta->flags |= WLAN_STA_TIM;
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
purge_old_ps_buffers(tx->local);
if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: STA " MAC_FMT " TX "
"buffer full - dropping oldest frame\n",
tx->dev->name, MAC_ARG(sta->addr));
}
dev_kfree_skb(old);
} else
tx->local->total_ps_buffered++;
/* Queue frame to be sent after STA sends an PS Poll frame */
if (skb_queue_empty(&sta->ps_tx_buf)) {
if (tx->local->ops->set_tim)
tx->local->ops->set_tim(local_to_hw(tx->local),
sta->aid, 1);
if (tx->sdata->bss)
bss_tim_set(tx->local, tx->sdata->bss, sta->aid);
}
pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb;
pkt_data->jiffies = jiffies;
skb_queue_tail(&sta->ps_tx_buf, tx->skb);
return TXRX_QUEUED;
}
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
else if (unlikely(sta->flags & WLAN_STA_PS)) {
printk(KERN_DEBUG "%s: STA " MAC_FMT " in PS mode, but pspoll "
"set -> send frame\n", tx->dev->name,
MAC_ARG(sta->addr));
}
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
sta->pspoll = 0;
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx)
{
if (unlikely(tx->u.tx.ps_buffered))
return TXRX_CONTINUE;
if (tx->u.tx.unicast)
return ieee80211_tx_h_unicast_ps_buf(tx);
else
return ieee80211_tx_h_multicast_ps_buf(tx);
}
static ieee80211_txrx_result
ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx)
{
if (tx->sta)
tx->u.tx.control->key_idx = tx->sta->key_idx_compression;
else
tx->u.tx.control->key_idx = HW_KEY_IDX_INVALID;
if (unlikely(tx->u.tx.control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT))
tx->key = NULL;
else if (tx->sta && tx->sta->key)
tx->key = tx->sta->key;
else if (tx->sdata->default_key)
tx->key = tx->sdata->default_key;
else if (tx->sdata->drop_unencrypted &&
!(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) {
I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
return TXRX_DROP;
} else
tx->key = NULL;
if (tx->key) {
tx->key->tx_rx_count++;
if (unlikely(tx->local->key_tx_rx_threshold &&
tx->key->tx_rx_count >
tx->local->key_tx_rx_threshold)) {
ieee80211_key_threshold_notify(tx->dev, tx->key,
tx->sta);
}
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
size_t hdrlen, per_fragm, num_fragm, payload_len, left;
struct sk_buff **frags, *first, *frag;
int i;
u16 seq;
u8 *pos;
int frag_threshold = tx->local->fragmentation_threshold;
if (!tx->fragmented)
return TXRX_CONTINUE;
first = tx->skb;
hdrlen = ieee80211_get_hdrlen(tx->fc);
payload_len = first->len - hdrlen;
per_fragm = frag_threshold - hdrlen - FCS_LEN;
num_fragm = (payload_len + per_fragm - 1) / per_fragm;
frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC);
if (!frags)
goto fail;
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ;
pos = first->data + hdrlen + per_fragm;
left = payload_len - per_fragm;
for (i = 0; i < num_fragm - 1; i++) {
struct ieee80211_hdr *fhdr;
size_t copylen;
if (left <= 0)
goto fail;
/* reserve enough extra head and tail room for possible
* encryption */
frag = frags[i] =
dev_alloc_skb(tx->local->tx_headroom +
frag_threshold +
IEEE80211_ENCRYPT_HEADROOM +
IEEE80211_ENCRYPT_TAILROOM);
if (!frag)
goto fail;
/* Make sure that all fragments use the same priority so
* that they end up using the same TX queue */
frag->priority = first->priority;
skb_reserve(frag, tx->local->tx_headroom +
IEEE80211_ENCRYPT_HEADROOM);
fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen);
memcpy(fhdr, first->data, hdrlen);
if (i == num_fragm - 2)
fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS);
fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG));
copylen = left > per_fragm ? per_fragm : left;
memcpy(skb_put(frag, copylen), pos, copylen);
pos += copylen;
left -= copylen;
}
skb_trim(first, hdrlen + per_fragm);
tx->u.tx.num_extra_frag = num_fragm - 1;
tx->u.tx.extra_frag = frags;
return TXRX_CONTINUE;
fail:
printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name);
if (frags) {
for (i = 0; i < num_fragm - 1; i++)
if (frags[i])
dev_kfree_skb(frags[i]);
kfree(frags);
}
I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment);
return TXRX_DROP;
}
static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb)
{
if (tx->key->force_sw_encrypt) {
if (ieee80211_wep_encrypt(tx->local, skb, tx->key))
return -1;
} else {
tx->u.tx.control->key_idx = tx->key->hw_key_idx;
if (tx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) {
if (ieee80211_wep_add_iv(tx->local, skb, tx->key) ==
NULL)
return -1;
}
}
return 0;
}
static ieee80211_txrx_result
ieee80211_tx_h_wep_encrypt(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
u16 fc;
fc = le16_to_cpu(hdr->frame_control);
if (!tx->key || tx->key->alg != ALG_WEP ||
((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
(fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)))
return TXRX_CONTINUE;
tx->u.tx.control->iv_len = WEP_IV_LEN;
tx->u.tx.control->icv_len = WEP_ICV_LEN;
ieee80211_tx_set_iswep(tx);
if (wep_encrypt_skb(tx, tx->skb) < 0) {
I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
return TXRX_DROP;
}
if (tx->u.tx.extra_frag) {
int i;
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) {
I802_DEBUG_INC(tx->local->
tx_handlers_drop_wep);
return TXRX_DROP;
}
}
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx)
{
struct rate_control_extra extra;
memset(&extra, 0, sizeof(extra));
extra.mode = tx->u.tx.mode;
extra.mgmt_data = tx->sdata &&
tx->sdata->type == IEEE80211_IF_TYPE_MGMT;
extra.ethertype = tx->ethertype;
tx->u.tx.rate = rate_control_get_rate(tx->local, tx->dev, tx->skb,
&extra);
if (unlikely(extra.probe != NULL)) {
tx->u.tx.control->flags |= IEEE80211_TXCTL_RATE_CTRL_PROBE;
tx->u.tx.probe_last_frag = 1;
tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val;
tx->u.tx.rate = extra.probe;
} else {
tx->u.tx.control->alt_retry_rate = -1;
}
if (!tx->u.tx.rate)
return TXRX_DROP;
if (tx->u.tx.mode->mode == MODE_IEEE80211G &&
tx->sdata->use_protection && tx->fragmented &&
extra.nonerp) {
tx->u.tx.last_frag_rate = tx->u.tx.rate;
tx->u.tx.probe_last_frag = extra.probe ? 1 : 0;
tx->u.tx.rate = extra.nonerp;
tx->u.tx.control->rate = extra.nonerp;
tx->u.tx.control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE;
} else {
tx->u.tx.last_frag_rate = tx->u.tx.rate;
tx->u.tx.control->rate = tx->u.tx.rate;
}
tx->u.tx.control->tx_rate = tx->u.tx.rate->val;
if ((tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) &&
tx->local->short_preamble &&
(!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) {
tx->u.tx.short_preamble = 1;
tx->u.tx.control->tx_rate = tx->u.tx.rate->val2;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
u16 dur;
struct ieee80211_tx_control *control = tx->u.tx.control;
struct ieee80211_hw_mode *mode = tx->u.tx.mode;
if (!is_multicast_ether_addr(hdr->addr1)) {
if (tx->skb->len + FCS_LEN > tx->local->rts_threshold &&
tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD) {
control->flags |= IEEE80211_TXCTL_USE_RTS_CTS;
control->flags |= IEEE80211_TXCTL_LONG_RETRY_LIMIT;
control->retry_limit =
tx->local->long_retry_limit;
} else {
control->retry_limit =
tx->local->short_retry_limit;
}
} else {
control->retry_limit = 1;
}
if (tx->fragmented) {
/* Do not use multiple retry rates when sending fragmented
* frames.
* TODO: The last fragment could still use multiple retry
* rates. */
control->alt_retry_rate = -1;
}
/* Use CTS protection for unicast frames sent using extended rates if
* there are associated non-ERP stations and RTS/CTS is not configured
* for the frame. */
if (mode->mode == MODE_IEEE80211G &&
(tx->u.tx.rate->flags & IEEE80211_RATE_ERP) &&
tx->u.tx.unicast && tx->sdata->use_protection &&
!(control->flags & IEEE80211_TXCTL_USE_RTS_CTS))
control->flags |= IEEE80211_TXCTL_USE_CTS_PROTECT;
/* Setup duration field for the first fragment of the frame. Duration
* for remaining fragments will be updated when they are being sent
* to low-level driver in ieee80211_tx(). */
dur = ieee80211_duration(tx, is_multicast_ether_addr(hdr->addr1),
tx->fragmented ? tx->u.tx.extra_frag[0]->len :
0);
hdr->duration_id = cpu_to_le16(dur);
if ((control->flags & IEEE80211_TXCTL_USE_RTS_CTS) ||
(control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) {
struct ieee80211_rate *rate;
/* Do not use multiple retry rates when using RTS/CTS */
control->alt_retry_rate = -1;
/* Use min(data rate, max base rate) as CTS/RTS rate */
rate = tx->u.tx.rate;
while (rate > mode->rates &&
!(rate->flags & IEEE80211_RATE_BASIC))
rate--;
control->rts_cts_rate = rate->val;
control->rts_rate = rate;
}
if (tx->sta) {
tx->sta->tx_packets++;
tx->sta->tx_fragments++;
tx->sta->tx_bytes += tx->skb->len;
if (tx->u.tx.extra_frag) {
int i;
tx->sta->tx_fragments += tx->u.tx.num_extra_frag;
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
tx->sta->tx_bytes +=
tx->u.tx.extra_frag[i]->len;
}
}
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx)
{
struct ieee80211_local *local = tx->local;
struct ieee80211_hw_mode *mode = tx->u.tx.mode;
struct sk_buff *skb = tx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u32 load = 0, hdrtime;
/* TODO: this could be part of tx_status handling, so that the number
* of retries would be known; TX rate should in that case be stored
* somewhere with the packet */
/* Estimate total channel use caused by this frame */
/* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
* 1 usec = 1/8 * (1080 / 10) = 13.5 */
if (mode->mode == MODE_IEEE80211A ||
mode->mode == MODE_ATHEROS_TURBO ||
mode->mode == MODE_ATHEROS_TURBOG ||
(mode->mode == MODE_IEEE80211G &&
tx->u.tx.rate->flags & IEEE80211_RATE_ERP))
hdrtime = CHAN_UTIL_HDR_SHORT;
else
hdrtime = CHAN_UTIL_HDR_LONG;
load = hdrtime;
if (!is_multicast_ether_addr(hdr->addr1))
load += hdrtime;
if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_RTS_CTS)
load += 2 * hdrtime;
else if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)
load += hdrtime;
load += skb->len * tx->u.tx.rate->rate_inv;
if (tx->u.tx.extra_frag) {
int i;
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
load += 2 * hdrtime;
load += tx->u.tx.extra_frag[i]->len *
tx->u.tx.rate->rate;
}
}
/* Divide channel_use by 8 to avoid wrapping around the counter */
load >>= CHAN_UTIL_SHIFT;
local->channel_use_raw += load;
if (tx->sta)
tx->sta->channel_use_raw += load;
tx->sdata->channel_use_raw += load;
return TXRX_CONTINUE;
}
/* TODO: implement register/unregister functions for adding TX/RX handlers
* into ordered list */
ieee80211_tx_handler ieee80211_tx_handlers[] =
{
ieee80211_tx_h_check_assoc,
ieee80211_tx_h_sequence,
ieee80211_tx_h_ps_buf,
ieee80211_tx_h_select_key,
ieee80211_tx_h_michael_mic_add,
ieee80211_tx_h_fragment,
ieee80211_tx_h_tkip_encrypt,
ieee80211_tx_h_ccmp_encrypt,
ieee80211_tx_h_wep_encrypt,
ieee80211_tx_h_rate_ctrl,
ieee80211_tx_h_misc,
ieee80211_tx_h_load_stats,
NULL
};
/* actual transmit path */
/*
* deal with packet injection down monitor interface
* with Radiotap Header -- only called for monitor mode interface
*/
static ieee80211_txrx_result
__ieee80211_parse_tx_radiotap(
struct ieee80211_txrx_data *tx,
struct sk_buff *skb, struct ieee80211_tx_control *control)
{
/*
* this is the moment to interpret and discard the radiotap header that
* must be at the start of the packet injected in Monitor mode
*
* Need to take some care with endian-ness since radiotap
* args are little-endian
*/
struct ieee80211_radiotap_iterator iterator;
struct ieee80211_radiotap_header *rthdr =
(struct ieee80211_radiotap_header *) skb->data;
struct ieee80211_hw_mode *mode = tx->local->hw.conf.mode;
int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
/*
* default control situation for all injected packets
* FIXME: this does not suit all usage cases, expand to allow control
*/
control->retry_limit = 1; /* no retry */
control->key_idx = -1; /* no encryption key */
control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS |
IEEE80211_TXCTL_USE_CTS_PROTECT);
control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT |
IEEE80211_TXCTL_NO_ACK;
control->antenna_sel_tx = 0; /* default to default antenna */
/*
* for every radiotap entry that is present
* (ieee80211_radiotap_iterator_next returns -ENOENT when no more
* entries present, or -EINVAL on error)
*/
while (!ret) {
int i, target_rate;
ret = ieee80211_radiotap_iterator_next(&iterator);
if (ret)
continue;
/* see if this argument is something we can use */
switch (iterator.this_arg_index) {
/*
* You must take care when dereferencing iterator.this_arg
* for multibyte types... the pointer is not aligned. Use
* get_unaligned((type *)iterator.this_arg) to dereference
* iterator.this_arg for type "type" safely on all arches.
*/
case IEEE80211_RADIOTAP_RATE:
/*
* radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps
* ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps
*/
target_rate = (*iterator.this_arg) * 5;
for (i = 0; i < mode->num_rates; i++) {
struct ieee80211_rate *r = &mode->rates[i];
if (r->rate > target_rate)
continue;
control->rate = r;
if (r->flags & IEEE80211_RATE_PREAMBLE2)
control->tx_rate = r->val2;
else
control->tx_rate = r->val;
/* end on exact match */
if (r->rate == target_rate)
i = mode->num_rates;
}
break;
case IEEE80211_RADIOTAP_ANTENNA:
/*
* radiotap uses 0 for 1st ant, mac80211 is 1 for
* 1st ant
*/
control->antenna_sel_tx = (*iterator.this_arg) + 1;
break;
case IEEE80211_RADIOTAP_DBM_TX_POWER:
control->power_level = *iterator.this_arg;
break;
case IEEE80211_RADIOTAP_FLAGS:
if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
/*
* this indicates that the skb we have been
* handed has the 32-bit FCS CRC at the end...
* we should react to that by snipping it off
* because it will be recomputed and added
* on transmission
*/
if (skb->len < (iterator.max_length + FCS_LEN))
return TXRX_DROP;
skb_trim(skb, skb->len - FCS_LEN);
}
break;
default:
break;
}
}
if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
return TXRX_DROP;
/*
* remove the radiotap header
* iterator->max_length was sanity-checked against
* skb->len by iterator init
*/
skb_pull(skb, iterator.max_length);
return TXRX_CONTINUE;
}
static ieee80211_txrx_result inline
__ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
struct sk_buff *skb,
struct net_device *dev,
struct ieee80211_tx_control *control)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_sub_if_data *sdata;
ieee80211_txrx_result res = TXRX_CONTINUE;
int hdrlen;
memset(tx, 0, sizeof(*tx));
tx->skb = skb;
tx->dev = dev; /* use original interface */
tx->local = local;
tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
tx->sta = sta_info_get(local, hdr->addr1);
tx->fc = le16_to_cpu(hdr->frame_control);
/*
* set defaults for things that can be set by
* injected radiotap headers
*/
control->power_level = local->hw.conf.power_level;
control->antenna_sel_tx = local->hw.conf.antenna_sel_tx;
if (local->sta_antenna_sel != STA_ANTENNA_SEL_AUTO && tx->sta)
control->antenna_sel_tx = tx->sta->antenna_sel_tx;
/* process and remove the injection radiotap header */
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (unlikely(sdata->type == IEEE80211_IF_TYPE_MNTR)) {
if (__ieee80211_parse_tx_radiotap(tx, skb, control) ==
TXRX_DROP) {
return TXRX_DROP;
}
/*
* we removed the radiotap header after this point,
* we filled control with what we could use
* set to the actual ieee header now
*/
hdr = (struct ieee80211_hdr *) skb->data;
res = TXRX_QUEUED; /* indication it was monitor packet */
}
tx->u.tx.control = control;
tx->u.tx.unicast = !is_multicast_ether_addr(hdr->addr1);
if (is_multicast_ether_addr(hdr->addr1))
control->flags |= IEEE80211_TXCTL_NO_ACK;
else
control->flags &= ~IEEE80211_TXCTL_NO_ACK;
tx->fragmented = local->fragmentation_threshold <
IEEE80211_MAX_FRAG_THRESHOLD && tx->u.tx.unicast &&
skb->len + FCS_LEN > local->fragmentation_threshold &&
(!local->ops->set_frag_threshold);
if (!tx->sta)
control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
else if (tx->sta->clear_dst_mask) {
control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
tx->sta->clear_dst_mask = 0;
}
hdrlen = ieee80211_get_hdrlen(tx->fc);
if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
tx->ethertype = (pos[0] << 8) | pos[1];
}
control->flags |= IEEE80211_TXCTL_FIRST_FRAGMENT;
return res;
}
/* Device in tx->dev has a reference added; use dev_put(tx->dev) when
* finished with it. */
static int inline ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
struct sk_buff *skb,
struct net_device *mdev,
struct ieee80211_tx_control *control)
{
struct ieee80211_tx_packet_data *pkt_data;
struct net_device *dev;
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
dev = dev_get_by_index(pkt_data->ifindex);
if (unlikely(dev && !is_ieee80211_device(dev, mdev))) {
dev_put(dev);
dev = NULL;
}
if (unlikely(!dev))
return -ENODEV;
__ieee80211_tx_prepare(tx, skb, dev, control);
return 0;
}
static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb,
struct ieee80211_txrx_data *tx)
{
struct ieee80211_tx_control *control = tx->u.tx.control;
int ret, i;
if (!ieee80211_qdisc_installed(local->mdev) &&
__ieee80211_queue_stopped(local, 0)) {
netif_stop_queue(local->mdev);
return IEEE80211_TX_AGAIN;
}
if (skb) {
ieee80211_dump_frame(local->mdev->name, "TX to low-level driver", skb);
ret = local->ops->tx(local_to_hw(local), skb, control);
if (ret)
return IEEE80211_TX_AGAIN;
local->mdev->trans_start = jiffies;
ieee80211_led_tx(local, 1);
}
if (tx->u.tx.extra_frag) {
control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS |
IEEE80211_TXCTL_USE_CTS_PROTECT |
IEEE80211_TXCTL_CLEAR_DST_MASK |
IEEE80211_TXCTL_FIRST_FRAGMENT);
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
if (!tx->u.tx.extra_frag[i])
continue;
if (__ieee80211_queue_stopped(local, control->queue))
return IEEE80211_TX_FRAG_AGAIN;
if (i == tx->u.tx.num_extra_frag) {
control->tx_rate = tx->u.tx.last_frag_hwrate;
control->rate = tx->u.tx.last_frag_rate;
if (tx->u.tx.probe_last_frag)
control->flags |=
IEEE80211_TXCTL_RATE_CTRL_PROBE;
else
control->flags &=
~IEEE80211_TXCTL_RATE_CTRL_PROBE;
}
ieee80211_dump_frame(local->mdev->name,
"TX to low-level driver",
tx->u.tx.extra_frag[i]);
ret = local->ops->tx(local_to_hw(local),
tx->u.tx.extra_frag[i],
control);
if (ret)
return IEEE80211_TX_FRAG_AGAIN;
local->mdev->trans_start = jiffies;
ieee80211_led_tx(local, 1);
tx->u.tx.extra_frag[i] = NULL;
}
kfree(tx->u.tx.extra_frag);
tx->u.tx.extra_frag = NULL;
}
return IEEE80211_TX_OK;
}
static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_tx_control *control, int mgmt)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta;
ieee80211_tx_handler *handler;
struct ieee80211_txrx_data tx;
ieee80211_txrx_result res = TXRX_DROP, res_prepare;
int ret, i;
WARN_ON(__ieee80211_queue_pending(local, control->queue));
if (unlikely(skb->len < 10)) {
dev_kfree_skb(skb);
return 0;
}
res_prepare = __ieee80211_tx_prepare(&tx, skb, dev, control);
if (res_prepare == TXRX_DROP) {
dev_kfree_skb(skb);
return 0;
}
sta = tx.sta;
tx.u.tx.mgmt_interface = mgmt;
tx.u.tx.mode = local->hw.conf.mode;
if (res_prepare == TXRX_QUEUED) { /* if it was an injected packet */
res = TXRX_CONTINUE;
} else {
for (handler = local->tx_handlers; *handler != NULL;
handler++) {
res = (*handler)(&tx);
if (res != TXRX_CONTINUE)
break;
}
}
skb = tx.skb; /* handlers are allowed to change skb */
if (sta)
sta_info_put(sta);
if (unlikely(res == TXRX_DROP)) {
I802_DEBUG_INC(local->tx_handlers_drop);
goto drop;
}
if (unlikely(res == TXRX_QUEUED)) {
I802_DEBUG_INC(local->tx_handlers_queued);
return 0;
}
if (tx.u.tx.extra_frag) {
for (i = 0; i < tx.u.tx.num_extra_frag; i++) {
int next_len, dur;
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *)
tx.u.tx.extra_frag[i]->data;
if (i + 1 < tx.u.tx.num_extra_frag) {
next_len = tx.u.tx.extra_frag[i + 1]->len;
} else {
next_len = 0;
tx.u.tx.rate = tx.u.tx.last_frag_rate;
tx.u.tx.last_frag_hwrate = tx.u.tx.rate->val;
}
dur = ieee80211_duration(&tx, 0, next_len);
hdr->duration_id = cpu_to_le16(dur);
}
}
retry:
ret = __ieee80211_tx(local, skb, &tx);
if (ret) {
struct ieee80211_tx_stored_packet *store =
&local->pending_packet[control->queue];
if (ret == IEEE80211_TX_FRAG_AGAIN)
skb = NULL;
set_bit(IEEE80211_LINK_STATE_PENDING,
&local->state[control->queue]);
smp_mb();
/* When the driver gets out of buffers during sending of
* fragments and calls ieee80211_stop_queue, there is
* a small window between IEEE80211_LINK_STATE_XOFF and
* IEEE80211_LINK_STATE_PENDING flags are set. If a buffer
* gets available in that window (i.e. driver calls
* ieee80211_wake_queue), we would end up with ieee80211_tx
* called with IEEE80211_LINK_STATE_PENDING. Prevent this by
* continuing transmitting here when that situation is
* possible to have happened. */
if (!__ieee80211_queue_stopped(local, control->queue)) {
clear_bit(IEEE80211_LINK_STATE_PENDING,
&local->state[control->queue]);
goto retry;
}
memcpy(&store->control, control,
sizeof(struct ieee80211_tx_control));
store->skb = skb;
store->extra_frag = tx.u.tx.extra_frag;
store->num_extra_frag = tx.u.tx.num_extra_frag;
store->last_frag_hwrate = tx.u.tx.last_frag_hwrate;
store->last_frag_rate = tx.u.tx.last_frag_rate;
store->last_frag_rate_ctrl_probe = tx.u.tx.probe_last_frag;
}
return 0;
drop:
if (skb)
dev_kfree_skb(skb);
for (i = 0; i < tx.u.tx.num_extra_frag; i++)
if (tx.u.tx.extra_frag[i])
dev_kfree_skb(tx.u.tx.extra_frag[i]);
kfree(tx.u.tx.extra_frag);
return 0;
}
/* device xmit handlers */
int ieee80211_master_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ieee80211_tx_control control;
struct ieee80211_tx_packet_data *pkt_data;
struct net_device *odev = NULL;
struct ieee80211_sub_if_data *osdata;
int headroom;
int ret;
/*
* copy control out of the skb so other people can use skb->cb
*/
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
memset(&control, 0, sizeof(struct ieee80211_tx_control));
if (pkt_data->ifindex)
odev = dev_get_by_index(pkt_data->ifindex);
if (unlikely(odev && !is_ieee80211_device(odev, dev))) {
dev_put(odev);
odev = NULL;
}
if (unlikely(!odev)) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
"originating device\n", dev->name);
#endif
dev_kfree_skb(skb);
return 0;
}
osdata = IEEE80211_DEV_TO_SUB_IF(odev);
headroom = osdata->local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM;
if (skb_headroom(skb) < headroom) {
if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
dev_put(odev);
return 0;
}
}
control.ifindex = odev->ifindex;
control.type = osdata->type;
if (pkt_data->req_tx_status)
control.flags |= IEEE80211_TXCTL_REQ_TX_STATUS;
if (pkt_data->do_not_encrypt)
control.flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT;
if (pkt_data->requeue)
control.flags |= IEEE80211_TXCTL_REQUEUE;
control.queue = pkt_data->queue;
ret = ieee80211_tx(odev, skb, &control,
control.type == IEEE80211_IF_TYPE_MGMT);
dev_put(odev);
return ret;
}
int ieee80211_monitor_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_tx_packet_data *pkt_data;
struct ieee80211_radiotap_header *prthdr =
(struct ieee80211_radiotap_header *)skb->data;
u16 len;
/*
* there must be a radiotap header at the
* start in this case
*/
if (unlikely(prthdr->it_version)) {
/* only version 0 is supported */
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
skb->dev = local->mdev;
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
memset(pkt_data, 0, sizeof(*pkt_data));
pkt_data->ifindex = dev->ifindex;
pkt_data->mgmt_iface = 0;
pkt_data->do_not_encrypt = 1;
/* above needed because we set skb device to master */
/*
* fix up the pointers accounting for the radiotap
* header still being in there. We are being given
* a precooked IEEE80211 header so no need for
* normal processing
*/
len = le16_to_cpu(get_unaligned(&prthdr->it_len));
skb_set_mac_header(skb, len);
skb_set_network_header(skb, len + sizeof(struct ieee80211_hdr));
skb_set_transport_header(skb, len + sizeof(struct ieee80211_hdr));
/*
* pass the radiotap header up to
* the next stage intact
*/
dev_queue_xmit(skb);
return NETDEV_TX_OK;
}
/**
* ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
* subinterfaces (wlan#, WDS, and VLAN interfaces)
* @skb: packet to be sent
* @dev: incoming interface
*
* Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
* not be freed, and caller is responsible for either retrying later or freeing
* skb).
*
* This function takes in an Ethernet header and encapsulates it with suitable
* IEEE 802.11 header based on which interface the packet is coming in. The
* encapsulated packet will then be passed to master interface, wlan#.11, for
* transmission (through low-level driver).
*/
int ieee80211_subif_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_tx_packet_data *pkt_data;
struct ieee80211_sub_if_data *sdata;
int ret = 1, head_need;
u16 ethertype, hdrlen, fc;
struct ieee80211_hdr hdr;
const u8 *encaps_data;
int encaps_len, skip_header_bytes;
int nh_pos, h_pos, no_encrypt = 0;
struct sta_info *sta;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (unlikely(skb->len < ETH_HLEN)) {
printk(KERN_DEBUG "%s: short skb (len=%d)\n",
dev->name, skb->len);
ret = 0;
goto fail;
}
nh_pos = skb_network_header(skb) - skb->data;
h_pos = skb_transport_header(skb) - skb->data;
/* convert Ethernet header to proper 802.11 header (based on
* operation mode) */
ethertype = (skb->data[12] << 8) | skb->data[13];
/* TODO: handling for 802.1x authorized/unauthorized port */
fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA;
if (likely(sdata->type == IEEE80211_IF_TYPE_AP ||
sdata->type == IEEE80211_IF_TYPE_VLAN)) {
fc |= IEEE80211_FCTL_FROMDS;
/* DA BSSID SA */
memcpy(hdr.addr1, skb->data, ETH_ALEN);
memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
hdrlen = 24;
} else if (sdata->type == IEEE80211_IF_TYPE_WDS) {
fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS;
/* RA TA DA SA */
memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
memcpy(hdr.addr3, skb->data, ETH_ALEN);
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
hdrlen = 30;
} else if (sdata->type == IEEE80211_IF_TYPE_STA) {
fc |= IEEE80211_FCTL_TODS;
/* BSSID SA DA */
memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
memcpy(hdr.addr3, skb->data, ETH_ALEN);
hdrlen = 24;
} else if (sdata->type == IEEE80211_IF_TYPE_IBSS) {
/* DA SA BSSID */
memcpy(hdr.addr1, skb->data, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN);
hdrlen = 24;
} else {
ret = 0;
goto fail;
}
/* receiver is QoS enabled, use a QoS type frame */
sta = sta_info_get(local, hdr.addr1);
if (sta) {
if (sta->flags & WLAN_STA_WME) {
fc |= IEEE80211_STYPE_QOS_DATA;
hdrlen += 2;
}
sta_info_put(sta);
}
hdr.frame_control = cpu_to_le16(fc);
hdr.duration_id = 0;
hdr.seq_ctrl = 0;
skip_header_bytes = ETH_HLEN;
if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
encaps_data = bridge_tunnel_header;
encaps_len = sizeof(bridge_tunnel_header);
skip_header_bytes -= 2;
} else if (ethertype >= 0x600) {
encaps_data = rfc1042_header;
encaps_len = sizeof(rfc1042_header);
skip_header_bytes -= 2;
} else {
encaps_data = NULL;
encaps_len = 0;
}
skb_pull(skb, skip_header_bytes);
nh_pos -= skip_header_bytes;
h_pos -= skip_header_bytes;
/* TODO: implement support for fragments so that there is no need to
* reallocate and copy payload; it might be enough to support one
* extra fragment that would be copied in the beginning of the frame
* data.. anyway, it would be nice to include this into skb structure
* somehow
*
* There are few options for this:
* use skb->cb as an extra space for 802.11 header
* allocate new buffer if not enough headroom
* make sure that there is enough headroom in every skb by increasing
* build in headroom in __dev_alloc_skb() (linux/skbuff.h) and
* alloc_skb() (net/core/skbuff.c)
*/
head_need = hdrlen + encaps_len + local->tx_headroom;
head_need -= skb_headroom(skb);
/* We are going to modify skb data, so make a copy of it if happens to
* be cloned. This could happen, e.g., with Linux bridge code passing
* us broadcast frames. */
if (head_need > 0 || skb_cloned(skb)) {
#if 0
printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes "
"of headroom\n", dev->name, head_need);
#endif
if (skb_cloned(skb))
I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
else
I802_DEBUG_INC(local->tx_expand_skb_head);
/* Since we have to reallocate the buffer, make sure that there
* is enough room for possible WEP IV/ICV and TKIP (8 bytes
* before payload and 12 after). */
if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8),
12, GFP_ATOMIC)) {
printk(KERN_DEBUG "%s: failed to reallocate TX buffer"
"\n", dev->name);
goto fail;
}
}
if (encaps_data) {
memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
nh_pos += encaps_len;
h_pos += encaps_len;
}
memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
nh_pos += hdrlen;
h_pos += hdrlen;
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
pkt_data->ifindex = dev->ifindex;
pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT);
pkt_data->do_not_encrypt = no_encrypt;
skb->dev = local->mdev;
sdata->stats.tx_packets++;
sdata->stats.tx_bytes += skb->len;
/* Update skb pointers to various headers since this modified frame
* is going to go through Linux networking code that may potentially
* need things like pointer to IP header. */
skb_set_mac_header(skb, 0);
skb_set_network_header(skb, nh_pos);
skb_set_transport_header(skb, h_pos);
dev->trans_start = jiffies;
dev_queue_xmit(skb);
return 0;
fail:
if (!ret)
dev_kfree_skb(skb);
return ret;
}
/*
* This is the transmit routine for the 802.11 type interfaces
* called by upper layers of the linux networking
* stack when it has a frame to transmit
*/
int ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_tx_packet_data *pkt_data;
struct ieee80211_hdr *hdr;
u16 fc;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (skb->len < 10) {
dev_kfree_skb(skb);
return 0;
}
if (skb_headroom(skb) < sdata->local->tx_headroom) {
if (pskb_expand_head(skb, sdata->local->tx_headroom,
0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return 0;
}
}
hdr = (struct ieee80211_hdr *) skb->data;
fc = le16_to_cpu(hdr->frame_control);
pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
pkt_data->ifindex = sdata->dev->ifindex;
pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT);
skb->priority = 20; /* use hardcoded priority for mgmt TX queue */
skb->dev = sdata->local->mdev;
/*
* We're using the protocol field of the the frame control header
* to request TX callback for hostapd. BIT(1) is checked.
*/
if ((fc & BIT(1)) == BIT(1)) {
pkt_data->req_tx_status = 1;
fc &= ~BIT(1);
hdr->frame_control = cpu_to_le16(fc);
}
pkt_data->do_not_encrypt = !(fc & IEEE80211_FCTL_PROTECTED);
sdata->stats.tx_packets++;
sdata->stats.tx_bytes += skb->len;
dev_queue_xmit(skb);
return 0;
}
/* helper functions for pending packets for when queues are stopped */
void ieee80211_clear_tx_pending(struct ieee80211_local *local)
{
int i, j;
struct ieee80211_tx_stored_packet *store;
for (i = 0; i < local->hw.queues; i++) {
if (!__ieee80211_queue_pending(local, i))
continue;
store = &local->pending_packet[i];
kfree_skb(store->skb);
for (j = 0; j < store->num_extra_frag; j++)
kfree_skb(store->extra_frag[j]);
kfree(store->extra_frag);
clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]);
}
}
void ieee80211_tx_pending(unsigned long data)
{
struct ieee80211_local *local = (struct ieee80211_local *)data;
struct net_device *dev = local->mdev;
struct ieee80211_tx_stored_packet *store;
struct ieee80211_txrx_data tx;
int i, ret, reschedule = 0;
netif_tx_lock_bh(dev);
for (i = 0; i < local->hw.queues; i++) {
if (__ieee80211_queue_stopped(local, i))
continue;
if (!__ieee80211_queue_pending(local, i)) {
reschedule = 1;
continue;
}
store = &local->pending_packet[i];
tx.u.tx.control = &store->control;
tx.u.tx.extra_frag = store->extra_frag;
tx.u.tx.num_extra_frag = store->num_extra_frag;
tx.u.tx.last_frag_hwrate = store->last_frag_hwrate;
tx.u.tx.last_frag_rate = store->last_frag_rate;
tx.u.tx.probe_last_frag = store->last_frag_rate_ctrl_probe;
ret = __ieee80211_tx(local, store->skb, &tx);
if (ret) {
if (ret == IEEE80211_TX_FRAG_AGAIN)
store->skb = NULL;
} else {
clear_bit(IEEE80211_LINK_STATE_PENDING,
&local->state[i]);
reschedule = 1;
}
}
netif_tx_unlock_bh(dev);
if (reschedule) {
if (!ieee80211_qdisc_installed(dev)) {
if (!__ieee80211_queue_stopped(local, 0))
netif_wake_queue(dev);
} else
netif_schedule(dev);
}
}
/* functions for drivers to get certain frames */
static void ieee80211_beacon_add_tim(struct ieee80211_local *local,
struct ieee80211_if_ap *bss,
struct sk_buff *skb)
{
u8 *pos, *tim;
int aid0 = 0;
int i, have_bits = 0, n1, n2;
/* Generate bitmap for TIM only if there are any STAs in power save
* mode. */
read_lock_bh(&local->sta_lock);
if (atomic_read(&bss->num_sta_ps) > 0)
/* in the hope that this is faster than
* checking byte-for-byte */
have_bits = !bitmap_empty((unsigned long*)bss->tim,
IEEE80211_MAX_AID+1);
if (bss->dtim_count == 0)
bss->dtim_count = bss->dtim_period - 1;
else
bss->dtim_count--;
tim = pos = (u8 *) skb_put(skb, 6);
*pos++ = WLAN_EID_TIM;
*pos++ = 4;
*pos++ = bss->dtim_count;
*pos++ = bss->dtim_period;
if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
aid0 = 1;
if (have_bits) {
/* Find largest even number N1 so that bits numbered 1 through
* (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
* (N2 + 1) x 8 through 2007 are 0. */
n1 = 0;
for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
if (bss->tim[i]) {
n1 = i & 0xfe;
break;
}
}
n2 = n1;
for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
if (bss->tim[i]) {
n2 = i;
break;
}
}
/* Bitmap control */
*pos++ = n1 | aid0;
/* Part Virt Bitmap */
memcpy(pos, bss->tim + n1, n2 - n1 + 1);
tim[1] = n2 - n1 + 4;
skb_put(skb, n2 - n1);
} else {
*pos++ = aid0; /* Bitmap control */
*pos++ = 0; /* Part Virt Bitmap */
}
read_unlock_bh(&local->sta_lock);
}
struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, int if_id,
struct ieee80211_tx_control *control)
{
struct ieee80211_local *local = hw_to_local(hw);
struct sk_buff *skb;
struct net_device *bdev;
struct ieee80211_sub_if_data *sdata = NULL;
struct ieee80211_if_ap *ap = NULL;
struct ieee80211_rate *rate;
struct rate_control_extra extra;
u8 *b_head, *b_tail;
int bh_len, bt_len;
bdev = dev_get_by_index(if_id);
if (bdev) {
sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
ap = &sdata->u.ap;
dev_put(bdev);
}
if (!ap || sdata->type != IEEE80211_IF_TYPE_AP ||
!ap->beacon_head) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
if (net_ratelimit())
printk(KERN_DEBUG "no beacon data avail for idx=%d "
"(%s)\n", if_id, bdev ? bdev->name : "N/A");
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
return NULL;
}
/* Assume we are generating the normal beacon locally */
b_head = ap->beacon_head;
b_tail = ap->beacon_tail;
bh_len = ap->beacon_head_len;
bt_len = ap->beacon_tail_len;
skb = dev_alloc_skb(local->tx_headroom +
bh_len + bt_len + 256 /* maximum TIM len */);
if (!skb)
return NULL;
skb_reserve(skb, local->tx_headroom);
memcpy(skb_put(skb, bh_len), b_head, bh_len);
ieee80211_include_sequence(sdata, (struct ieee80211_hdr *)skb->data);
ieee80211_beacon_add_tim(local, ap, skb);
if (b_tail) {
memcpy(skb_put(skb, bt_len), b_tail, bt_len);
}
if (control) {
memset(&extra, 0, sizeof(extra));
extra.mode = local->oper_hw_mode;
rate = rate_control_get_rate(local, local->mdev, skb, &extra);
if (!rate) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate "
"found\n", local->mdev->name);
}
dev_kfree_skb(skb);
return NULL;
}
control->tx_rate = (local->short_preamble &&
(rate->flags & IEEE80211_RATE_PREAMBLE2)) ?
rate->val2 : rate->val;
control->antenna_sel_tx = local->hw.conf.antenna_sel_tx;
control->power_level = local->hw.conf.power_level;
control->flags |= IEEE80211_TXCTL_NO_ACK;
control->retry_limit = 1;
control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
}
ap->num_beacons++;
return skb;
}
EXPORT_SYMBOL(ieee80211_beacon_get);
void ieee80211_rts_get(struct ieee80211_hw *hw,
const void *frame, size_t frame_len,
const struct ieee80211_tx_control *frame_txctl,
struct ieee80211_rts *rts)
{
const struct ieee80211_hdr *hdr = frame;
u16 fctl;
fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS;
rts->frame_control = cpu_to_le16(fctl);
rts->duration = ieee80211_rts_duration(hw, frame_len, frame_txctl);
memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
}
EXPORT_SYMBOL(ieee80211_rts_get);
void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
const void *frame, size_t frame_len,
const struct ieee80211_tx_control *frame_txctl,
struct ieee80211_cts *cts)
{
const struct ieee80211_hdr *hdr = frame;
u16 fctl;
fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS;
cts->frame_control = cpu_to_le16(fctl);
cts->duration = ieee80211_ctstoself_duration(hw, frame_len, frame_txctl);
memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
}
EXPORT_SYMBOL(ieee80211_ctstoself_get);
struct sk_buff *
ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id,
struct ieee80211_tx_control *control)
{
struct ieee80211_local *local = hw_to_local(hw);
struct sk_buff *skb;
struct sta_info *sta;
ieee80211_tx_handler *handler;
struct ieee80211_txrx_data tx;
ieee80211_txrx_result res = TXRX_DROP;
struct net_device *bdev;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_ap *bss = NULL;
bdev = dev_get_by_index(if_id);
if (bdev) {
sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
bss = &sdata->u.ap;
dev_put(bdev);
}
if (!bss || sdata->type != IEEE80211_IF_TYPE_AP || !bss->beacon_head)
return NULL;
if (bss->dtim_count != 0)
return NULL; /* send buffered bc/mc only after DTIM beacon */
memset(control, 0, sizeof(*control));
while (1) {
skb = skb_dequeue(&bss->ps_bc_buf);
if (!skb)
return NULL;
local->total_ps_buffered--;
if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) skb->data;
/* more buffered multicast/broadcast frames ==> set
* MoreData flag in IEEE 802.11 header to inform PS
* STAs */
hdr->frame_control |=
cpu_to_le16(IEEE80211_FCTL_MOREDATA);
}
if (ieee80211_tx_prepare(&tx, skb, local->mdev, control) == 0)
break;
dev_kfree_skb_any(skb);
}
sta = tx.sta;
tx.u.tx.ps_buffered = 1;
for (handler = local->tx_handlers; *handler != NULL; handler++) {
res = (*handler)(&tx);
if (res == TXRX_DROP || res == TXRX_QUEUED)
break;
}
dev_put(tx.dev);
skb = tx.skb; /* handlers are allowed to change skb */
if (res == TXRX_DROP) {
I802_DEBUG_INC(local->tx_handlers_drop);
dev_kfree_skb(skb);
skb = NULL;
} else if (res == TXRX_QUEUED) {
I802_DEBUG_INC(local->tx_handlers_queued);
skb = NULL;
}
if (sta)
sta_info_put(sta);
return skb;
}
EXPORT_SYMBOL(ieee80211_get_buffered_bc);