linux/net/sched/sch_api.c

1759 lines
40 KiB
C
Raw Normal View History

/*
* net/sched/sch_api.c Packet scheduler API.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* Fixes:
*
* Rani Assaf <rani@magic.metawire.com> :980802: JIFFIES and CPU clock sources are repaired.
* Eduardo J. Blanco <ejbs@netlabs.com.uy> :990222: kmod support
* Jamal Hadi Salim <hadi@nortelnetworks.com>: 990601: ingress support
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/kmod.h>
#include <linux/list.h>
#include <linux/hrtimer.h>
#include <linux/lockdep.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
static int qdisc_notify(struct net *net, struct sk_buff *oskb,
struct nlmsghdr *n, u32 clid,
struct Qdisc *old, struct Qdisc *new);
static int tclass_notify(struct net *net, struct sk_buff *oskb,
struct nlmsghdr *n, struct Qdisc *q,
unsigned long cl, int event);
/*
Short review.
-------------
This file consists of two interrelated parts:
1. queueing disciplines manager frontend.
2. traffic classes manager frontend.
Generally, queueing discipline ("qdisc") is a black box,
which is able to enqueue packets and to dequeue them (when
device is ready to send something) in order and at times
determined by algorithm hidden in it.
qdisc's are divided to two categories:
- "queues", which have no internal structure visible from outside.
- "schedulers", which split all the packets to "traffic classes",
using "packet classifiers" (look at cls_api.c)
In turn, classes may have child qdiscs (as rule, queues)
attached to them etc. etc. etc.
The goal of the routines in this file is to translate
information supplied by user in the form of handles
to more intelligible for kernel form, to make some sanity
checks and part of work, which is common to all qdiscs
and to provide rtnetlink notifications.
All real intelligent work is done inside qdisc modules.
Every discipline has two major routines: enqueue and dequeue.
---dequeue
dequeue usually returns a skb to send. It is allowed to return NULL,
but it does not mean that queue is empty, it just means that
discipline does not want to send anything this time.
Queue is really empty if q->q.qlen == 0.
For complicated disciplines with multiple queues q->q is not
real packet queue, but however q->q.qlen must be valid.
---enqueue
enqueue returns 0, if packet was enqueued successfully.
If packet (this one or another one) was dropped, it returns
not zero error code.
NET_XMIT_DROP - this packet dropped
Expected action: do not backoff, but wait until queue will clear.
NET_XMIT_CN - probably this packet enqueued, but another one dropped.
Expected action: backoff or ignore
NET_XMIT_POLICED - dropped by police.
Expected action: backoff or error to real-time apps.
Auxiliary routines:
---peek
like dequeue but without removing a packet from the queue
---reset
returns qdisc to initial state: purge all buffers, clear all
timers, counters (except for statistics) etc.
---init
initializes newly created qdisc.
---destroy
destroys resources allocated by init and during lifetime of qdisc.
---change
changes qdisc parameters.
*/
/* Protects list of registered TC modules. It is pure SMP lock. */
static DEFINE_RWLOCK(qdisc_mod_lock);
/************************************************
* Queueing disciplines manipulation. *
************************************************/
/* The list of all installed queueing disciplines. */
static struct Qdisc_ops *qdisc_base;
/* Register/uregister queueing discipline */
int register_qdisc(struct Qdisc_ops *qops)
{
struct Qdisc_ops *q, **qp;
int rc = -EEXIST;
write_lock(&qdisc_mod_lock);
for (qp = &qdisc_base; (q = *qp) != NULL; qp = &q->next)
if (!strcmp(qops->id, q->id))
goto out;
if (qops->enqueue == NULL)
qops->enqueue = noop_qdisc_ops.enqueue;
if (qops->peek == NULL) {
if (qops->dequeue == NULL) {
qops->peek = noop_qdisc_ops.peek;
} else {
rc = -EINVAL;
goto out;
}
}
if (qops->dequeue == NULL)
qops->dequeue = noop_qdisc_ops.dequeue;
qops->next = NULL;
*qp = qops;
rc = 0;
out:
write_unlock(&qdisc_mod_lock);
return rc;
}
EXPORT_SYMBOL(register_qdisc);
int unregister_qdisc(struct Qdisc_ops *qops)
{
struct Qdisc_ops *q, **qp;
int err = -ENOENT;
write_lock(&qdisc_mod_lock);
for (qp = &qdisc_base; (q=*qp)!=NULL; qp = &q->next)
if (q == qops)
break;
if (q) {
*qp = q->next;
q->next = NULL;
err = 0;
}
write_unlock(&qdisc_mod_lock);
return err;
}
EXPORT_SYMBOL(unregister_qdisc);
/* We know handle. Find qdisc among all qdisc's attached to device
(root qdisc, all its children, children of children etc.)
*/
static struct Qdisc *qdisc_match_from_root(struct Qdisc *root, u32 handle)
{
struct Qdisc *q;
if (!(root->flags & TCQ_F_BUILTIN) &&
root->handle == handle)
return root;
list_for_each_entry(q, &root->list, list) {
if (q->handle == handle)
return q;
}
return NULL;
}
static void qdisc_list_add(struct Qdisc *q)
{
if ((q->parent != TC_H_ROOT) && !(q->flags & TCQ_F_INGRESS))
list_add_tail(&q->list, &qdisc_dev(q)->qdisc->list);
}
void qdisc_list_del(struct Qdisc *q)
{
if ((q->parent != TC_H_ROOT) && !(q->flags & TCQ_F_INGRESS))
list_del(&q->list);
}
EXPORT_SYMBOL(qdisc_list_del);
struct Qdisc *qdisc_lookup(struct net_device *dev, u32 handle)
{
struct Qdisc *q;
q = qdisc_match_from_root(dev->qdisc, handle);
if (q)
goto out;
q = qdisc_match_from_root(dev->rx_queue.qdisc_sleeping, handle);
out:
return q;
}
static struct Qdisc *qdisc_leaf(struct Qdisc *p, u32 classid)
{
unsigned long cl;
struct Qdisc *leaf;
const struct Qdisc_class_ops *cops = p->ops->cl_ops;
if (cops == NULL)
return NULL;
cl = cops->get(p, classid);
if (cl == 0)
return NULL;
leaf = cops->leaf(p, cl);
cops->put(p, cl);
return leaf;
}
/* Find queueing discipline by name */
static struct Qdisc_ops *qdisc_lookup_ops(struct nlattr *kind)
{
struct Qdisc_ops *q = NULL;
if (kind) {
read_lock(&qdisc_mod_lock);
for (q = qdisc_base; q; q = q->next) {
if (nla_strcmp(kind, q->id) == 0) {
if (!try_module_get(q->owner))
q = NULL;
break;
}
}
read_unlock(&qdisc_mod_lock);
}
return q;
}
static struct qdisc_rate_table *qdisc_rtab_list;
struct qdisc_rate_table *qdisc_get_rtab(struct tc_ratespec *r, struct nlattr *tab)
{
struct qdisc_rate_table *rtab;
for (rtab = qdisc_rtab_list; rtab; rtab = rtab->next) {
if (memcmp(&rtab->rate, r, sizeof(struct tc_ratespec)) == 0) {
rtab->refcnt++;
return rtab;
}
}
if (tab == NULL || r->rate == 0 || r->cell_log == 0 ||
nla_len(tab) != TC_RTAB_SIZE)
return NULL;
rtab = kmalloc(sizeof(*rtab), GFP_KERNEL);
if (rtab) {
rtab->rate = *r;
rtab->refcnt = 1;
memcpy(rtab->data, nla_data(tab), 1024);
rtab->next = qdisc_rtab_list;
qdisc_rtab_list = rtab;
}
return rtab;
}
EXPORT_SYMBOL(qdisc_get_rtab);
void qdisc_put_rtab(struct qdisc_rate_table *tab)
{
struct qdisc_rate_table *rtab, **rtabp;
if (!tab || --tab->refcnt)
return;
for (rtabp = &qdisc_rtab_list; (rtab=*rtabp) != NULL; rtabp = &rtab->next) {
if (rtab == tab) {
*rtabp = rtab->next;
kfree(rtab);
return;
}
}
}
EXPORT_SYMBOL(qdisc_put_rtab);
static LIST_HEAD(qdisc_stab_list);
static DEFINE_SPINLOCK(qdisc_stab_lock);
static const struct nla_policy stab_policy[TCA_STAB_MAX + 1] = {
[TCA_STAB_BASE] = { .len = sizeof(struct tc_sizespec) },
[TCA_STAB_DATA] = { .type = NLA_BINARY },
};
static struct qdisc_size_table *qdisc_get_stab(struct nlattr *opt)
{
struct nlattr *tb[TCA_STAB_MAX + 1];
struct qdisc_size_table *stab;
struct tc_sizespec *s;
unsigned int tsize = 0;
u16 *tab = NULL;
int err;
err = nla_parse_nested(tb, TCA_STAB_MAX, opt, stab_policy);
if (err < 0)
return ERR_PTR(err);
if (!tb[TCA_STAB_BASE])
return ERR_PTR(-EINVAL);
s = nla_data(tb[TCA_STAB_BASE]);
if (s->tsize > 0) {
if (!tb[TCA_STAB_DATA])
return ERR_PTR(-EINVAL);
tab = nla_data(tb[TCA_STAB_DATA]);
tsize = nla_len(tb[TCA_STAB_DATA]) / sizeof(u16);
}
if (!s || tsize != s->tsize || (!tab && tsize > 0))
return ERR_PTR(-EINVAL);
spin_lock(&qdisc_stab_lock);
list_for_each_entry(stab, &qdisc_stab_list, list) {
if (memcmp(&stab->szopts, s, sizeof(*s)))
continue;
if (tsize > 0 && memcmp(stab->data, tab, tsize * sizeof(u16)))
continue;
stab->refcnt++;
spin_unlock(&qdisc_stab_lock);
return stab;
}
spin_unlock(&qdisc_stab_lock);
stab = kmalloc(sizeof(*stab) + tsize * sizeof(u16), GFP_KERNEL);
if (!stab)
return ERR_PTR(-ENOMEM);
stab->refcnt = 1;
stab->szopts = *s;
if (tsize > 0)
memcpy(stab->data, tab, tsize * sizeof(u16));
spin_lock(&qdisc_stab_lock);
list_add_tail(&stab->list, &qdisc_stab_list);
spin_unlock(&qdisc_stab_lock);
return stab;
}
void qdisc_put_stab(struct qdisc_size_table *tab)
{
if (!tab)
return;
spin_lock(&qdisc_stab_lock);
if (--tab->refcnt == 0) {
list_del(&tab->list);
kfree(tab);
}
spin_unlock(&qdisc_stab_lock);
}
EXPORT_SYMBOL(qdisc_put_stab);
static int qdisc_dump_stab(struct sk_buff *skb, struct qdisc_size_table *stab)
{
struct nlattr *nest;
nest = nla_nest_start(skb, TCA_STAB);
if (nest == NULL)
goto nla_put_failure;
NLA_PUT(skb, TCA_STAB_BASE, sizeof(stab->szopts), &stab->szopts);
nla_nest_end(skb, nest);
return skb->len;
nla_put_failure:
return -1;
}
void qdisc_calculate_pkt_len(struct sk_buff *skb, struct qdisc_size_table *stab)
{
int pkt_len, slot;
pkt_len = skb->len + stab->szopts.overhead;
if (unlikely(!stab->szopts.tsize))
goto out;
slot = pkt_len + stab->szopts.cell_align;
if (unlikely(slot < 0))
slot = 0;
slot >>= stab->szopts.cell_log;
if (likely(slot < stab->szopts.tsize))
pkt_len = stab->data[slot];
else
pkt_len = stab->data[stab->szopts.tsize - 1] *
(slot / stab->szopts.tsize) +
stab->data[slot % stab->szopts.tsize];
pkt_len <<= stab->szopts.size_log;
out:
if (unlikely(pkt_len < 1))
pkt_len = 1;
qdisc_skb_cb(skb)->pkt_len = pkt_len;
}
EXPORT_SYMBOL(qdisc_calculate_pkt_len);
void qdisc_warn_nonwc(char *txt, struct Qdisc *qdisc)
{
if (!(qdisc->flags & TCQ_F_WARN_NONWC)) {
printk(KERN_WARNING
"%s: %s qdisc %X: is non-work-conserving?\n",
txt, qdisc->ops->id, qdisc->handle >> 16);
qdisc->flags |= TCQ_F_WARN_NONWC;
}
}
EXPORT_SYMBOL(qdisc_warn_nonwc);
static enum hrtimer_restart qdisc_watchdog(struct hrtimer *timer)
{
struct qdisc_watchdog *wd = container_of(timer, struct qdisc_watchdog,
timer);
wd->qdisc->flags &= ~TCQ_F_THROTTLED;
__netif_schedule(qdisc_root(wd->qdisc));
return HRTIMER_NORESTART;
}
void qdisc_watchdog_init(struct qdisc_watchdog *wd, struct Qdisc *qdisc)
{
hrtimer_init(&wd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
wd->timer.function = qdisc_watchdog;
wd->qdisc = qdisc;
}
EXPORT_SYMBOL(qdisc_watchdog_init);
void qdisc_watchdog_schedule(struct qdisc_watchdog *wd, psched_time_t expires)
{
ktime_t time;
if (test_bit(__QDISC_STATE_DEACTIVATED,
&qdisc_root_sleeping(wd->qdisc)->state))
return;
wd->qdisc->flags |= TCQ_F_THROTTLED;
time = ktime_set(0, 0);
time = ktime_add_ns(time, PSCHED_TICKS2NS(expires));
hrtimer_start(&wd->timer, time, HRTIMER_MODE_ABS);
}
EXPORT_SYMBOL(qdisc_watchdog_schedule);
void qdisc_watchdog_cancel(struct qdisc_watchdog *wd)
{
hrtimer_cancel(&wd->timer);
wd->qdisc->flags &= ~TCQ_F_THROTTLED;
}
EXPORT_SYMBOL(qdisc_watchdog_cancel);
static struct hlist_head *qdisc_class_hash_alloc(unsigned int n)
{
unsigned int size = n * sizeof(struct hlist_head), i;
struct hlist_head *h;
if (size <= PAGE_SIZE)
h = kmalloc(size, GFP_KERNEL);
else
h = (struct hlist_head *)
__get_free_pages(GFP_KERNEL, get_order(size));
if (h != NULL) {
for (i = 0; i < n; i++)
INIT_HLIST_HEAD(&h[i]);
}
return h;
}
static void qdisc_class_hash_free(struct hlist_head *h, unsigned int n)
{
unsigned int size = n * sizeof(struct hlist_head);
if (size <= PAGE_SIZE)
kfree(h);
else
free_pages((unsigned long)h, get_order(size));
}
void qdisc_class_hash_grow(struct Qdisc *sch, struct Qdisc_class_hash *clhash)
{
struct Qdisc_class_common *cl;
struct hlist_node *n, *next;
struct hlist_head *nhash, *ohash;
unsigned int nsize, nmask, osize;
unsigned int i, h;
/* Rehash when load factor exceeds 0.75 */
if (clhash->hashelems * 4 <= clhash->hashsize * 3)
return;
nsize = clhash->hashsize * 2;
nmask = nsize - 1;
nhash = qdisc_class_hash_alloc(nsize);
if (nhash == NULL)
return;
ohash = clhash->hash;
osize = clhash->hashsize;
sch_tree_lock(sch);
for (i = 0; i < osize; i++) {
hlist_for_each_entry_safe(cl, n, next, &ohash[i], hnode) {
h = qdisc_class_hash(cl->classid, nmask);
hlist_add_head(&cl->hnode, &nhash[h]);
}
}
clhash->hash = nhash;
clhash->hashsize = nsize;
clhash->hashmask = nmask;
sch_tree_unlock(sch);
qdisc_class_hash_free(ohash, osize);
}
EXPORT_SYMBOL(qdisc_class_hash_grow);
int qdisc_class_hash_init(struct Qdisc_class_hash *clhash)
{
unsigned int size = 4;
clhash->hash = qdisc_class_hash_alloc(size);
if (clhash->hash == NULL)
return -ENOMEM;
clhash->hashsize = size;
clhash->hashmask = size - 1;
clhash->hashelems = 0;
return 0;
}
EXPORT_SYMBOL(qdisc_class_hash_init);
void qdisc_class_hash_destroy(struct Qdisc_class_hash *clhash)
{
qdisc_class_hash_free(clhash->hash, clhash->hashsize);
}
EXPORT_SYMBOL(qdisc_class_hash_destroy);
void qdisc_class_hash_insert(struct Qdisc_class_hash *clhash,
struct Qdisc_class_common *cl)
{
unsigned int h;
INIT_HLIST_NODE(&cl->hnode);
h = qdisc_class_hash(cl->classid, clhash->hashmask);
hlist_add_head(&cl->hnode, &clhash->hash[h]);
clhash->hashelems++;
}
EXPORT_SYMBOL(qdisc_class_hash_insert);
void qdisc_class_hash_remove(struct Qdisc_class_hash *clhash,
struct Qdisc_class_common *cl)
{
hlist_del(&cl->hnode);
clhash->hashelems--;
}
EXPORT_SYMBOL(qdisc_class_hash_remove);
/* Allocate an unique handle from space managed by kernel */
static u32 qdisc_alloc_handle(struct net_device *dev)
{
int i = 0x10000;
static u32 autohandle = TC_H_MAKE(0x80000000U, 0);
do {
autohandle += TC_H_MAKE(0x10000U, 0);
if (autohandle == TC_H_MAKE(TC_H_ROOT, 0))
autohandle = TC_H_MAKE(0x80000000U, 0);
} while (qdisc_lookup(dev, autohandle) && --i > 0);
return i>0 ? autohandle : 0;
}
void qdisc_tree_decrease_qlen(struct Qdisc *sch, unsigned int n)
{
const struct Qdisc_class_ops *cops;
unsigned long cl;
u32 parentid;
if (n == 0)
return;
while ((parentid = sch->parent)) {
if (TC_H_MAJ(parentid) == TC_H_MAJ(TC_H_INGRESS))
return;
sch = qdisc_lookup(qdisc_dev(sch), TC_H_MAJ(parentid));
if (sch == NULL) {
WARN_ON(parentid != TC_H_ROOT);
return;
}
cops = sch->ops->cl_ops;
if (cops->qlen_notify) {
cl = cops->get(sch, parentid);
cops->qlen_notify(sch, cl);
cops->put(sch, cl);
}
sch->q.qlen -= n;
}
}
EXPORT_SYMBOL(qdisc_tree_decrease_qlen);
static void notify_and_destroy(struct net *net, struct sk_buff *skb,
struct nlmsghdr *n, u32 clid,
struct Qdisc *old, struct Qdisc *new)
{
if (new || old)
qdisc_notify(net, skb, n, clid, old, new);
if (old)
qdisc_destroy(old);
}
/* Graft qdisc "new" to class "classid" of qdisc "parent" or
* to device "dev".
*
* When appropriate send a netlink notification using 'skb'
* and "n".
*
* On success, destroy old qdisc.
*/
static int qdisc_graft(struct net_device *dev, struct Qdisc *parent,
struct sk_buff *skb, struct nlmsghdr *n, u32 classid,
struct Qdisc *new, struct Qdisc *old)
{
struct Qdisc *q = old;
struct net *net = dev_net(dev);
int err = 0;
if (parent == NULL) {
unsigned int i, num_q, ingress;
ingress = 0;
num_q = dev->num_tx_queues;
if ((q && q->flags & TCQ_F_INGRESS) ||
(new && new->flags & TCQ_F_INGRESS)) {
num_q = 1;
ingress = 1;
}
if (dev->flags & IFF_UP)
dev_deactivate(dev);
if (new && new->ops->attach) {
new->ops->attach(new);
num_q = 0;
}
for (i = 0; i < num_q; i++) {
struct netdev_queue *dev_queue = &dev->rx_queue;
if (!ingress)
dev_queue = netdev_get_tx_queue(dev, i);
old = dev_graft_qdisc(dev_queue, new);
if (new && i > 0)
atomic_inc(&new->refcnt);
if (!ingress)
qdisc_destroy(old);
}
if (!ingress) {
notify_and_destroy(net, skb, n, classid,
dev->qdisc, new);
if (new && !new->ops->attach)
atomic_inc(&new->refcnt);
dev->qdisc = new ? : &noop_qdisc;
} else {
notify_and_destroy(net, skb, n, classid, old, new);
}
if (dev->flags & IFF_UP)
dev_activate(dev);
} else {
const struct Qdisc_class_ops *cops = parent->ops->cl_ops;
err = -EOPNOTSUPP;
if (cops && cops->graft) {
unsigned long cl = cops->get(parent, classid);
if (cl) {
err = cops->graft(parent, cl, new, &old);
cops->put(parent, cl);
} else
err = -ENOENT;
}
if (!err)
notify_and_destroy(net, skb, n, classid, old, new);
}
return err;
}
/* lockdep annotation is needed for ingress; egress gets it only for name */
static struct lock_class_key qdisc_tx_lock;
static struct lock_class_key qdisc_rx_lock;
/*
Allocate and initialize new qdisc.
Parameters are passed via opt.
*/
static struct Qdisc *
qdisc_create(struct net_device *dev, struct netdev_queue *dev_queue,
struct Qdisc *p, u32 parent, u32 handle,
struct nlattr **tca, int *errp)
{
int err;
struct nlattr *kind = tca[TCA_KIND];
struct Qdisc *sch;
struct Qdisc_ops *ops;
struct qdisc_size_table *stab;
ops = qdisc_lookup_ops(kind);
#ifdef CONFIG_MODULES
if (ops == NULL && kind != NULL) {
char name[IFNAMSIZ];
if (nla_strlcpy(name, kind, IFNAMSIZ) < IFNAMSIZ) {
/* We dropped the RTNL semaphore in order to
* perform the module load. So, even if we
* succeeded in loading the module we have to
* tell the caller to replay the request. We
* indicate this using -EAGAIN.
* We replay the request because the device may
* go away in the mean time.
*/
rtnl_unlock();
request_module("sch_%s", name);
rtnl_lock();
ops = qdisc_lookup_ops(kind);
if (ops != NULL) {
/* We will try again qdisc_lookup_ops,
* so don't keep a reference.
*/
module_put(ops->owner);
err = -EAGAIN;
goto err_out;
}
}
}
#endif
err = -ENOENT;
if (ops == NULL)
goto err_out;
sch = qdisc_alloc(dev_queue, ops);
if (IS_ERR(sch)) {
err = PTR_ERR(sch);
goto err_out2;
}
sch->parent = parent;
if (handle == TC_H_INGRESS) {
sch->flags |= TCQ_F_INGRESS;
handle = TC_H_MAKE(TC_H_INGRESS, 0);
lockdep_set_class(qdisc_lock(sch), &qdisc_rx_lock);
} else {
if (handle == 0) {
handle = qdisc_alloc_handle(dev);
err = -ENOMEM;
if (handle == 0)
goto err_out3;
}
lockdep_set_class(qdisc_lock(sch), &qdisc_tx_lock);
}
sch->handle = handle;
if (!ops->init || (err = ops->init(sch, tca[TCA_OPTIONS])) == 0) {
if (tca[TCA_STAB]) {
stab = qdisc_get_stab(tca[TCA_STAB]);
if (IS_ERR(stab)) {
err = PTR_ERR(stab);
goto err_out4;
}
sch->stab = stab;
}
if (tca[TCA_RATE]) {
spinlock_t *root_lock;
err = -EOPNOTSUPP;
if (sch->flags & TCQ_F_MQROOT)
goto err_out4;
if ((sch->parent != TC_H_ROOT) &&
!(sch->flags & TCQ_F_INGRESS) &&
(!p || !(p->flags & TCQ_F_MQROOT)))
root_lock = qdisc_root_sleeping_lock(sch);
else
root_lock = qdisc_lock(sch);
err = gen_new_estimator(&sch->bstats, &sch->rate_est,
root_lock, tca[TCA_RATE]);
if (err)
goto err_out4;
}
qdisc_list_add(sch);
return sch;
}
err_out3:
dev_put(dev);
kfree((char *) sch - sch->padded);
err_out2:
module_put(ops->owner);
err_out:
*errp = err;
return NULL;
err_out4:
/*
* Any broken qdiscs that would require a ops->reset() here?
* The qdisc was never in action so it shouldn't be necessary.
*/
qdisc_put_stab(sch->stab);
if (ops->destroy)
ops->destroy(sch);
goto err_out3;
}
static int qdisc_change(struct Qdisc *sch, struct nlattr **tca)
{
struct qdisc_size_table *stab = NULL;
int err = 0;
if (tca[TCA_OPTIONS]) {
if (sch->ops->change == NULL)
return -EINVAL;
err = sch->ops->change(sch, tca[TCA_OPTIONS]);
if (err)
return err;
}
if (tca[TCA_STAB]) {
stab = qdisc_get_stab(tca[TCA_STAB]);
if (IS_ERR(stab))
return PTR_ERR(stab);
}
qdisc_put_stab(sch->stab);
sch->stab = stab;
if (tca[TCA_RATE]) {
/* NB: ignores errors from replace_estimator
because change can't be undone. */
if (sch->flags & TCQ_F_MQROOT)
goto out;
gen_replace_estimator(&sch->bstats, &sch->rate_est,
qdisc_root_sleeping_lock(sch),
tca[TCA_RATE]);
}
out:
return 0;
}
struct check_loop_arg
{
struct qdisc_walker w;
struct Qdisc *p;
int depth;
};
static int check_loop_fn(struct Qdisc *q, unsigned long cl, struct qdisc_walker *w);
static int check_loop(struct Qdisc *q, struct Qdisc *p, int depth)
{
struct check_loop_arg arg;
if (q->ops->cl_ops == NULL)
return 0;
arg.w.stop = arg.w.skip = arg.w.count = 0;
arg.w.fn = check_loop_fn;
arg.depth = depth;
arg.p = p;
q->ops->cl_ops->walk(q, &arg.w);
return arg.w.stop ? -ELOOP : 0;
}
static int
check_loop_fn(struct Qdisc *q, unsigned long cl, struct qdisc_walker *w)
{
struct Qdisc *leaf;
const struct Qdisc_class_ops *cops = q->ops->cl_ops;
struct check_loop_arg *arg = (struct check_loop_arg *)w;
leaf = cops->leaf(q, cl);
if (leaf) {
if (leaf == arg->p || arg->depth > 7)
return -ELOOP;
return check_loop(leaf, arg->p, arg->depth + 1);
}
return 0;
}
/*
* Delete/get qdisc.
*/
static int tc_get_qdisc(struct sk_buff *skb, struct nlmsghdr *n, void *arg)
{
struct net *net = sock_net(skb->sk);
struct tcmsg *tcm = NLMSG_DATA(n);
struct nlattr *tca[TCA_MAX + 1];
struct net_device *dev;
u32 clid = tcm->tcm_parent;
struct Qdisc *q = NULL;
struct Qdisc *p = NULL;
int err;
if ((dev = __dev_get_by_index(net, tcm->tcm_ifindex)) == NULL)
return -ENODEV;
err = nlmsg_parse(n, sizeof(*tcm), tca, TCA_MAX, NULL);
if (err < 0)
return err;
if (clid) {
if (clid != TC_H_ROOT) {
if (TC_H_MAJ(clid) != TC_H_MAJ(TC_H_INGRESS)) {
if ((p = qdisc_lookup(dev, TC_H_MAJ(clid))) == NULL)
return -ENOENT;
q = qdisc_leaf(p, clid);
} else { /* ingress */
q = dev->rx_queue.qdisc_sleeping;
}
} else {
q = dev->qdisc;
}
if (!q)
return -ENOENT;
if (tcm->tcm_handle && q->handle != tcm->tcm_handle)
return -EINVAL;
} else {
if ((q = qdisc_lookup(dev, tcm->tcm_handle)) == NULL)
return -ENOENT;
}
if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], q->ops->id))
return -EINVAL;
if (n->nlmsg_type == RTM_DELQDISC) {
if (!clid)
return -EINVAL;
if (q->handle == 0)
return -ENOENT;
if ((err = qdisc_graft(dev, p, skb, n, clid, NULL, q)) != 0)
return err;
} else {
qdisc_notify(net, skb, n, clid, NULL, q);
}
return 0;
}
/*
Create/change qdisc.
*/
static int tc_modify_qdisc(struct sk_buff *skb, struct nlmsghdr *n, void *arg)
{
struct net *net = sock_net(skb->sk);
struct tcmsg *tcm;
struct nlattr *tca[TCA_MAX + 1];
struct net_device *dev;
u32 clid;
struct Qdisc *q, *p;
int err;
replay:
/* Reinit, just in case something touches this. */
tcm = NLMSG_DATA(n);
clid = tcm->tcm_parent;
q = p = NULL;
if ((dev = __dev_get_by_index(net, tcm->tcm_ifindex)) == NULL)
return -ENODEV;
err = nlmsg_parse(n, sizeof(*tcm), tca, TCA_MAX, NULL);
if (err < 0)
return err;
if (clid) {
if (clid != TC_H_ROOT) {
if (clid != TC_H_INGRESS) {
if ((p = qdisc_lookup(dev, TC_H_MAJ(clid))) == NULL)
return -ENOENT;
q = qdisc_leaf(p, clid);
} else { /*ingress */
q = dev->rx_queue.qdisc_sleeping;
}
} else {
q = dev->qdisc;
}
/* It may be default qdisc, ignore it */
if (q && q->handle == 0)
q = NULL;
if (!q || !tcm->tcm_handle || q->handle != tcm->tcm_handle) {
if (tcm->tcm_handle) {
if (q && !(n->nlmsg_flags&NLM_F_REPLACE))
return -EEXIST;
if (TC_H_MIN(tcm->tcm_handle))
return -EINVAL;
if ((q = qdisc_lookup(dev, tcm->tcm_handle)) == NULL)
goto create_n_graft;
if (n->nlmsg_flags&NLM_F_EXCL)
return -EEXIST;
if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], q->ops->id))
return -EINVAL;
if (q == p ||
(p && check_loop(q, p, 0)))
return -ELOOP;
atomic_inc(&q->refcnt);
goto graft;
} else {
if (q == NULL)
goto create_n_graft;
/* This magic test requires explanation.
*
* We know, that some child q is already
* attached to this parent and have choice:
* either to change it or to create/graft new one.
*
* 1. We are allowed to create/graft only
* if CREATE and REPLACE flags are set.
*
* 2. If EXCL is set, requestor wanted to say,
* that qdisc tcm_handle is not expected
* to exist, so that we choose create/graft too.
*
* 3. The last case is when no flags are set.
* Alas, it is sort of hole in API, we
* cannot decide what to do unambiguously.
* For now we select create/graft, if
* user gave KIND, which does not match existing.
*/
if ((n->nlmsg_flags&NLM_F_CREATE) &&
(n->nlmsg_flags&NLM_F_REPLACE) &&
((n->nlmsg_flags&NLM_F_EXCL) ||
(tca[TCA_KIND] &&
nla_strcmp(tca[TCA_KIND], q->ops->id))))
goto create_n_graft;
}
}
} else {
if (!tcm->tcm_handle)
return -EINVAL;
q = qdisc_lookup(dev, tcm->tcm_handle);
}
/* Change qdisc parameters */
if (q == NULL)
return -ENOENT;
if (n->nlmsg_flags&NLM_F_EXCL)
return -EEXIST;
if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], q->ops->id))
return -EINVAL;
err = qdisc_change(q, tca);
if (err == 0)
qdisc_notify(net, skb, n, clid, NULL, q);
return err;
create_n_graft:
if (!(n->nlmsg_flags&NLM_F_CREATE))
return -ENOENT;
if (clid == TC_H_INGRESS)
q = qdisc_create(dev, &dev->rx_queue, p,
tcm->tcm_parent, tcm->tcm_parent,
tca, &err);
else {
struct netdev_queue *dev_queue;
if (p && p->ops->cl_ops && p->ops->cl_ops->select_queue)
dev_queue = p->ops->cl_ops->select_queue(p, tcm);
else if (p)
dev_queue = p->dev_queue;
else
dev_queue = netdev_get_tx_queue(dev, 0);
q = qdisc_create(dev, dev_queue, p,
tcm->tcm_parent, tcm->tcm_handle,
tca, &err);
}
if (q == NULL) {
if (err == -EAGAIN)
goto replay;
return err;
}
graft:
err = qdisc_graft(dev, p, skb, n, clid, q, NULL);
if (err) {
if (q)
qdisc_destroy(q);
return err;
}
return 0;
}
static int tc_fill_qdisc(struct sk_buff *skb, struct Qdisc *q, u32 clid,
u32 pid, u32 seq, u16 flags, int event)
{
struct tcmsg *tcm;
struct nlmsghdr *nlh;
unsigned char *b = skb_tail_pointer(skb);
struct gnet_dump d;
nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*tcm), flags);
tcm = NLMSG_DATA(nlh);
tcm->tcm_family = AF_UNSPEC;
tcm->tcm__pad1 = 0;
tcm->tcm__pad2 = 0;
tcm->tcm_ifindex = qdisc_dev(q)->ifindex;
tcm->tcm_parent = clid;
tcm->tcm_handle = q->handle;
tcm->tcm_info = atomic_read(&q->refcnt);
NLA_PUT_STRING(skb, TCA_KIND, q->ops->id);
if (q->ops->dump && q->ops->dump(q, skb) < 0)
goto nla_put_failure;
q->qstats.qlen = q->q.qlen;
if (q->stab && qdisc_dump_stab(skb, q->stab) < 0)
goto nla_put_failure;
if (gnet_stats_start_copy_compat(skb, TCA_STATS2, TCA_STATS, TCA_XSTATS,
qdisc_root_sleeping_lock(q), &d) < 0)
goto nla_put_failure;
if (q->ops->dump_stats && q->ops->dump_stats(q, &d) < 0)
goto nla_put_failure;
if (gnet_stats_copy_basic(&d, &q->bstats) < 0 ||
pkt_sched: gen_estimator: Dont report fake rate estimators Jarek Poplawski a écrit : > > > Hmm... So you made me to do some "real" work here, and guess what?: > there is one serious checkpatch warning! ;-) Plus, this new parameter > should be added to the function description. Otherwise: > Signed-off-by: Jarek Poplawski <jarkao2@gmail.com> > > Thanks, > Jarek P. > > PS: I guess full "Don't" would show we really mean it... Okay :) Here is the last round, before the night ! Thanks again [RFC] pkt_sched: gen_estimator: Don't report fake rate estimators We currently send TCA_STATS_RATE_EST elements to netlink users, even if no estimator is running. # tc -s -d qdisc qdisc pfifo_fast 0: dev eth0 root bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 Sent 112833764978 bytes 1495081739 pkt (dropped 0, overlimits 0 requeues 0) rate 0bit 0pps backlog 0b 0p requeues 0 User has no way to tell if the "rate 0bit 0pps" is a real estimation, or a fake one (because no estimator is active) After this patch, tc command output is : $ tc -s -d qdisc qdisc pfifo_fast 0: dev eth0 root bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1 Sent 561075 bytes 1196 pkt (dropped 0, overlimits 0 requeues 0) backlog 0b 0p requeues 0 We add a parameter to gnet_stats_copy_rate_est() function so that it can use gen_estimator_active(bstats, r), as suggested by Jarek. This parameter can be NULL if check is not necessary, (htb for example has a mandatory rate estimator) Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Jarek Poplawski <jarkao2@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-10-02 10:32:18 +00:00
gnet_stats_copy_rate_est(&d, &q->bstats, &q->rate_est) < 0 ||
gnet_stats_copy_queue(&d, &q->qstats) < 0)
goto nla_put_failure;
if (gnet_stats_finish_copy(&d) < 0)
goto nla_put_failure;
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
return skb->len;
nlmsg_failure:
nla_put_failure:
nlmsg_trim(skb, b);
return -1;
}
static bool tc_qdisc_dump_ignore(struct Qdisc *q)
{
return (q->flags & TCQ_F_BUILTIN) ? true : false;
}
static int qdisc_notify(struct net *net, struct sk_buff *oskb,
struct nlmsghdr *n, u32 clid,
struct Qdisc *old, struct Qdisc *new)
{
struct sk_buff *skb;
u32 pid = oskb ? NETLINK_CB(oskb).pid : 0;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (old && !tc_qdisc_dump_ignore(old)) {
if (tc_fill_qdisc(skb, old, clid, pid, n->nlmsg_seq, 0, RTM_DELQDISC) < 0)
goto err_out;
}
if (new && !tc_qdisc_dump_ignore(new)) {
if (tc_fill_qdisc(skb, new, clid, pid, n->nlmsg_seq, old ? NLM_F_REPLACE : 0, RTM_NEWQDISC) < 0)
goto err_out;
}
if (skb->len)
return rtnetlink_send(skb, net, pid, RTNLGRP_TC, n->nlmsg_flags&NLM_F_ECHO);
err_out:
kfree_skb(skb);
return -EINVAL;
}
static int tc_dump_qdisc_root(struct Qdisc *root, struct sk_buff *skb,
struct netlink_callback *cb,
int *q_idx_p, int s_q_idx)
{
int ret = 0, q_idx = *q_idx_p;
struct Qdisc *q;
if (!root)
return 0;
q = root;
if (q_idx < s_q_idx) {
q_idx++;
} else {
if (!tc_qdisc_dump_ignore(q) &&
tc_fill_qdisc(skb, q, q->parent, NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, NLM_F_MULTI, RTM_NEWQDISC) <= 0)
goto done;
q_idx++;
}
list_for_each_entry(q, &root->list, list) {
if (q_idx < s_q_idx) {
q_idx++;
continue;
}
if (!tc_qdisc_dump_ignore(q) &&
tc_fill_qdisc(skb, q, q->parent, NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, NLM_F_MULTI, RTM_NEWQDISC) <= 0)
goto done;
q_idx++;
}
out:
*q_idx_p = q_idx;
return ret;
done:
ret = -1;
goto out;
}
static int tc_dump_qdisc(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
int idx, q_idx;
int s_idx, s_q_idx;
struct net_device *dev;
s_idx = cb->args[0];
s_q_idx = q_idx = cb->args[1];
rcu_read_lock();
idx = 0;
for_each_netdev_rcu(net, dev) {
struct netdev_queue *dev_queue;
if (idx < s_idx)
goto cont;
if (idx > s_idx)
s_q_idx = 0;
q_idx = 0;
if (tc_dump_qdisc_root(dev->qdisc, skb, cb, &q_idx, s_q_idx) < 0)
goto done;
dev_queue = &dev->rx_queue;
if (tc_dump_qdisc_root(dev_queue->qdisc_sleeping, skb, cb, &q_idx, s_q_idx) < 0)
goto done;
cont:
idx++;
}
done:
rcu_read_unlock();
cb->args[0] = idx;
cb->args[1] = q_idx;
return skb->len;
}
/************************************************
* Traffic classes manipulation. *
************************************************/
static int tc_ctl_tclass(struct sk_buff *skb, struct nlmsghdr *n, void *arg)
{
struct net *net = sock_net(skb->sk);
struct tcmsg *tcm = NLMSG_DATA(n);
struct nlattr *tca[TCA_MAX + 1];
struct net_device *dev;
struct Qdisc *q = NULL;
const struct Qdisc_class_ops *cops;
unsigned long cl = 0;
unsigned long new_cl;
u32 pid = tcm->tcm_parent;
u32 clid = tcm->tcm_handle;
u32 qid = TC_H_MAJ(clid);
int err;
if ((dev = __dev_get_by_index(net, tcm->tcm_ifindex)) == NULL)
return -ENODEV;
err = nlmsg_parse(n, sizeof(*tcm), tca, TCA_MAX, NULL);
if (err < 0)
return err;
/*
parent == TC_H_UNSPEC - unspecified parent.
parent == TC_H_ROOT - class is root, which has no parent.
parent == X:0 - parent is root class.
parent == X:Y - parent is a node in hierarchy.
parent == 0:Y - parent is X:Y, where X:0 is qdisc.
handle == 0:0 - generate handle from kernel pool.
handle == 0:Y - class is X:Y, where X:0 is qdisc.
handle == X:Y - clear.
handle == X:0 - root class.
*/
/* Step 1. Determine qdisc handle X:0 */
if (pid != TC_H_ROOT) {
u32 qid1 = TC_H_MAJ(pid);
if (qid && qid1) {
/* If both majors are known, they must be identical. */
if (qid != qid1)
return -EINVAL;
} else if (qid1) {
qid = qid1;
} else if (qid == 0)
qid = dev->qdisc->handle;
/* Now qid is genuine qdisc handle consistent
both with parent and child.
TC_H_MAJ(pid) still may be unspecified, complete it now.
*/
if (pid)
pid = TC_H_MAKE(qid, pid);
} else {
if (qid == 0)
qid = dev->qdisc->handle;
}
/* OK. Locate qdisc */
if ((q = qdisc_lookup(dev, qid)) == NULL)
return -ENOENT;
/* An check that it supports classes */
cops = q->ops->cl_ops;
if (cops == NULL)
return -EINVAL;
/* Now try to get class */
if (clid == 0) {
if (pid == TC_H_ROOT)
clid = qid;
} else
clid = TC_H_MAKE(qid, clid);
if (clid)
cl = cops->get(q, clid);
if (cl == 0) {
err = -ENOENT;
if (n->nlmsg_type != RTM_NEWTCLASS || !(n->nlmsg_flags&NLM_F_CREATE))
goto out;
} else {
switch (n->nlmsg_type) {
case RTM_NEWTCLASS:
err = -EEXIST;
if (n->nlmsg_flags&NLM_F_EXCL)
goto out;
break;
case RTM_DELTCLASS:
err = -EOPNOTSUPP;
if (cops->delete)
err = cops->delete(q, cl);
if (err == 0)
tclass_notify(net, skb, n, q, cl, RTM_DELTCLASS);
goto out;
case RTM_GETTCLASS:
err = tclass_notify(net, skb, n, q, cl, RTM_NEWTCLASS);
goto out;
default:
err = -EINVAL;
goto out;
}
}
new_cl = cl;
err = -EOPNOTSUPP;
if (cops->change)
err = cops->change(q, clid, pid, tca, &new_cl);
if (err == 0)
tclass_notify(net, skb, n, q, new_cl, RTM_NEWTCLASS);
out:
if (cl)
cops->put(q, cl);
return err;
}
static int tc_fill_tclass(struct sk_buff *skb, struct Qdisc *q,
unsigned long cl,
u32 pid, u32 seq, u16 flags, int event)
{
struct tcmsg *tcm;
struct nlmsghdr *nlh;
unsigned char *b = skb_tail_pointer(skb);
struct gnet_dump d;
const struct Qdisc_class_ops *cl_ops = q->ops->cl_ops;
nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*tcm), flags);
tcm = NLMSG_DATA(nlh);
tcm->tcm_family = AF_UNSPEC;
tcm->tcm__pad1 = 0;
tcm->tcm__pad2 = 0;
tcm->tcm_ifindex = qdisc_dev(q)->ifindex;
tcm->tcm_parent = q->handle;
tcm->tcm_handle = q->handle;
tcm->tcm_info = 0;
NLA_PUT_STRING(skb, TCA_KIND, q->ops->id);
if (cl_ops->dump && cl_ops->dump(q, cl, skb, tcm) < 0)
goto nla_put_failure;
if (gnet_stats_start_copy_compat(skb, TCA_STATS2, TCA_STATS, TCA_XSTATS,
qdisc_root_sleeping_lock(q), &d) < 0)
goto nla_put_failure;
if (cl_ops->dump_stats && cl_ops->dump_stats(q, cl, &d) < 0)
goto nla_put_failure;
if (gnet_stats_finish_copy(&d) < 0)
goto nla_put_failure;
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
return skb->len;
nlmsg_failure:
nla_put_failure:
nlmsg_trim(skb, b);
return -1;
}
static int tclass_notify(struct net *net, struct sk_buff *oskb,
struct nlmsghdr *n, struct Qdisc *q,
unsigned long cl, int event)
{
struct sk_buff *skb;
u32 pid = oskb ? NETLINK_CB(oskb).pid : 0;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tc_fill_tclass(skb, q, cl, pid, n->nlmsg_seq, 0, event) < 0) {
kfree_skb(skb);
return -EINVAL;
}
return rtnetlink_send(skb, net, pid, RTNLGRP_TC, n->nlmsg_flags&NLM_F_ECHO);
}
struct qdisc_dump_args
{
struct qdisc_walker w;
struct sk_buff *skb;
struct netlink_callback *cb;
};
static int qdisc_class_dump(struct Qdisc *q, unsigned long cl, struct qdisc_walker *arg)
{
struct qdisc_dump_args *a = (struct qdisc_dump_args *)arg;
return tc_fill_tclass(a->skb, q, cl, NETLINK_CB(a->cb->skb).pid,
a->cb->nlh->nlmsg_seq, NLM_F_MULTI, RTM_NEWTCLASS);
}
static int tc_dump_tclass_qdisc(struct Qdisc *q, struct sk_buff *skb,
struct tcmsg *tcm, struct netlink_callback *cb,
int *t_p, int s_t)
{
struct qdisc_dump_args arg;
if (tc_qdisc_dump_ignore(q) ||
*t_p < s_t || !q->ops->cl_ops ||
(tcm->tcm_parent &&
TC_H_MAJ(tcm->tcm_parent) != q->handle)) {
(*t_p)++;
return 0;
}
if (*t_p > s_t)
memset(&cb->args[1], 0, sizeof(cb->args)-sizeof(cb->args[0]));
arg.w.fn = qdisc_class_dump;
arg.skb = skb;
arg.cb = cb;
arg.w.stop = 0;
arg.w.skip = cb->args[1];
arg.w.count = 0;
q->ops->cl_ops->walk(q, &arg.w);
cb->args[1] = arg.w.count;
if (arg.w.stop)
return -1;
(*t_p)++;
return 0;
}
static int tc_dump_tclass_root(struct Qdisc *root, struct sk_buff *skb,
struct tcmsg *tcm, struct netlink_callback *cb,
int *t_p, int s_t)
{
struct Qdisc *q;
if (!root)
return 0;
if (tc_dump_tclass_qdisc(root, skb, tcm, cb, t_p, s_t) < 0)
return -1;
list_for_each_entry(q, &root->list, list) {
if (tc_dump_tclass_qdisc(q, skb, tcm, cb, t_p, s_t) < 0)
return -1;
}
return 0;
}
static int tc_dump_tclass(struct sk_buff *skb, struct netlink_callback *cb)
{
struct tcmsg *tcm = (struct tcmsg*)NLMSG_DATA(cb->nlh);
struct net *net = sock_net(skb->sk);
struct netdev_queue *dev_queue;
struct net_device *dev;
int t, s_t;
if (cb->nlh->nlmsg_len < NLMSG_LENGTH(sizeof(*tcm)))
return 0;
if ((dev = dev_get_by_index(net, tcm->tcm_ifindex)) == NULL)
return 0;
s_t = cb->args[0];
t = 0;
if (tc_dump_tclass_root(dev->qdisc, skb, tcm, cb, &t, s_t) < 0)
goto done;
dev_queue = &dev->rx_queue;
if (tc_dump_tclass_root(dev_queue->qdisc_sleeping, skb, tcm, cb, &t, s_t) < 0)
goto done;
done:
cb->args[0] = t;
dev_put(dev);
return skb->len;
}
/* Main classifier routine: scans classifier chain attached
to this qdisc, (optionally) tests for protocol and asks
specific classifiers.
*/
int tc_classify_compat(struct sk_buff *skb, struct tcf_proto *tp,
struct tcf_result *res)
{
__be16 protocol = skb->protocol;
int err = 0;
for (; tp; tp = tp->next) {
if ((tp->protocol == protocol ||
tp->protocol == htons(ETH_P_ALL)) &&
(err = tp->classify(skb, tp, res)) >= 0) {
#ifdef CONFIG_NET_CLS_ACT
if (err != TC_ACT_RECLASSIFY && skb->tc_verd)
skb->tc_verd = SET_TC_VERD(skb->tc_verd, 0);
#endif
return err;
}
}
return -1;
}
EXPORT_SYMBOL(tc_classify_compat);
int tc_classify(struct sk_buff *skb, struct tcf_proto *tp,
struct tcf_result *res)
{
int err = 0;
__be16 protocol;
#ifdef CONFIG_NET_CLS_ACT
struct tcf_proto *otp = tp;
reclassify:
#endif
protocol = skb->protocol;
err = tc_classify_compat(skb, tp, res);
#ifdef CONFIG_NET_CLS_ACT
if (err == TC_ACT_RECLASSIFY) {
u32 verd = G_TC_VERD(skb->tc_verd);
tp = otp;
if (verd++ >= MAX_REC_LOOP) {
if (net_ratelimit())
printk(KERN_NOTICE
"%s: packet reclassify loop"
" rule prio %u protocol %02x\n",
tp->q->ops->id,
tp->prio & 0xffff, ntohs(tp->protocol));
return TC_ACT_SHOT;
}
skb->tc_verd = SET_TC_VERD(skb->tc_verd, verd);
goto reclassify;
}
#endif
return err;
}
EXPORT_SYMBOL(tc_classify);
void tcf_destroy(struct tcf_proto *tp)
{
tp->ops->destroy(tp);
module_put(tp->ops->owner);
kfree(tp);
}
void tcf_destroy_chain(struct tcf_proto **fl)
{
struct tcf_proto *tp;
while ((tp = *fl) != NULL) {
*fl = tp->next;
tcf_destroy(tp);
}
}
EXPORT_SYMBOL(tcf_destroy_chain);
#ifdef CONFIG_PROC_FS
static int psched_show(struct seq_file *seq, void *v)
{
struct timespec ts;
hrtimer_get_res(CLOCK_MONOTONIC, &ts);
seq_printf(seq, "%08x %08x %08x %08x\n",
(u32)NSEC_PER_USEC, (u32)PSCHED_TICKS2NS(1),
1000000,
(u32)NSEC_PER_SEC/(u32)ktime_to_ns(timespec_to_ktime(ts)));
return 0;
}
static int psched_open(struct inode *inode, struct file *file)
{
return single_open(file, psched_show, NULL);
}
static const struct file_operations psched_fops = {
.owner = THIS_MODULE,
.open = psched_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __net_init psched_net_init(struct net *net)
{
struct proc_dir_entry *e;
e = proc_net_fops_create(net, "psched", 0, &psched_fops);
if (e == NULL)
return -ENOMEM;
return 0;
}
static void __net_exit psched_net_exit(struct net *net)
{
proc_net_remove(net, "psched");
}
#else
static int __net_init psched_net_init(struct net *net)
{
return 0;
}
static void __net_exit psched_net_exit(struct net *net)
{
}
#endif
static struct pernet_operations psched_net_ops = {
.init = psched_net_init,
.exit = psched_net_exit,
};
static int __init pktsched_init(void)
{
int err;
err = register_pernet_subsys(&psched_net_ops);
if (err) {
printk(KERN_ERR "pktsched_init: "
"cannot initialize per netns operations\n");
return err;
}
register_qdisc(&pfifo_qdisc_ops);
register_qdisc(&bfifo_qdisc_ops);
register_qdisc(&pfifo_head_drop_qdisc_ops);
register_qdisc(&mq_qdisc_ops);
rtnl_register(PF_UNSPEC, RTM_NEWQDISC, tc_modify_qdisc, NULL);
rtnl_register(PF_UNSPEC, RTM_DELQDISC, tc_get_qdisc, NULL);
rtnl_register(PF_UNSPEC, RTM_GETQDISC, tc_get_qdisc, tc_dump_qdisc);
rtnl_register(PF_UNSPEC, RTM_NEWTCLASS, tc_ctl_tclass, NULL);
rtnl_register(PF_UNSPEC, RTM_DELTCLASS, tc_ctl_tclass, NULL);
rtnl_register(PF_UNSPEC, RTM_GETTCLASS, tc_ctl_tclass, tc_dump_tclass);
return 0;
}
subsys_initcall(pktsched_init);