License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2005-04-16 22:20:36 +00:00
|
|
|
#ifndef _NET_XFRM_H
|
|
|
|
#define _NET_XFRM_H
|
|
|
|
|
2005-05-03 23:27:10 +00:00
|
|
|
#include <linux/compiler.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/xfrm.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/skbuff.h>
|
2005-12-27 04:43:12 +00:00
|
|
|
#include <linux/socket.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/pfkeyv2.h>
|
2006-09-22 22:06:24 +00:00
|
|
|
#include <linux/ipsec.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/in6.h>
|
2006-03-21 06:33:17 +00:00
|
|
|
#include <linux/mutex.h>
|
2007-09-17 18:51:22 +00:00
|
|
|
#include <linux/audit.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
|
|
|
#include <linux/slab.h>
|
2017-07-04 12:53:21 +00:00
|
|
|
#include <linux/refcount.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#include <net/sock.h>
|
|
|
|
#include <net/dst.h>
|
2007-10-09 00:25:53 +00:00
|
|
|
#include <net/ip.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <net/route.h>
|
|
|
|
#include <net/ipv6.h>
|
|
|
|
#include <net/ip6_fib.h>
|
2010-04-07 00:30:04 +00:00
|
|
|
#include <net/flow.h>
|
2009-11-09 04:58:41 +00:00
|
|
|
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
|
2007-12-21 04:42:57 +00:00
|
|
|
#ifdef CONFIG_XFRM_STATISTICS
|
|
|
|
#include <net/snmp.h>
|
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-06-27 06:57:49 +00:00
|
|
|
#define XFRM_PROTO_ESP 50
|
|
|
|
#define XFRM_PROTO_AH 51
|
|
|
|
#define XFRM_PROTO_COMP 108
|
|
|
|
#define XFRM_PROTO_IPIP 4
|
|
|
|
#define XFRM_PROTO_IPV6 41
|
|
|
|
#define XFRM_PROTO_ROUTING IPPROTO_ROUTING
|
|
|
|
#define XFRM_PROTO_DSTOPTS IPPROTO_DSTOPTS
|
|
|
|
|
2011-02-02 06:29:02 +00:00
|
|
|
#define XFRM_ALIGN4(len) (((len) + 3) & ~3)
|
2005-04-16 22:20:36 +00:00
|
|
|
#define XFRM_ALIGN8(len) (((len) + 7) & ~7)
|
2006-05-28 06:05:54 +00:00
|
|
|
#define MODULE_ALIAS_XFRM_MODE(family, encap) \
|
|
|
|
MODULE_ALIAS("xfrm-mode-" __stringify(family) "-" __stringify(encap))
|
2007-06-27 06:57:49 +00:00
|
|
|
#define MODULE_ALIAS_XFRM_TYPE(family, proto) \
|
|
|
|
MODULE_ALIAS("xfrm-type-" __stringify(family) "-" __stringify(proto))
|
2017-08-01 09:49:08 +00:00
|
|
|
#define MODULE_ALIAS_XFRM_OFFLOAD_TYPE(family, proto) \
|
|
|
|
MODULE_ALIAS("xfrm-offload-" __stringify(family) "-" __stringify(proto))
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-12-21 04:42:57 +00:00
|
|
|
#ifdef CONFIG_XFRM_STATISTICS
|
2008-11-26 01:59:52 +00:00
|
|
|
#define XFRM_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.xfrm_statistics, field)
|
2007-12-21 04:42:57 +00:00
|
|
|
#else
|
2008-11-26 01:59:52 +00:00
|
|
|
#define XFRM_INC_STATS(net, field) ((void)(net))
|
2007-12-21 04:42:57 +00:00
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Organization of SPD aka "XFRM rules"
|
|
|
|
------------------------------------
|
|
|
|
|
|
|
|
Basic objects:
|
|
|
|
- policy rule, struct xfrm_policy (=SPD entry)
|
|
|
|
- bundle of transformations, struct dst_entry == struct xfrm_dst (=SA bundle)
|
|
|
|
- instance of a transformer, struct xfrm_state (=SA)
|
|
|
|
- template to clone xfrm_state, struct xfrm_tmpl
|
|
|
|
|
|
|
|
SPD is plain linear list of xfrm_policy rules, ordered by priority.
|
|
|
|
(To be compatible with existing pfkeyv2 implementations,
|
|
|
|
many rules with priority of 0x7fffffff are allowed to exist and
|
|
|
|
such rules are ordered in an unpredictable way, thanks to bsd folks.)
|
|
|
|
|
|
|
|
Lookup is plain linear search until the first match with selector.
|
|
|
|
|
|
|
|
If "action" is "block", then we prohibit the flow, otherwise:
|
|
|
|
if "xfrms_nr" is zero, the flow passes untransformed. Otherwise,
|
|
|
|
policy entry has list of up to XFRM_MAX_DEPTH transformations,
|
|
|
|
described by templates xfrm_tmpl. Each template is resolved
|
|
|
|
to a complete xfrm_state (see below) and we pack bundle of transformations
|
|
|
|
to a dst_entry returned to requestor.
|
|
|
|
|
|
|
|
dst -. xfrm .-> xfrm_state #1
|
|
|
|
|---. child .-> dst -. xfrm .-> xfrm_state #2
|
|
|
|
|---. child .-> dst -. xfrm .-> xfrm_state #3
|
|
|
|
|---. child .-> NULL
|
|
|
|
|
|
|
|
Bundles are cached at xrfm_policy struct (field ->bundles).
|
|
|
|
|
|
|
|
|
|
|
|
Resolution of xrfm_tmpl
|
|
|
|
-----------------------
|
|
|
|
Template contains:
|
|
|
|
1. ->mode Mode: transport or tunnel
|
|
|
|
2. ->id.proto Protocol: AH/ESP/IPCOMP
|
|
|
|
3. ->id.daddr Remote tunnel endpoint, ignored for transport mode.
|
|
|
|
Q: allow to resolve security gateway?
|
|
|
|
4. ->id.spi If not zero, static SPI.
|
|
|
|
5. ->saddr Local tunnel endpoint, ignored for transport mode.
|
|
|
|
6. ->algos List of allowed algos. Plain bitmask now.
|
|
|
|
Q: ealgos, aalgos, calgos. What a mess...
|
|
|
|
7. ->share Sharing mode.
|
|
|
|
Q: how to implement private sharing mode? To add struct sock* to
|
|
|
|
flow id?
|
|
|
|
|
|
|
|
Having this template we search through SAD searching for entries
|
|
|
|
with appropriate mode/proto/algo, permitted by selector.
|
|
|
|
If no appropriate entry found, it is requested from key manager.
|
|
|
|
|
|
|
|
PROBLEMS:
|
|
|
|
Q: How to find all the bundles referring to a physical path for
|
|
|
|
PMTU discovery? Seems, dst should contain list of all parents...
|
|
|
|
and enter to infinite locking hierarchy disaster.
|
|
|
|
No! It is easier, we will not search for them, let them find us.
|
|
|
|
We add genid to each dst plus pointer to genid of raw IP route,
|
|
|
|
pmtu disc will update pmtu on raw IP route and increase its genid.
|
|
|
|
dst_check() will see this for top level and trigger resyncing
|
|
|
|
metrics. Plus, it will be made via sk->sk_dst_cache. Solved.
|
|
|
|
*/
|
|
|
|
|
2008-10-01 14:03:24 +00:00
|
|
|
struct xfrm_state_walk {
|
|
|
|
struct list_head all;
|
|
|
|
u8 state;
|
2014-02-14 14:30:36 +00:00
|
|
|
u8 dying;
|
|
|
|
u8 proto;
|
2008-10-01 14:03:24 +00:00
|
|
|
u32 seq;
|
2014-03-06 17:24:29 +00:00
|
|
|
struct xfrm_address_filter *filter;
|
2008-10-01 14:03:24 +00:00
|
|
|
};
|
|
|
|
|
2017-04-14 08:06:10 +00:00
|
|
|
struct xfrm_state_offload {
|
|
|
|
struct net_device *dev;
|
|
|
|
unsigned long offload_handle;
|
|
|
|
unsigned int num_exthdrs;
|
|
|
|
u8 flags;
|
|
|
|
};
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Full description of state of transformer. */
|
2009-11-03 03:26:03 +00:00
|
|
|
struct xfrm_state {
|
2015-03-12 04:06:44 +00:00
|
|
|
possible_net_t xs_net;
|
2008-09-10 02:58:29 +00:00
|
|
|
union {
|
2008-10-01 14:03:24 +00:00
|
|
|
struct hlist_node gclist;
|
2008-09-10 02:58:29 +00:00
|
|
|
struct hlist_node bydst;
|
|
|
|
};
|
2006-08-24 09:45:07 +00:00
|
|
|
struct hlist_node bysrc;
|
|
|
|
struct hlist_node byspi;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2017-07-04 12:53:21 +00:00
|
|
|
refcount_t refcnt;
|
2005-04-16 22:20:36 +00:00
|
|
|
spinlock_t lock;
|
|
|
|
|
|
|
|
struct xfrm_id id;
|
|
|
|
struct xfrm_selector sel;
|
2010-02-22 11:32:54 +00:00
|
|
|
struct xfrm_mark mark;
|
2010-12-08 04:37:49 +00:00
|
|
|
u32 tfcpad;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-08-24 10:18:09 +00:00
|
|
|
u32 genid;
|
|
|
|
|
2008-10-01 14:03:24 +00:00
|
|
|
/* Key manager bits */
|
|
|
|
struct xfrm_state_walk km;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Parameters of this state. */
|
|
|
|
struct {
|
|
|
|
u32 reqid;
|
|
|
|
u8 mode;
|
|
|
|
u8 replay_window;
|
|
|
|
u8 aalgo, ealgo, calgo;
|
|
|
|
u8 flags;
|
|
|
|
u16 family;
|
|
|
|
xfrm_address_t saddr;
|
|
|
|
int header_len;
|
|
|
|
int trailer_len;
|
2013-02-22 09:54:54 +00:00
|
|
|
u32 extra_flags;
|
2018-06-12 10:44:26 +00:00
|
|
|
struct xfrm_mark smark;
|
2005-04-16 22:20:36 +00:00
|
|
|
} props;
|
|
|
|
|
|
|
|
struct xfrm_lifetime_cfg lft;
|
|
|
|
|
|
|
|
/* Data for transformer */
|
2009-11-25 00:29:52 +00:00
|
|
|
struct xfrm_algo_auth *aalg;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct xfrm_algo *ealg;
|
|
|
|
struct xfrm_algo *calg;
|
2008-01-29 03:37:29 +00:00
|
|
|
struct xfrm_algo_aead *aead;
|
2015-05-27 08:03:45 +00:00
|
|
|
const char *geniv;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Data for encapsulator */
|
|
|
|
struct xfrm_encap_tmpl *encap;
|
|
|
|
|
2006-08-24 01:18:55 +00:00
|
|
|
/* Data for care-of address */
|
|
|
|
xfrm_address_t *coaddr;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* IPComp needs an IPIP tunnel for handling uncompressed packets */
|
|
|
|
struct xfrm_state *tunnel;
|
|
|
|
|
|
|
|
/* If a tunnel, number of users + 1 */
|
|
|
|
atomic_t tunnel_users;
|
|
|
|
|
|
|
|
/* State for replay detection */
|
|
|
|
struct xfrm_replay_state replay;
|
2011-03-08 00:05:43 +00:00
|
|
|
struct xfrm_replay_state_esn *replay_esn;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-03-21 03:15:11 +00:00
|
|
|
/* Replay detection state at the time we sent the last notification */
|
|
|
|
struct xfrm_replay_state preplay;
|
2011-03-08 00:05:43 +00:00
|
|
|
struct xfrm_replay_state_esn *preplay_esn;
|
2006-03-21 03:15:11 +00:00
|
|
|
|
2011-03-08 00:08:32 +00:00
|
|
|
/* The functions for replay detection. */
|
2016-08-09 16:27:08 +00:00
|
|
|
const struct xfrm_replay *repl;
|
2011-03-08 00:08:32 +00:00
|
|
|
|
2006-04-14 22:03:05 +00:00
|
|
|
/* internal flag that only holds state for delayed aevent at the
|
|
|
|
* moment
|
|
|
|
*/
|
|
|
|
u32 xflags;
|
|
|
|
|
2006-03-21 03:15:11 +00:00
|
|
|
/* Replay detection notification settings */
|
|
|
|
u32 replay_maxage;
|
|
|
|
u32 replay_maxdiff;
|
|
|
|
|
|
|
|
/* Replay detection notification timer */
|
|
|
|
struct timer_list rtimer;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Statistics */
|
|
|
|
struct xfrm_stats stats;
|
|
|
|
|
|
|
|
struct xfrm_lifetime_cur curlft;
|
2009-11-09 04:58:41 +00:00
|
|
|
struct tasklet_hrtimer mtimer;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2017-04-14 08:06:10 +00:00
|
|
|
struct xfrm_state_offload xso;
|
|
|
|
|
2012-07-30 21:43:54 +00:00
|
|
|
/* used to fix curlft->add_time when changing date */
|
|
|
|
long saved_tmo;
|
|
|
|
|
2006-08-24 01:20:16 +00:00
|
|
|
/* Last used time */
|
2007-11-14 05:47:08 +00:00
|
|
|
unsigned long lastused;
|
2006-08-24 01:20:16 +00:00
|
|
|
|
2017-01-17 09:22:57 +00:00
|
|
|
struct page_frag xfrag;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Reference to data common to all the instances of this
|
|
|
|
* transformer. */
|
2008-01-31 03:11:50 +00:00
|
|
|
const struct xfrm_type *type;
|
2007-10-18 04:35:51 +00:00
|
|
|
struct xfrm_mode *inner_mode;
|
2008-03-24 21:51:51 +00:00
|
|
|
struct xfrm_mode *inner_mode_iaf;
|
2007-10-18 04:35:51 +00:00
|
|
|
struct xfrm_mode *outer_mode;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2017-04-14 08:05:44 +00:00
|
|
|
const struct xfrm_type_offload *type_offload;
|
|
|
|
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 07:12:27 +00:00
|
|
|
/* Security context */
|
|
|
|
struct xfrm_sec_ctx *security;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Private data of this transformer, format is opaque,
|
|
|
|
* interpreted by xfrm_type methods. */
|
|
|
|
void *data;
|
|
|
|
};
|
|
|
|
|
2008-11-26 01:15:16 +00:00
|
|
|
static inline struct net *xs_net(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
return read_pnet(&x->xs_net);
|
|
|
|
}
|
|
|
|
|
2006-04-14 22:03:05 +00:00
|
|
|
/* xflags - make enum if more show up */
|
|
|
|
#define XFRM_TIME_DEFER 1
|
2012-07-30 21:43:54 +00:00
|
|
|
#define XFRM_SOFT_EXPIRE 2
|
2006-04-14 22:03:05 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
enum {
|
|
|
|
XFRM_STATE_VOID,
|
|
|
|
XFRM_STATE_ACQ,
|
|
|
|
XFRM_STATE_VALID,
|
|
|
|
XFRM_STATE_ERROR,
|
|
|
|
XFRM_STATE_EXPIRED,
|
|
|
|
XFRM_STATE_DEAD
|
|
|
|
};
|
|
|
|
|
2005-06-19 05:42:13 +00:00
|
|
|
/* callback structure passed from either netlink or pfkey */
|
2009-11-03 03:26:03 +00:00
|
|
|
struct km_event {
|
2005-06-19 05:44:00 +00:00
|
|
|
union {
|
|
|
|
u32 hard;
|
|
|
|
u32 proto;
|
|
|
|
u32 byid;
|
2006-03-21 03:15:11 +00:00
|
|
|
u32 aevent;
|
2006-08-24 05:49:28 +00:00
|
|
|
u32 type;
|
2005-06-19 05:44:00 +00:00
|
|
|
} data;
|
|
|
|
|
2005-06-19 05:42:13 +00:00
|
|
|
u32 seq;
|
2012-09-07 20:12:54 +00:00
|
|
|
u32 portid;
|
2005-06-19 05:42:13 +00:00
|
|
|
u32 event;
|
2008-11-26 01:50:36 +00:00
|
|
|
struct net *net;
|
2005-06-19 05:42:13 +00:00
|
|
|
};
|
|
|
|
|
2011-03-08 00:08:32 +00:00
|
|
|
struct xfrm_replay {
|
|
|
|
void (*advance)(struct xfrm_state *x, __be32 net_seq);
|
|
|
|
int (*check)(struct xfrm_state *x,
|
|
|
|
struct sk_buff *skb,
|
|
|
|
__be32 net_seq);
|
2012-09-04 00:03:29 +00:00
|
|
|
int (*recheck)(struct xfrm_state *x,
|
|
|
|
struct sk_buff *skb,
|
|
|
|
__be32 net_seq);
|
2011-03-08 00:08:32 +00:00
|
|
|
void (*notify)(struct xfrm_state *x, int event);
|
|
|
|
int (*overflow)(struct xfrm_state *x, struct sk_buff *skb);
|
|
|
|
};
|
|
|
|
|
2007-12-11 17:32:34 +00:00
|
|
|
struct net_device;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct xfrm_type;
|
|
|
|
struct xfrm_dst;
|
|
|
|
struct xfrm_policy_afinfo {
|
|
|
|
struct dst_ops *dst_ops;
|
2015-08-10 22:58:11 +00:00
|
|
|
struct dst_entry *(*dst_lookup)(struct net *net,
|
|
|
|
int tos, int oif,
|
2011-02-24 05:14:45 +00:00
|
|
|
const xfrm_address_t *saddr,
|
net: xfrm: support setting an output mark.
On systems that use mark-based routing it may be necessary for
routing lookups to use marks in order for packets to be routed
correctly. An example of such a system is Android, which uses
socket marks to route packets via different networks.
Currently, routing lookups in tunnel mode always use a mark of
zero, making routing incorrect on such systems.
This patch adds a new output_mark element to the xfrm state and
a corresponding XFRMA_OUTPUT_MARK netlink attribute. The output
mark differs from the existing xfrm mark in two ways:
1. The xfrm mark is used to match xfrm policies and states, while
the xfrm output mark is used to set the mark (and influence
the routing) of the packets emitted by those states.
2. The existing mark is constrained to be a subset of the bits of
the originating socket or transformed packet, but the output
mark is arbitrary and depends only on the state.
The use of a separate mark provides additional flexibility. For
example:
- A packet subject to two transforms (e.g., transport mode inside
tunnel mode) can have two different output marks applied to it,
one for the transport mode SA and one for the tunnel mode SA.
- On a system where socket marks determine routing, the packets
emitted by an IPsec tunnel can be routed based on a mark that
is determined by the tunnel, not by the marks of the
unencrypted packets.
- Support for setting the output marks can be introduced without
breaking any existing setups that employ both mark-based
routing and xfrm tunnel mode. Simply changing the code to use
the xfrm mark for routing output packets could xfrm mark could
change behaviour in a way that breaks these setups.
If the output mark is unspecified or set to zero, the mark is not
set or changed.
Tested: make allyesconfig; make -j64
Tested: https://android-review.googlesource.com/452776
Signed-off-by: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2017-08-10 17:11:33 +00:00
|
|
|
const xfrm_address_t *daddr,
|
|
|
|
u32 mark);
|
2015-08-10 22:58:11 +00:00
|
|
|
int (*get_saddr)(struct net *net, int oif,
|
|
|
|
xfrm_address_t *saddr,
|
net: xfrm: support setting an output mark.
On systems that use mark-based routing it may be necessary for
routing lookups to use marks in order for packets to be routed
correctly. An example of such a system is Android, which uses
socket marks to route packets via different networks.
Currently, routing lookups in tunnel mode always use a mark of
zero, making routing incorrect on such systems.
This patch adds a new output_mark element to the xfrm state and
a corresponding XFRMA_OUTPUT_MARK netlink attribute. The output
mark differs from the existing xfrm mark in two ways:
1. The xfrm mark is used to match xfrm policies and states, while
the xfrm output mark is used to set the mark (and influence
the routing) of the packets emitted by those states.
2. The existing mark is constrained to be a subset of the bits of
the originating socket or transformed packet, but the output
mark is arbitrary and depends only on the state.
The use of a separate mark provides additional flexibility. For
example:
- A packet subject to two transforms (e.g., transport mode inside
tunnel mode) can have two different output marks applied to it,
one for the transport mode SA and one for the tunnel mode SA.
- On a system where socket marks determine routing, the packets
emitted by an IPsec tunnel can be routed based on a mark that
is determined by the tunnel, not by the marks of the
unencrypted packets.
- Support for setting the output marks can be introduced without
breaking any existing setups that employ both mark-based
routing and xfrm tunnel mode. Simply changing the code to use
the xfrm mark for routing output packets could xfrm mark could
change behaviour in a way that breaks these setups.
If the output mark is unspecified or set to zero, the mark is not
set or changed.
Tested: make allyesconfig; make -j64
Tested: https://android-review.googlesource.com/452776
Signed-off-by: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2017-08-10 17:11:33 +00:00
|
|
|
xfrm_address_t *daddr,
|
|
|
|
u32 mark);
|
2005-04-16 22:20:36 +00:00
|
|
|
void (*decode_session)(struct sk_buff *skb,
|
2007-12-12 18:44:16 +00:00
|
|
|
struct flowi *fl,
|
|
|
|
int reverse);
|
2011-02-23 01:47:10 +00:00
|
|
|
int (*get_tos)(const struct flowi *fl);
|
2007-12-21 04:41:12 +00:00
|
|
|
int (*init_path)(struct xfrm_dst *path,
|
|
|
|
struct dst_entry *dst,
|
|
|
|
int nfheader_len);
|
2007-12-11 17:32:34 +00:00
|
|
|
int (*fill_dst)(struct xfrm_dst *xdst,
|
2010-03-02 02:51:56 +00:00
|
|
|
struct net_device *dev,
|
2011-02-23 01:48:57 +00:00
|
|
|
const struct flowi *fl);
|
2011-03-01 22:59:04 +00:00
|
|
|
struct dst_entry *(*blackhole_route)(struct net *net, struct dst_entry *orig);
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2017-02-07 14:00:17 +00:00
|
|
|
int xfrm_policy_register_afinfo(const struct xfrm_policy_afinfo *afinfo, int family);
|
|
|
|
void xfrm_policy_unregister_afinfo(const struct xfrm_policy_afinfo *afinfo);
|
2013-09-23 18:33:53 +00:00
|
|
|
void km_policy_notify(struct xfrm_policy *xp, int dir,
|
|
|
|
const struct km_event *c);
|
2017-07-17 11:57:27 +00:00
|
|
|
void xfrm_policy_cache_flush(void);
|
2013-09-23 18:33:53 +00:00
|
|
|
void km_state_notify(struct xfrm_state *x, const struct km_event *c);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
struct xfrm_tmpl;
|
2013-09-23 18:33:53 +00:00
|
|
|
int km_query(struct xfrm_state *x, struct xfrm_tmpl *t,
|
|
|
|
struct xfrm_policy *pol);
|
|
|
|
void km_state_expired(struct xfrm_state *x, int hard, u32 portid);
|
|
|
|
int __xfrm_state_delete(struct xfrm_state *x);
|
2006-03-21 03:17:03 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
struct xfrm_state_afinfo {
|
2017-04-14 08:05:44 +00:00
|
|
|
unsigned int family;
|
|
|
|
unsigned int proto;
|
|
|
|
__be16 eth_proto;
|
|
|
|
struct module *owner;
|
|
|
|
const struct xfrm_type *type_map[IPPROTO_MAX];
|
|
|
|
const struct xfrm_type_offload *type_offload_map[IPPROTO_MAX];
|
|
|
|
struct xfrm_mode *mode_map[XFRM_MODE_MAX];
|
|
|
|
|
2005-06-20 20:19:41 +00:00
|
|
|
int (*init_flags)(struct xfrm_state *x);
|
2011-02-23 01:51:44 +00:00
|
|
|
void (*init_tempsel)(struct xfrm_selector *sel,
|
|
|
|
const struct flowi *fl);
|
2011-02-24 05:07:20 +00:00
|
|
|
void (*init_temprop)(struct xfrm_state *x,
|
|
|
|
const struct xfrm_tmpl *tmpl,
|
|
|
|
const xfrm_address_t *daddr,
|
|
|
|
const xfrm_address_t *saddr);
|
2006-08-24 05:48:31 +00:00
|
|
|
int (*tmpl_sort)(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n);
|
|
|
|
int (*state_sort)(struct xfrm_state **dst, struct xfrm_state **src, int n);
|
2015-10-07 21:48:47 +00:00
|
|
|
int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb);
|
2015-04-06 02:19:04 +00:00
|
|
|
int (*output_finish)(struct sock *sk, struct sk_buff *skb);
|
2007-11-14 05:41:28 +00:00
|
|
|
int (*extract_input)(struct xfrm_state *x,
|
|
|
|
struct sk_buff *skb);
|
2007-11-14 05:40:52 +00:00
|
|
|
int (*extract_output)(struct xfrm_state *x,
|
|
|
|
struct sk_buff *skb);
|
2007-11-14 05:44:23 +00:00
|
|
|
int (*transport_finish)(struct sk_buff *skb,
|
|
|
|
int async);
|
2013-08-14 11:05:23 +00:00
|
|
|
void (*local_error)(struct sk_buff *skb, u32 mtu);
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo);
|
|
|
|
int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo);
|
|
|
|
struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family);
|
2017-01-09 13:20:48 +00:00
|
|
|
struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2014-03-14 06:28:07 +00:00
|
|
|
struct xfrm_input_afinfo {
|
|
|
|
unsigned int family;
|
|
|
|
int (*callback)(struct sk_buff *skb, u8 protocol,
|
|
|
|
int err);
|
|
|
|
};
|
|
|
|
|
2017-02-07 13:52:30 +00:00
|
|
|
int xfrm_input_register_afinfo(const struct xfrm_input_afinfo *afinfo);
|
|
|
|
int xfrm_input_unregister_afinfo(const struct xfrm_input_afinfo *afinfo);
|
2014-03-14 06:28:07 +00:00
|
|
|
|
2018-04-16 05:50:09 +00:00
|
|
|
void xfrm_flush_gc(void);
|
2013-09-23 18:33:53 +00:00
|
|
|
void xfrm_state_delete_tunnel(struct xfrm_state *x);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-11-03 03:26:03 +00:00
|
|
|
struct xfrm_type {
|
2005-04-16 22:20:36 +00:00
|
|
|
char *description;
|
|
|
|
struct module *owner;
|
2010-02-09 13:21:17 +00:00
|
|
|
u8 proto;
|
|
|
|
u8 flags;
|
2006-08-24 01:11:50 +00:00
|
|
|
#define XFRM_TYPE_NON_FRAGMENT 1
|
2007-10-09 00:25:53 +00:00
|
|
|
#define XFRM_TYPE_REPLAY_PROT 2
|
2007-11-14 05:36:51 +00:00
|
|
|
#define XFRM_TYPE_LOCAL_COADDR 4
|
|
|
|
#define XFRM_TYPE_REMOTE_COADDR 8
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2005-06-20 20:18:08 +00:00
|
|
|
int (*init_state)(struct xfrm_state *x);
|
2005-04-16 22:20:36 +00:00
|
|
|
void (*destructor)(struct xfrm_state *);
|
2006-04-01 08:52:46 +00:00
|
|
|
int (*input)(struct xfrm_state *, struct sk_buff *skb);
|
2005-04-16 22:20:36 +00:00
|
|
|
int (*output)(struct xfrm_state *, struct sk_buff *pskb);
|
2011-02-23 01:59:59 +00:00
|
|
|
int (*reject)(struct xfrm_state *, struct sk_buff *,
|
|
|
|
const struct flowi *);
|
2006-08-24 00:57:28 +00:00
|
|
|
int (*hdr_offset)(struct xfrm_state *, struct sk_buff *, u8 **);
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Estimate maximal size of result of transformation of a dgram */
|
2007-04-09 18:47:18 +00:00
|
|
|
u32 (*get_mtu)(struct xfrm_state *, int size);
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_register_type(const struct xfrm_type *type, unsigned short family);
|
|
|
|
int xfrm_unregister_type(const struct xfrm_type *type, unsigned short family);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2017-04-14 08:05:44 +00:00
|
|
|
struct xfrm_type_offload {
|
|
|
|
char *description;
|
|
|
|
struct module *owner;
|
|
|
|
u8 proto;
|
|
|
|
void (*encap)(struct xfrm_state *, struct sk_buff *pskb);
|
|
|
|
int (*input_tail)(struct xfrm_state *x, struct sk_buff *skb);
|
|
|
|
int (*xmit)(struct xfrm_state *, struct sk_buff *pskb, netdev_features_t features);
|
|
|
|
};
|
|
|
|
|
|
|
|
int xfrm_register_type_offload(const struct xfrm_type_offload *type, unsigned short family);
|
|
|
|
int xfrm_unregister_type_offload(const struct xfrm_type_offload *type, unsigned short family);
|
|
|
|
|
2006-05-28 06:05:54 +00:00
|
|
|
struct xfrm_mode {
|
2007-11-14 05:41:28 +00:00
|
|
|
/*
|
|
|
|
* Remove encapsulation header.
|
|
|
|
*
|
|
|
|
* The IP header will be moved over the top of the encapsulation
|
|
|
|
* header.
|
|
|
|
*
|
|
|
|
* On entry, the transport header shall point to where the IP header
|
|
|
|
* should be and the network header shall be set to where the IP
|
|
|
|
* header currently is. skb->data shall point to the start of the
|
|
|
|
* payload.
|
|
|
|
*/
|
|
|
|
int (*input2)(struct xfrm_state *x, struct sk_buff *skb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the actual input entry point.
|
|
|
|
*
|
|
|
|
* For transport mode and equivalent this would be identical to
|
|
|
|
* input2 (which does not need to be set). While tunnel mode
|
|
|
|
* and equivalent would set this to the tunnel encapsulation function
|
|
|
|
* xfrm4_prepare_input that would in turn call input2.
|
|
|
|
*/
|
2006-05-28 06:05:54 +00:00
|
|
|
int (*input)(struct xfrm_state *x, struct sk_buff *skb);
|
2007-10-10 22:44:44 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Add encapsulation header.
|
|
|
|
*
|
|
|
|
* On exit, the transport header will be set to the start of the
|
|
|
|
* encapsulation header to be filled in by x->type->output and
|
|
|
|
* the mac header will be set to the nextheader (protocol for
|
|
|
|
* IPv4) field of the extension header directly preceding the
|
|
|
|
* encapsulation header, or in its absence, that of the top IP
|
|
|
|
* header. The value of the network header will always point
|
|
|
|
* to the top IP header while skb->data will point to the payload.
|
|
|
|
*/
|
2007-11-14 05:40:52 +00:00
|
|
|
int (*output2)(struct xfrm_state *x,struct sk_buff *skb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the actual output entry point.
|
|
|
|
*
|
|
|
|
* For transport mode and equivalent this would be identical to
|
|
|
|
* output2 (which does not need to be set). While tunnel mode
|
|
|
|
* and equivalent would set this to a tunnel encapsulation function
|
|
|
|
* (xfrm4_prepare_output or xfrm6_prepare_output) that would in turn
|
|
|
|
* call output2.
|
|
|
|
*/
|
|
|
|
int (*output)(struct xfrm_state *x, struct sk_buff *skb);
|
2006-05-28 06:05:54 +00:00
|
|
|
|
2017-04-14 08:06:01 +00:00
|
|
|
/*
|
|
|
|
* Adjust pointers into the packet and do GSO segmentation.
|
|
|
|
*/
|
|
|
|
struct sk_buff *(*gso_segment)(struct xfrm_state *x, struct sk_buff *skb, netdev_features_t features);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Adjust pointers into the packet when IPsec is done at layer2.
|
|
|
|
*/
|
|
|
|
void (*xmit)(struct xfrm_state *x, struct sk_buff *skb);
|
|
|
|
|
2007-10-18 04:33:12 +00:00
|
|
|
struct xfrm_state_afinfo *afinfo;
|
2006-05-28 06:05:54 +00:00
|
|
|
struct module *owner;
|
|
|
|
unsigned int encap;
|
2007-10-18 04:31:50 +00:00
|
|
|
int flags;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Flags for xfrm_mode. */
|
|
|
|
enum {
|
|
|
|
XFRM_MODE_FLAG_TUNNEL = 1,
|
2006-05-28 06:05:54 +00:00
|
|
|
};
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_register_mode(struct xfrm_mode *mode, int family);
|
|
|
|
int xfrm_unregister_mode(struct xfrm_mode *mode, int family);
|
2006-05-28 06:05:54 +00:00
|
|
|
|
2008-03-24 21:51:51 +00:00
|
|
|
static inline int xfrm_af2proto(unsigned int family)
|
|
|
|
{
|
|
|
|
switch(family) {
|
|
|
|
case AF_INET:
|
|
|
|
return IPPROTO_IPIP;
|
|
|
|
case AF_INET6:
|
|
|
|
return IPPROTO_IPV6;
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct xfrm_mode *xfrm_ip2inner_mode(struct xfrm_state *x, int ipproto)
|
|
|
|
{
|
|
|
|
if ((ipproto == IPPROTO_IPIP && x->props.family == AF_INET) ||
|
|
|
|
(ipproto == IPPROTO_IPV6 && x->props.family == AF_INET6))
|
|
|
|
return x->inner_mode;
|
|
|
|
else
|
|
|
|
return x->inner_mode_iaf;
|
|
|
|
}
|
|
|
|
|
2009-11-03 03:26:03 +00:00
|
|
|
struct xfrm_tmpl {
|
2005-04-16 22:20:36 +00:00
|
|
|
/* id in template is interpreted as:
|
|
|
|
* daddr - destination of tunnel, may be zero for transport mode.
|
|
|
|
* spi - zero to acquire spi. Not zero if spi is static, then
|
|
|
|
* daddr must be fixed too.
|
|
|
|
* proto - AH/ESP/IPCOMP
|
|
|
|
*/
|
|
|
|
struct xfrm_id id;
|
|
|
|
|
|
|
|
/* Source address of tunnel. Ignored, if it is not a tunnel. */
|
|
|
|
xfrm_address_t saddr;
|
|
|
|
|
2006-12-01 00:40:43 +00:00
|
|
|
unsigned short encap_family;
|
|
|
|
|
2010-02-09 13:21:17 +00:00
|
|
|
u32 reqid;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-09-22 22:05:15 +00:00
|
|
|
/* Mode: transport, tunnel etc. */
|
2010-02-09 13:21:17 +00:00
|
|
|
u8 mode;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Sharing mode: unique, this session only, this user only etc. */
|
2010-02-09 13:21:17 +00:00
|
|
|
u8 share;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* May skip this transfomration if no SA is found */
|
2010-02-09 13:21:17 +00:00
|
|
|
u8 optional;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-04-22 07:46:42 +00:00
|
|
|
/* Skip aalgos/ealgos/calgos checks. */
|
2010-02-09 13:21:17 +00:00
|
|
|
u8 allalgs;
|
2008-04-22 07:46:42 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Bit mask of algos allowed for acquisition */
|
2010-02-09 13:21:17 +00:00
|
|
|
u32 aalgos;
|
|
|
|
u32 ealgos;
|
|
|
|
u32 calgos;
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2006-08-24 00:52:01 +00:00
|
|
|
#define XFRM_MAX_DEPTH 6
|
2017-02-15 08:39:54 +00:00
|
|
|
#define XFRM_MAX_OFFLOAD_DEPTH 1
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-10-01 14:03:24 +00:00
|
|
|
struct xfrm_policy_walk_entry {
|
|
|
|
struct list_head all;
|
|
|
|
u8 dead;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct xfrm_policy_walk {
|
|
|
|
struct xfrm_policy_walk_entry walk;
|
|
|
|
u8 type;
|
|
|
|
u32 seq;
|
|
|
|
};
|
|
|
|
|
2013-02-05 11:52:55 +00:00
|
|
|
struct xfrm_policy_queue {
|
|
|
|
struct sk_buff_head hold_queue;
|
|
|
|
struct timer_list hold_timer;
|
|
|
|
unsigned long timeout;
|
|
|
|
};
|
|
|
|
|
2009-11-03 03:26:03 +00:00
|
|
|
struct xfrm_policy {
|
2015-03-12 04:06:44 +00:00
|
|
|
possible_net_t xp_net;
|
2006-08-24 11:45:07 +00:00
|
|
|
struct hlist_node bydst;
|
|
|
|
struct hlist_node byidx;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* This lock only affects elements except for entry. */
|
|
|
|
rwlock_t lock;
|
2017-07-04 12:53:22 +00:00
|
|
|
refcount_t refcnt;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct timer_list timer;
|
|
|
|
|
2010-04-07 00:30:05 +00:00
|
|
|
atomic_t genid;
|
2005-04-16 22:20:36 +00:00
|
|
|
u32 priority;
|
|
|
|
u32 index;
|
2010-02-22 11:32:54 +00:00
|
|
|
struct xfrm_mark mark;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct xfrm_selector selector;
|
|
|
|
struct xfrm_lifetime_cfg lft;
|
|
|
|
struct xfrm_lifetime_cur curlft;
|
2008-10-01 14:03:24 +00:00
|
|
|
struct xfrm_policy_walk_entry walk;
|
2013-02-05 11:52:55 +00:00
|
|
|
struct xfrm_policy_queue polq;
|
[XFRM]: Pack struct xfrm_policy
[acme@newtoy net-2.6.20]$ pahole net/ipv4/tcp.o xfrm_policy
/* /pub/scm/linux/kernel/git/acme/net-2.6.20/include/linux/security.h:67 */
struct xfrm_policy {
struct xfrm_policy * next; /* 0 4 */
struct hlist_node bydst; /* 4 8 */
struct hlist_node byidx; /* 12 8 */
rwlock_t lock; /* 20 36 */
atomic_t refcnt; /* 56 4 */
struct timer_list timer; /* 60 24 */
u8 type; /* 84 1 */
/* XXX 3 bytes hole, try to pack */
u32 priority; /* 88 4 */
u32 index; /* 92 4 */
struct xfrm_selector selector; /* 96 56 */
struct xfrm_lifetime_cfg lft; /* 152 64 */
struct xfrm_lifetime_cur curlft; /* 216 32 */
struct dst_entry * bundles; /* 248 4 */
__u16 family; /* 252 2 */
__u8 action; /* 254 1 */
__u8 flags; /* 255 1 */
__u8 dead; /* 256 1 */
__u8 xfrm_nr; /* 257 1 */
/* XXX 2 bytes hole, try to pack */
struct xfrm_sec_ctx * security; /* 260 4 */
struct xfrm_tmpl xfrm_vec[6]; /* 264 360 */
}; /* size: 624, sum members: 619, holes: 2, sum holes: 5 */
So lets have just one hole instead of two, by moving 'type' to just before 'action',
end result:
[acme@newtoy net-2.6.20]$ codiff -s /tmp/tcp.o.before net/ipv4/tcp.o
/pub/scm/linux/kernel/git/acme/net-2.6.20/net/ipv4/tcp.c:
struct xfrm_policy | -4
1 struct changed
[acme@newtoy net-2.6.20]$
[acme@newtoy net-2.6.20]$ pahole -c 64 net/ipv4/tcp.o xfrm_policy
/* /pub/scm/linux/kernel/git/acme/net-2.6.20/include/linux/security.h:67 */
struct xfrm_policy {
struct xfrm_policy * next; /* 0 4 */
struct hlist_node bydst; /* 4 8 */
struct hlist_node byidx; /* 12 8 */
rwlock_t lock; /* 20 36 */
atomic_t refcnt; /* 56 4 */
struct timer_list timer; /* 60 24 */
u32 priority; /* 84 4 */
u32 index; /* 88 4 */
struct xfrm_selector selector; /* 92 56 */
struct xfrm_lifetime_cfg lft; /* 148 64 */
struct xfrm_lifetime_cur curlft; /* 212 32 */
struct dst_entry * bundles; /* 244 4 */
u16 family; /* 248 2 */
u8 type; /* 250 1 */
u8 action; /* 251 1 */
u8 flags; /* 252 1 */
u8 dead; /* 253 1 */
u8 xfrm_nr; /* 254 1 */
/* XXX 1 byte hole, try to pack */
struct xfrm_sec_ctx * security; /* 256 4 */
struct xfrm_tmpl xfrm_vec[6]; /* 260 360 */
}; /* size: 620, sum members: 619, holes: 1, sum holes: 1 */
Are there any fugly data dependencies here? None that I know.
In the process changed the removed the __ prefixed types, that are just for
userspace visible headers.
Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2006-11-27 19:58:59 +00:00
|
|
|
u8 type;
|
|
|
|
u8 action;
|
|
|
|
u8 flags;
|
|
|
|
u8 xfrm_nr;
|
2008-10-01 14:03:24 +00:00
|
|
|
u16 family;
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 07:12:27 +00:00
|
|
|
struct xfrm_sec_ctx *security;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct xfrm_tmpl xfrm_vec[XFRM_MAX_DEPTH];
|
2015-12-08 15:22:01 +00:00
|
|
|
struct rcu_head rcu;
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2011-02-24 06:25:19 +00:00
|
|
|
static inline struct net *xp_net(const struct xfrm_policy *xp)
|
2008-11-26 01:21:45 +00:00
|
|
|
{
|
|
|
|
return read_pnet(&xp->xp_net);
|
|
|
|
}
|
|
|
|
|
2008-10-05 20:33:42 +00:00
|
|
|
struct xfrm_kmaddress {
|
|
|
|
xfrm_address_t local;
|
|
|
|
xfrm_address_t remote;
|
|
|
|
u32 reserved;
|
|
|
|
u16 family;
|
|
|
|
};
|
|
|
|
|
2007-02-08 21:11:42 +00:00
|
|
|
struct xfrm_migrate {
|
|
|
|
xfrm_address_t old_daddr;
|
|
|
|
xfrm_address_t old_saddr;
|
|
|
|
xfrm_address_t new_daddr;
|
|
|
|
xfrm_address_t new_saddr;
|
|
|
|
u8 proto;
|
|
|
|
u8 mode;
|
|
|
|
u16 reserved;
|
|
|
|
u32 reqid;
|
|
|
|
u16 old_family;
|
|
|
|
u16 new_family;
|
|
|
|
};
|
|
|
|
|
2006-03-21 03:15:11 +00:00
|
|
|
#define XFRM_KM_TIMEOUT 30
|
|
|
|
/* what happened */
|
|
|
|
#define XFRM_REPLAY_UPDATE XFRM_AE_CR
|
|
|
|
#define XFRM_REPLAY_TIMEOUT XFRM_AE_CE
|
|
|
|
|
|
|
|
/* default aevent timeout in units of 100ms */
|
|
|
|
#define XFRM_AE_ETIME 10
|
|
|
|
/* Async Event timer multiplier */
|
|
|
|
#define XFRM_AE_ETH_M 10
|
|
|
|
/* default seq threshold size */
|
|
|
|
#define XFRM_AE_SEQT_SIZE 2
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-11-03 03:26:03 +00:00
|
|
|
struct xfrm_mgr {
|
2005-04-16 22:20:36 +00:00
|
|
|
struct list_head list;
|
2011-02-24 05:02:38 +00:00
|
|
|
int (*notify)(struct xfrm_state *x, const struct km_event *c);
|
2012-08-15 02:13:47 +00:00
|
|
|
int (*acquire)(struct xfrm_state *x, struct xfrm_tmpl *, struct xfrm_policy *xp);
|
2006-07-25 06:32:20 +00:00
|
|
|
struct xfrm_policy *(*compile_policy)(struct sock *sk, int opt, u8 *data, int len, int *dir);
|
2006-11-08 08:24:06 +00:00
|
|
|
int (*new_mapping)(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport);
|
2011-02-24 05:02:38 +00:00
|
|
|
int (*notify_policy)(struct xfrm_policy *x, int dir, const struct km_event *c);
|
2008-11-26 01:51:01 +00:00
|
|
|
int (*report)(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr);
|
2011-02-24 05:28:01 +00:00
|
|
|
int (*migrate)(const struct xfrm_selector *sel,
|
|
|
|
u8 dir, u8 type,
|
|
|
|
const struct xfrm_migrate *m,
|
|
|
|
int num_bundles,
|
2017-06-06 10:12:14 +00:00
|
|
|
const struct xfrm_kmaddress *k,
|
|
|
|
const struct xfrm_encap_tmpl *encap);
|
2014-02-12 14:20:06 +00:00
|
|
|
bool (*is_alive)(const struct km_event *c);
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_register_km(struct xfrm_mgr *km);
|
|
|
|
int xfrm_unregister_km(struct xfrm_mgr *km);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2014-02-21 07:41:09 +00:00
|
|
|
struct xfrm_tunnel_skb_cb {
|
|
|
|
union {
|
|
|
|
struct inet_skb_parm h4;
|
|
|
|
struct inet6_skb_parm h6;
|
|
|
|
} header;
|
|
|
|
|
|
|
|
union {
|
|
|
|
struct ip_tunnel *ip4;
|
|
|
|
struct ip6_tnl *ip6;
|
|
|
|
} tunnel;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define XFRM_TUNNEL_SKB_CB(__skb) ((struct xfrm_tunnel_skb_cb *)&((__skb)->cb[0]))
|
|
|
|
|
2007-10-09 00:25:53 +00:00
|
|
|
/*
|
|
|
|
* This structure is used for the duration where packets are being
|
|
|
|
* transformed by IPsec. As soon as the packet leaves IPsec the
|
|
|
|
* area beyond the generic IP part may be overwritten.
|
|
|
|
*/
|
|
|
|
struct xfrm_skb_cb {
|
2014-02-21 07:41:09 +00:00
|
|
|
struct xfrm_tunnel_skb_cb header;
|
2007-10-09 00:25:53 +00:00
|
|
|
|
|
|
|
/* Sequence number for replay protection. */
|
2008-02-13 06:50:35 +00:00
|
|
|
union {
|
2011-03-08 00:06:31 +00:00
|
|
|
struct {
|
|
|
|
__u32 low;
|
|
|
|
__u32 hi;
|
|
|
|
} output;
|
|
|
|
struct {
|
|
|
|
__be32 low;
|
|
|
|
__be32 hi;
|
|
|
|
} input;
|
2008-02-13 06:50:35 +00:00
|
|
|
} seq;
|
2007-10-09 00:25:53 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
#define XFRM_SKB_CB(__skb) ((struct xfrm_skb_cb *)&((__skb)->cb[0]))
|
|
|
|
|
2007-11-14 05:40:52 +00:00
|
|
|
/*
|
|
|
|
* This structure is used by the afinfo prepare_input/prepare_output functions
|
|
|
|
* to transmit header information to the mode input/output functions.
|
|
|
|
*/
|
|
|
|
struct xfrm_mode_skb_cb {
|
2014-02-21 07:41:09 +00:00
|
|
|
struct xfrm_tunnel_skb_cb header;
|
2007-11-14 05:40:52 +00:00
|
|
|
|
|
|
|
/* Copied from header for IPv4, always set to zero and DF for IPv6. */
|
|
|
|
__be16 id;
|
|
|
|
__be16 frag_off;
|
|
|
|
|
2008-03-26 23:51:09 +00:00
|
|
|
/* IP header length (excluding options or extension headers). */
|
|
|
|
u8 ihl;
|
|
|
|
|
2007-11-14 05:40:52 +00:00
|
|
|
/* TOS for IPv4, class for IPv6. */
|
|
|
|
u8 tos;
|
|
|
|
|
|
|
|
/* TTL for IPv4, hop limitfor IPv6. */
|
|
|
|
u8 ttl;
|
|
|
|
|
|
|
|
/* Protocol for IPv4, NH for IPv6. */
|
|
|
|
u8 protocol;
|
|
|
|
|
2008-03-26 23:51:09 +00:00
|
|
|
/* Option length for IPv4, zero for IPv6. */
|
|
|
|
u8 optlen;
|
|
|
|
|
2007-11-14 05:40:52 +00:00
|
|
|
/* Used by IPv6 only, zero for IPv4. */
|
|
|
|
u8 flow_lbl[3];
|
|
|
|
};
|
|
|
|
|
|
|
|
#define XFRM_MODE_SKB_CB(__skb) ((struct xfrm_mode_skb_cb *)&((__skb)->cb[0]))
|
|
|
|
|
2007-11-14 05:44:23 +00:00
|
|
|
/*
|
|
|
|
* This structure is used by the input processing to locate the SPI and
|
|
|
|
* related information.
|
|
|
|
*/
|
|
|
|
struct xfrm_spi_skb_cb {
|
2014-02-21 07:41:09 +00:00
|
|
|
struct xfrm_tunnel_skb_cb header;
|
2007-11-14 05:44:23 +00:00
|
|
|
|
|
|
|
unsigned int daddroff;
|
2007-12-04 06:54:12 +00:00
|
|
|
unsigned int family;
|
2017-02-15 08:40:00 +00:00
|
|
|
__be32 seq;
|
2007-11-14 05:44:23 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
#define XFRM_SPI_SKB_CB(__skb) ((struct xfrm_spi_skb_cb *)&((__skb)->cb[0]))
|
|
|
|
|
2006-11-30 21:50:43 +00:00
|
|
|
#ifdef CONFIG_AUDITSYSCALL
|
2007-12-21 22:58:11 +00:00
|
|
|
static inline struct audit_buffer *xfrm_audit_start(const char *op)
|
2007-09-17 18:51:22 +00:00
|
|
|
{
|
|
|
|
struct audit_buffer *audit_buf = NULL;
|
|
|
|
|
2007-12-21 22:58:11 +00:00
|
|
|
if (audit_enabled == 0)
|
|
|
|
return NULL;
|
2018-05-13 01:58:20 +00:00
|
|
|
audit_buf = audit_log_start(audit_context(), GFP_ATOMIC,
|
2007-12-21 22:58:11 +00:00
|
|
|
AUDIT_MAC_IPSEC_EVENT);
|
2007-09-17 18:51:22 +00:00
|
|
|
if (audit_buf == NULL)
|
|
|
|
return NULL;
|
2007-12-21 22:58:11 +00:00
|
|
|
audit_log_format(audit_buf, "op=%s", op);
|
|
|
|
return audit_buf;
|
|
|
|
}
|
2007-09-17 18:51:22 +00:00
|
|
|
|
2014-04-22 12:48:30 +00:00
|
|
|
static inline void xfrm_audit_helper_usrinfo(bool task_valid,
|
2007-12-21 22:58:11 +00:00
|
|
|
struct audit_buffer *audit_buf)
|
|
|
|
{
|
2014-04-22 12:48:30 +00:00
|
|
|
const unsigned int auid = from_kuid(&init_user_ns, task_valid ?
|
|
|
|
audit_get_loginuid(current) :
|
|
|
|
INVALID_UID);
|
|
|
|
const unsigned int ses = task_valid ? audit_get_sessionid(current) :
|
2018-05-13 01:58:19 +00:00
|
|
|
AUDIT_SID_UNSET;
|
2014-04-22 12:48:30 +00:00
|
|
|
|
|
|
|
audit_log_format(audit_buf, " auid=%u ses=%u", auid, ses);
|
2014-04-18 07:23:46 +00:00
|
|
|
audit_log_task_context(audit_buf);
|
2007-09-17 18:51:22 +00:00
|
|
|
}
|
|
|
|
|
2014-04-22 12:48:30 +00:00
|
|
|
void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, bool task_valid);
|
|
|
|
void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result,
|
|
|
|
bool task_valid);
|
|
|
|
void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid);
|
|
|
|
void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid);
|
2013-09-23 18:33:53 +00:00
|
|
|
void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
|
|
|
|
struct sk_buff *skb);
|
|
|
|
void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb,
|
|
|
|
__be32 net_seq);
|
|
|
|
void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family);
|
|
|
|
void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi,
|
|
|
|
__be32 net_seq);
|
|
|
|
void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb,
|
|
|
|
u8 proto);
|
2006-11-30 21:50:43 +00:00
|
|
|
#else
|
2008-05-04 04:03:01 +00:00
|
|
|
|
|
|
|
static inline void xfrm_audit_policy_add(struct xfrm_policy *xp, int result,
|
2014-04-22 12:48:30 +00:00
|
|
|
bool task_valid)
|
2008-05-04 04:03:01 +00:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result,
|
2014-04-22 12:48:30 +00:00
|
|
|
bool task_valid)
|
2008-05-04 04:03:01 +00:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_audit_state_add(struct xfrm_state *x, int result,
|
2014-04-22 12:48:30 +00:00
|
|
|
bool task_valid)
|
2008-05-04 04:03:01 +00:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_audit_state_delete(struct xfrm_state *x, int result,
|
2014-04-22 12:48:30 +00:00
|
|
|
bool task_valid)
|
2008-05-04 04:03:01 +00:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2011-03-08 00:08:32 +00:00
|
|
|
static inline void xfrm_audit_state_replay(struct xfrm_state *x,
|
|
|
|
struct sk_buff *skb, __be32 net_seq)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2008-05-04 04:03:01 +00:00
|
|
|
static inline void xfrm_audit_state_notfound_simple(struct sk_buff *skb,
|
|
|
|
u16 family)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
|
|
|
|
__be32 net_spi, __be32 net_seq)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_audit_state_icvfail(struct xfrm_state *x,
|
|
|
|
struct sk_buff *skb, u8 proto)
|
|
|
|
{
|
|
|
|
}
|
2006-11-30 21:50:43 +00:00
|
|
|
#endif /* CONFIG_AUDITSYSCALL */
|
2006-11-27 19:11:54 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline void xfrm_pol_hold(struct xfrm_policy *policy)
|
|
|
|
{
|
|
|
|
if (likely(policy != NULL))
|
2017-07-04 12:53:22 +00:00
|
|
|
refcount_inc(&policy->refcnt);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
void xfrm_policy_destroy(struct xfrm_policy *policy);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
static inline void xfrm_pol_put(struct xfrm_policy *policy)
|
|
|
|
{
|
2017-07-04 12:53:22 +00:00
|
|
|
if (refcount_dec_and_test(&policy->refcnt))
|
2008-01-08 06:34:29 +00:00
|
|
|
xfrm_policy_destroy(policy);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2006-08-24 05:43:30 +00:00
|
|
|
static inline void xfrm_pols_put(struct xfrm_policy **pols, int npols)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = npols - 1; i >= 0; --i)
|
|
|
|
xfrm_pol_put(pols[i]);
|
|
|
|
}
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
void __xfrm_state_destroy(struct xfrm_state *);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-02-22 22:47:13 +00:00
|
|
|
static inline void __xfrm_state_put(struct xfrm_state *x)
|
|
|
|
{
|
2017-07-04 12:53:21 +00:00
|
|
|
refcount_dec(&x->refcnt);
|
2006-02-22 22:47:13 +00:00
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline void xfrm_state_put(struct xfrm_state *x)
|
|
|
|
{
|
2017-07-04 12:53:21 +00:00
|
|
|
if (refcount_dec_and_test(&x->refcnt))
|
2005-04-16 22:20:36 +00:00
|
|
|
__xfrm_state_destroy(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_state_hold(struct xfrm_state *x)
|
|
|
|
{
|
2017-07-04 12:53:21 +00:00
|
|
|
refcount_inc(&x->refcnt);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2011-02-23 02:02:12 +00:00
|
|
|
static inline bool addr_match(const void *token1, const void *token2,
|
2017-03-23 23:07:50 +00:00
|
|
|
unsigned int prefixlen)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2011-02-23 02:02:12 +00:00
|
|
|
const __be32 *a1 = token1;
|
|
|
|
const __be32 *a2 = token2;
|
2017-03-23 23:07:50 +00:00
|
|
|
unsigned int pdw;
|
|
|
|
unsigned int pbi;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-02-09 13:21:17 +00:00
|
|
|
pdw = prefixlen >> 5; /* num of whole u32 in prefix */
|
2005-04-16 22:20:36 +00:00
|
|
|
pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */
|
|
|
|
|
|
|
|
if (pdw)
|
|
|
|
if (memcmp(a1, a2, pdw << 2))
|
2011-02-23 02:02:12 +00:00
|
|
|
return false;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (pbi) {
|
2006-09-28 01:46:32 +00:00
|
|
|
__be32 mask;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
mask = htonl((0xffffffff) << (32 - pbi));
|
|
|
|
|
|
|
|
if ((a1[pdw] ^ a2[pdw]) & mask)
|
2011-02-23 02:02:12 +00:00
|
|
|
return false;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2011-02-23 02:02:12 +00:00
|
|
|
return true;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2011-11-22 06:46:02 +00:00
|
|
|
static inline bool addr4_match(__be32 a1, __be32 a2, u8 prefixlen)
|
|
|
|
{
|
|
|
|
/* C99 6.5.7 (3): u32 << 32 is undefined behaviour */
|
xfrm: branchless addr4_match() on 64-bit
Current addr4_match() code has special test for /0 prefixes because of
standard required undefined behaviour. However, it is possible to omit
it on 64-bit because shifting can be done within a 64-bit register and
then truncated to the expected value (which is 0 mask).
Implicit truncation by htonl() fits nicely into R32-within-R64 model
on x86-64.
Space savings: none (coincidence)
Branch savings: 1
Before:
movzx eax,BYTE PTR [rdi+0x2a] # ->prefixlen_d
test al,al
jne xfrm_selector_match + 0x23f
...
movzx eax,BYTE PTR [rbx+0x2b] # ->prefixlen_s
test al,al
je xfrm_selector_match + 0x1c7
After (no branches):
mov r8d,0x20
mov rdx,0xffffffffffffffff
mov esi,DWORD PTR [rsi+0x2c]
mov ecx,r8d
sub cl,BYTE PTR [rdi+0x2a]
xor esi,DWORD PTR [rbx]
mov rdi,rdx
xor eax,eax
shl rdi,cl
bswap edi
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2017-03-25 16:41:17 +00:00
|
|
|
if (sizeof(long) == 4 && prefixlen == 0)
|
2011-11-22 06:46:02 +00:00
|
|
|
return true;
|
xfrm: branchless addr4_match() on 64-bit
Current addr4_match() code has special test for /0 prefixes because of
standard required undefined behaviour. However, it is possible to omit
it on 64-bit because shifting can be done within a 64-bit register and
then truncated to the expected value (which is 0 mask).
Implicit truncation by htonl() fits nicely into R32-within-R64 model
on x86-64.
Space savings: none (coincidence)
Branch savings: 1
Before:
movzx eax,BYTE PTR [rdi+0x2a] # ->prefixlen_d
test al,al
jne xfrm_selector_match + 0x23f
...
movzx eax,BYTE PTR [rbx+0x2b] # ->prefixlen_s
test al,al
je xfrm_selector_match + 0x1c7
After (no branches):
mov r8d,0x20
mov rdx,0xffffffffffffffff
mov esi,DWORD PTR [rsi+0x2c]
mov ecx,r8d
sub cl,BYTE PTR [rdi+0x2a]
xor esi,DWORD PTR [rbx]
mov rdi,rdx
xor eax,eax
shl rdi,cl
bswap edi
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2017-03-25 16:41:17 +00:00
|
|
|
return !((a1 ^ a2) & htonl(~0UL << (32 - prefixlen)));
|
2011-11-22 06:46:02 +00:00
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
static __inline__
|
2011-03-12 05:43:55 +00:00
|
|
|
__be16 xfrm_flowi_sport(const struct flowi *fl, const union flowi_uli *uli)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2006-09-28 01:45:50 +00:00
|
|
|
__be16 port;
|
2011-03-12 05:29:39 +00:00
|
|
|
switch(fl->flowi_proto) {
|
2005-04-16 22:20:36 +00:00
|
|
|
case IPPROTO_TCP:
|
|
|
|
case IPPROTO_UDP:
|
2006-11-27 19:10:57 +00:00
|
|
|
case IPPROTO_UDPLITE:
|
2005-04-16 22:20:36 +00:00
|
|
|
case IPPROTO_SCTP:
|
2011-03-12 05:43:55 +00:00
|
|
|
port = uli->ports.sport;
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
|
|
|
case IPPROTO_ICMP:
|
|
|
|
case IPPROTO_ICMPV6:
|
2011-03-12 05:43:55 +00:00
|
|
|
port = htons(uli->icmpt.type);
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
2006-08-24 03:39:03 +00:00
|
|
|
case IPPROTO_MH:
|
2011-03-12 05:43:55 +00:00
|
|
|
port = htons(uli->mht.type);
|
2006-08-24 03:39:03 +00:00
|
|
|
break;
|
2010-11-03 04:41:38 +00:00
|
|
|
case IPPROTO_GRE:
|
2011-03-12 05:43:55 +00:00
|
|
|
port = htons(ntohl(uli->gre_key) >> 16);
|
2010-11-03 04:41:38 +00:00
|
|
|
break;
|
2005-04-16 22:20:36 +00:00
|
|
|
default:
|
|
|
|
port = 0; /*XXX*/
|
|
|
|
}
|
|
|
|
return port;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline__
|
2011-03-12 05:43:55 +00:00
|
|
|
__be16 xfrm_flowi_dport(const struct flowi *fl, const union flowi_uli *uli)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2006-09-28 01:45:50 +00:00
|
|
|
__be16 port;
|
2011-03-12 05:29:39 +00:00
|
|
|
switch(fl->flowi_proto) {
|
2005-04-16 22:20:36 +00:00
|
|
|
case IPPROTO_TCP:
|
|
|
|
case IPPROTO_UDP:
|
2006-11-27 19:10:57 +00:00
|
|
|
case IPPROTO_UDPLITE:
|
2005-04-16 22:20:36 +00:00
|
|
|
case IPPROTO_SCTP:
|
2011-03-12 05:43:55 +00:00
|
|
|
port = uli->ports.dport;
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
|
|
|
case IPPROTO_ICMP:
|
|
|
|
case IPPROTO_ICMPV6:
|
2011-03-12 05:43:55 +00:00
|
|
|
port = htons(uli->icmpt.code);
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
2010-11-03 04:41:38 +00:00
|
|
|
case IPPROTO_GRE:
|
2011-03-12 05:43:55 +00:00
|
|
|
port = htons(ntohl(uli->gre_key) & 0xffff);
|
2010-11-03 04:41:38 +00:00
|
|
|
break;
|
2005-04-16 22:20:36 +00:00
|
|
|
default:
|
|
|
|
port = 0; /*XXX*/
|
|
|
|
}
|
|
|
|
return port;
|
|
|
|
}
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
bool xfrm_selector_match(const struct xfrm_selector *sel,
|
|
|
|
const struct flowi *fl, unsigned short family);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 07:12:27 +00:00
|
|
|
#ifdef CONFIG_SECURITY_NETWORK_XFRM
|
|
|
|
/* If neither has a context --> match
|
|
|
|
* Otherwise, both must have a context and the sids, doi, alg must match
|
|
|
|
*/
|
2012-05-15 19:04:57 +00:00
|
|
|
static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2)
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 07:12:27 +00:00
|
|
|
{
|
|
|
|
return ((!s1 && !s2) ||
|
|
|
|
(s1 && s2 &&
|
|
|
|
(s1->ctx_sid == s2->ctx_sid) &&
|
|
|
|
(s1->ctx_doi == s2->ctx_doi) &&
|
|
|
|
(s1->ctx_alg == s2->ctx_alg)));
|
|
|
|
}
|
|
|
|
#else
|
2012-05-15 19:04:57 +00:00
|
|
|
static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2)
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 07:12:27 +00:00
|
|
|
{
|
2012-05-15 19:04:57 +00:00
|
|
|
return true;
|
[LSM-IPSec]: Security association restriction.
This patch series implements per packet access control via the
extension of the Linux Security Modules (LSM) interface by hooks in
the XFRM and pfkey subsystems that leverage IPSec security
associations to label packets. Extensions to the SELinux LSM are
included that leverage the patch for this purpose.
This patch implements the changes necessary to the XFRM subsystem,
pfkey interface, ipv4/ipv6, and xfrm_user interface to restrict a
socket to use only authorized security associations (or no security
association) to send/receive network packets.
Patch purpose:
The patch is designed to enable access control per packets based on
the strongly authenticated IPSec security association. Such access
controls augment the existing ones based on network interface and IP
address. The former are very coarse-grained, and the latter can be
spoofed. By using IPSec, the system can control access to remote
hosts based on cryptographic keys generated using the IPSec mechanism.
This enables access control on a per-machine basis or per-application
if the remote machine is running the same mechanism and trusted to
enforce the access control policy.
Patch design approach:
The overall approach is that policy (xfrm_policy) entries set by
user-level programs (e.g., setkey for ipsec-tools) are extended with a
security context that is used at policy selection time in the XFRM
subsystem to restrict the sockets that can send/receive packets via
security associations (xfrm_states) that are built from those
policies.
A presentation available at
www.selinux-symposium.org/2005/presentations/session2/2-3-jaeger.pdf
from the SELinux symposium describes the overall approach.
Patch implementation details:
On output, the policy retrieved (via xfrm_policy_lookup or
xfrm_sk_policy_lookup) must be authorized for the security context of
the socket and the same security context is required for resultant
security association (retrieved or negotiated via racoon in
ipsec-tools). This is enforced in xfrm_state_find.
On input, the policy retrieved must also be authorized for the socket
(at __xfrm_policy_check), and the security context of the policy must
also match the security association being used.
The patch has virtually no impact on packets that do not use IPSec.
The existing Netfilter (outgoing) and LSM rcv_skb hooks are used as
before.
Also, if IPSec is used without security contexts, the impact is
minimal. The LSM must allow such policies to be selected for the
combination of socket and remote machine, but subsequent IPSec
processing proceeds as in the original case.
Testing:
The pfkey interface is tested using the ipsec-tools. ipsec-tools have
been modified (a separate ipsec-tools patch is available for version
0.5) that supports assignment of xfrm_policy entries and security
associations with security contexts via setkey and the negotiation
using the security contexts via racoon.
The xfrm_user interface is tested via ad hoc programs that set
security contexts. These programs are also available from me, and
contain programs for setting, getting, and deleting policy for testing
this interface. Testing of sa functions was done by tracing kernel
behavior.
Signed-off-by: Trent Jaeger <tjaeger@cse.psu.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-12-14 07:12:27 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* A struct encoding bundle of transformations to apply to some set of flow.
|
|
|
|
*
|
2017-11-28 20:45:44 +00:00
|
|
|
* xdst->child points to the next element of bundle.
|
2005-04-16 22:20:36 +00:00
|
|
|
* dst->xfrm points to an instanse of transformer.
|
|
|
|
*
|
|
|
|
* Due to unfortunate limitations of current routing cache, which we
|
|
|
|
* have no time to fix, it mirrors struct rtable and bound to the same
|
|
|
|
* routing key, including saddr,daddr. However, we can have many of
|
|
|
|
* bundles differing by session id. All the bundles grow from a parent
|
|
|
|
* policy rule.
|
|
|
|
*/
|
2009-11-03 03:26:03 +00:00
|
|
|
struct xfrm_dst {
|
2005-04-16 22:20:36 +00:00
|
|
|
union {
|
|
|
|
struct dst_entry dst;
|
|
|
|
struct rtable rt;
|
|
|
|
struct rt6_info rt6;
|
|
|
|
} u;
|
|
|
|
struct dst_entry *route;
|
2017-11-28 20:45:44 +00:00
|
|
|
struct dst_entry *child;
|
2017-11-28 20:40:46 +00:00
|
|
|
struct dst_entry *path;
|
2010-04-07 00:30:05 +00:00
|
|
|
struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX];
|
|
|
|
int num_pols, num_xfrms;
|
|
|
|
u32 xfrm_genid;
|
|
|
|
u32 policy_genid;
|
2005-04-16 22:20:36 +00:00
|
|
|
u32 route_mtu_cached;
|
|
|
|
u32 child_mtu_cached;
|
2005-05-26 19:58:04 +00:00
|
|
|
u32 route_cookie;
|
|
|
|
u32 path_cookie;
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2017-11-28 20:40:46 +00:00
|
|
|
static inline struct dst_entry *xfrm_dst_path(const struct dst_entry *dst)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_XFRM
|
|
|
|
if (dst->xfrm) {
|
|
|
|
const struct xfrm_dst *xdst = (const struct xfrm_dst *) dst;
|
|
|
|
|
|
|
|
return xdst->path;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return (struct dst_entry *) dst;
|
|
|
|
}
|
|
|
|
|
2017-11-28 20:40:22 +00:00
|
|
|
static inline struct dst_entry *xfrm_dst_child(const struct dst_entry *dst)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_XFRM
|
2017-11-28 20:45:44 +00:00
|
|
|
if (dst->xfrm) {
|
|
|
|
struct xfrm_dst *xdst = (struct xfrm_dst *) dst;
|
|
|
|
return xdst->child;
|
|
|
|
}
|
2017-11-28 20:40:22 +00:00
|
|
|
#endif
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2008-10-28 20:24:06 +00:00
|
|
|
#ifdef CONFIG_XFRM
|
2017-11-28 20:40:28 +00:00
|
|
|
static inline void xfrm_dst_set_child(struct xfrm_dst *xdst, struct dst_entry *child)
|
|
|
|
{
|
2017-11-28 20:45:44 +00:00
|
|
|
xdst->child = child;
|
2017-11-28 20:40:28 +00:00
|
|
|
}
|
|
|
|
|
2005-05-03 23:27:10 +00:00
|
|
|
static inline void xfrm_dst_destroy(struct xfrm_dst *xdst)
|
|
|
|
{
|
2010-04-07 00:30:05 +00:00
|
|
|
xfrm_pols_put(xdst->pols, xdst->num_pols);
|
2005-05-03 23:27:10 +00:00
|
|
|
dst_release(xdst->route);
|
|
|
|
if (likely(xdst->u.dst.xfrm))
|
|
|
|
xfrm_state_put(xdst->u.dst.xfrm);
|
|
|
|
}
|
2008-10-28 20:24:06 +00:00
|
|
|
#endif
|
2005-05-03 23:27:10 +00:00
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev);
|
2005-05-03 23:27:10 +00:00
|
|
|
|
2017-02-15 08:39:54 +00:00
|
|
|
struct xfrm_offload {
|
|
|
|
/* Output sequence number for replay protection on offloading. */
|
|
|
|
struct {
|
|
|
|
__u32 low;
|
|
|
|
__u32 hi;
|
|
|
|
} seq;
|
|
|
|
|
|
|
|
__u32 flags;
|
|
|
|
#define SA_DELETE_REQ 1
|
|
|
|
#define CRYPTO_DONE 2
|
|
|
|
#define CRYPTO_NEXT_DONE 4
|
|
|
|
#define CRYPTO_FALLBACK 8
|
|
|
|
#define XFRM_GSO_SEGMENT 16
|
|
|
|
#define XFRM_GRO 32
|
2017-08-30 08:30:39 +00:00
|
|
|
#define XFRM_ESP_NO_TRAILER 64
|
2017-12-20 09:41:36 +00:00
|
|
|
#define XFRM_DEV_RESUME 128
|
2017-02-15 08:39:54 +00:00
|
|
|
|
|
|
|
__u32 status;
|
|
|
|
#define CRYPTO_SUCCESS 1
|
|
|
|
#define CRYPTO_GENERIC_ERROR 2
|
|
|
|
#define CRYPTO_TRANSPORT_AH_AUTH_FAILED 4
|
|
|
|
#define CRYPTO_TRANSPORT_ESP_AUTH_FAILED 8
|
|
|
|
#define CRYPTO_TUNNEL_AH_AUTH_FAILED 16
|
|
|
|
#define CRYPTO_TUNNEL_ESP_AUTH_FAILED 32
|
|
|
|
#define CRYPTO_INVALID_PACKET_SYNTAX 64
|
|
|
|
#define CRYPTO_INVALID_PROTOCOL 128
|
|
|
|
|
|
|
|
__u8 proto;
|
|
|
|
};
|
|
|
|
|
2009-11-03 03:26:03 +00:00
|
|
|
struct sec_path {
|
2017-07-04 12:53:23 +00:00
|
|
|
refcount_t refcnt;
|
2005-04-16 22:20:36 +00:00
|
|
|
int len;
|
2017-02-15 08:39:54 +00:00
|
|
|
int olen;
|
|
|
|
|
2006-04-01 08:54:16 +00:00
|
|
|
struct xfrm_state *xvec[XFRM_MAX_DEPTH];
|
2017-02-15 08:39:54 +00:00
|
|
|
struct xfrm_offload ovec[XFRM_MAX_OFFLOAD_DEPTH];
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2011-04-07 04:51:51 +00:00
|
|
|
static inline int secpath_exists(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_XFRM
|
|
|
|
return skb->sp != NULL;
|
|
|
|
#else
|
|
|
|
return 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline struct sec_path *
|
|
|
|
secpath_get(struct sec_path *sp)
|
|
|
|
{
|
|
|
|
if (sp)
|
2017-07-04 12:53:23 +00:00
|
|
|
refcount_inc(&sp->refcnt);
|
2005-04-16 22:20:36 +00:00
|
|
|
return sp;
|
|
|
|
}
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
void __secpath_destroy(struct sec_path *sp);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
static inline void
|
|
|
|
secpath_put(struct sec_path *sp)
|
|
|
|
{
|
2017-07-04 12:53:23 +00:00
|
|
|
if (sp && refcount_dec_and_test(&sp->refcnt))
|
2005-04-16 22:20:36 +00:00
|
|
|
__secpath_destroy(sp);
|
|
|
|
}
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
struct sec_path *secpath_dup(struct sec_path *src);
|
2017-02-15 08:39:24 +00:00
|
|
|
int secpath_set(struct sk_buff *skb);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
static inline void
|
|
|
|
secpath_reset(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_XFRM
|
|
|
|
secpath_put(skb->sp);
|
|
|
|
skb->sp = NULL;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2006-09-19 19:57:34 +00:00
|
|
|
static inline int
|
2011-02-24 05:19:59 +00:00
|
|
|
xfrm_addr_any(const xfrm_address_t *addr, unsigned short family)
|
2006-09-19 19:57:34 +00:00
|
|
|
{
|
|
|
|
switch (family) {
|
|
|
|
case AF_INET:
|
|
|
|
return addr->a4 == 0;
|
|
|
|
case AF_INET6:
|
2015-03-29 14:59:24 +00:00
|
|
|
return ipv6_addr_any(&addr->in6);
|
2006-09-19 19:57:34 +00:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline int
|
2011-02-24 06:35:16 +00:00
|
|
|
__xfrm4_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
return (tmpl->saddr.a4 &&
|
|
|
|
tmpl->saddr.a4 != x->props.saddr.a4);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int
|
2011-02-24 06:35:16 +00:00
|
|
|
__xfrm6_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
return (!ipv6_addr_any((struct in6_addr*)&tmpl->saddr) &&
|
2013-01-29 12:48:31 +00:00
|
|
|
!ipv6_addr_equal((struct in6_addr *)&tmpl->saddr, (struct in6_addr*)&x->props.saddr));
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline int
|
2011-02-24 06:35:16 +00:00
|
|
|
xfrm_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x, unsigned short family)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
switch (family) {
|
|
|
|
case AF_INET:
|
|
|
|
return __xfrm4_state_addr_cmp(tmpl, x);
|
|
|
|
case AF_INET6:
|
|
|
|
return __xfrm6_state_addr_cmp(tmpl, x);
|
|
|
|
}
|
|
|
|
return !0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_XFRM
|
2013-09-23 18:33:53 +00:00
|
|
|
int __xfrm_policy_check(struct sock *, int dir, struct sk_buff *skb,
|
|
|
|
unsigned short family);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-12-12 18:44:16 +00:00
|
|
|
static inline int __xfrm_policy_check2(struct sock *sk, int dir,
|
|
|
|
struct sk_buff *skb,
|
|
|
|
unsigned int family, int reverse)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2008-11-26 01:35:44 +00:00
|
|
|
struct net *net = dev_net(skb->dev);
|
2007-12-12 18:44:16 +00:00
|
|
|
int ndir = dir | (reverse ? XFRM_POLICY_MASK + 1 : 0);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
if (sk && sk->sk_policy[XFRM_POLICY_IN])
|
2007-12-12 18:44:16 +00:00
|
|
|
return __xfrm_policy_check(sk, ndir, skb, family);
|
2006-08-24 05:43:30 +00:00
|
|
|
|
2008-11-26 01:35:44 +00:00
|
|
|
return (!net->xfrm.policy_count[dir] && !skb->sp) ||
|
2009-06-02 05:19:30 +00:00
|
|
|
(skb_dst(skb)->flags & DST_NOPOLICY) ||
|
2007-12-12 18:44:16 +00:00
|
|
|
__xfrm_policy_check(sk, ndir, skb, family);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family)
|
|
|
|
{
|
|
|
|
return __xfrm_policy_check2(sk, dir, skb, family, 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return xfrm_policy_check(sk, dir, skb, AF_INET);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return xfrm_policy_check(sk, dir, skb, AF_INET6);
|
|
|
|
}
|
|
|
|
|
2007-12-12 18:44:16 +00:00
|
|
|
static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return __xfrm_policy_check2(sk, dir, skb, AF_INET, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return __xfrm_policy_check2(sk, dir, skb, AF_INET6, 1);
|
|
|
|
}
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
int __xfrm_decode_session(struct sk_buff *skb, struct flowi *fl,
|
|
|
|
unsigned int family, int reverse);
|
2007-12-12 18:44:16 +00:00
|
|
|
|
|
|
|
static inline int xfrm_decode_session(struct sk_buff *skb, struct flowi *fl,
|
|
|
|
unsigned int family)
|
|
|
|
{
|
|
|
|
return __xfrm_decode_session(skb, fl, family, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int xfrm_decode_session_reverse(struct sk_buff *skb,
|
|
|
|
struct flowi *fl,
|
|
|
|
unsigned int family)
|
|
|
|
{
|
|
|
|
return __xfrm_decode_session(skb, fl, family, 1);
|
|
|
|
}
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
int __xfrm_route_forward(struct sk_buff *skb, unsigned short family);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
static inline int xfrm_route_forward(struct sk_buff *skb, unsigned short family)
|
|
|
|
{
|
2008-11-26 01:36:13 +00:00
|
|
|
struct net *net = dev_net(skb->dev);
|
|
|
|
|
|
|
|
return !net->xfrm.policy_count[XFRM_POLICY_OUT] ||
|
2009-06-02 05:19:30 +00:00
|
|
|
(skb_dst(skb)->flags & DST_NOXFRM) ||
|
2005-04-16 22:20:36 +00:00
|
|
|
__xfrm_route_forward(skb, family);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int xfrm4_route_forward(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return xfrm_route_forward(skb, AF_INET);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int xfrm6_route_forward(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return xfrm_route_forward(skb, AF_INET6);
|
|
|
|
}
|
|
|
|
|
2015-12-08 15:22:02 +00:00
|
|
|
int __xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2015-12-08 15:22:02 +00:00
|
|
|
static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2015-12-08 15:22:02 +00:00
|
|
|
sk->sk_policy[0] = NULL;
|
|
|
|
sk->sk_policy[1] = NULL;
|
|
|
|
if (unlikely(osk->sk_policy[0] || osk->sk_policy[1]))
|
|
|
|
return __xfrm_sk_clone_policy(sk, osk);
|
2005-04-16 22:20:36 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_policy_delete(struct xfrm_policy *pol, int dir);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
static inline void xfrm_sk_free_policy(struct sock *sk)
|
|
|
|
{
|
2015-12-08 15:22:02 +00:00
|
|
|
struct xfrm_policy *pol;
|
|
|
|
|
|
|
|
pol = rcu_dereference_protected(sk->sk_policy[0], 1);
|
|
|
|
if (unlikely(pol != NULL)) {
|
|
|
|
xfrm_policy_delete(pol, XFRM_POLICY_MAX);
|
2005-04-16 22:20:36 +00:00
|
|
|
sk->sk_policy[0] = NULL;
|
|
|
|
}
|
2015-12-08 15:22:02 +00:00
|
|
|
pol = rcu_dereference_protected(sk->sk_policy[1], 1);
|
|
|
|
if (unlikely(pol != NULL)) {
|
|
|
|
xfrm_policy_delete(pol, XFRM_POLICY_MAX+1);
|
2005-04-16 22:20:36 +00:00
|
|
|
sk->sk_policy[1] = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
static inline void xfrm_sk_free_policy(struct sock *sk) {}
|
2015-12-08 15:22:02 +00:00
|
|
|
static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) { return 0; }
|
2018-02-27 23:48:21 +00:00
|
|
|
static inline int xfrm6_route_forward(struct sk_buff *skb) { return 1; }
|
|
|
|
static inline int xfrm4_route_forward(struct sk_buff *skb) { return 1; }
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb)
|
2018-02-27 23:48:21 +00:00
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
2007-12-12 18:44:16 +00:00
|
|
|
static inline int xfrm_decode_session_reverse(struct sk_buff *skb,
|
|
|
|
struct flowi *fl,
|
|
|
|
unsigned int family)
|
|
|
|
{
|
|
|
|
return -ENOSYS;
|
|
|
|
}
|
|
|
|
static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
static __inline__
|
2011-02-23 01:42:56 +00:00
|
|
|
xfrm_address_t *xfrm_flowi_daddr(const struct flowi *fl, unsigned short family)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
switch (family){
|
|
|
|
case AF_INET:
|
2011-03-12 07:42:11 +00:00
|
|
|
return (xfrm_address_t *)&fl->u.ip4.daddr;
|
2005-04-16 22:20:36 +00:00
|
|
|
case AF_INET6:
|
2011-03-12 07:42:11 +00:00
|
|
|
return (xfrm_address_t *)&fl->u.ip6.daddr;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline__
|
2011-02-23 01:42:56 +00:00
|
|
|
xfrm_address_t *xfrm_flowi_saddr(const struct flowi *fl, unsigned short family)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
switch (family){
|
|
|
|
case AF_INET:
|
2011-03-12 07:42:11 +00:00
|
|
|
return (xfrm_address_t *)&fl->u.ip4.saddr;
|
2005-04-16 22:20:36 +00:00
|
|
|
case AF_INET6:
|
2011-03-12 07:42:11 +00:00
|
|
|
return (xfrm_address_t *)&fl->u.ip6.saddr;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2008-02-22 05:48:22 +00:00
|
|
|
static __inline__
|
2011-02-23 01:42:56 +00:00
|
|
|
void xfrm_flowi_addr_get(const struct flowi *fl,
|
2008-02-22 05:48:22 +00:00
|
|
|
xfrm_address_t *saddr, xfrm_address_t *daddr,
|
|
|
|
unsigned short family)
|
|
|
|
{
|
|
|
|
switch(family) {
|
|
|
|
case AF_INET:
|
2011-03-12 07:42:11 +00:00
|
|
|
memcpy(&saddr->a4, &fl->u.ip4.saddr, sizeof(saddr->a4));
|
|
|
|
memcpy(&daddr->a4, &fl->u.ip4.daddr, sizeof(daddr->a4));
|
2008-02-22 05:48:22 +00:00
|
|
|
break;
|
|
|
|
case AF_INET6:
|
2015-03-29 14:59:24 +00:00
|
|
|
saddr->in6 = fl->u.ip6.saddr;
|
|
|
|
daddr->in6 = fl->u.ip6.daddr;
|
2008-02-22 05:48:22 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
static __inline__ int
|
2011-02-24 06:42:28 +00:00
|
|
|
__xfrm4_state_addr_check(const struct xfrm_state *x,
|
|
|
|
const xfrm_address_t *daddr, const xfrm_address_t *saddr)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
if (daddr->a4 == x->id.daddr.a4 &&
|
|
|
|
(saddr->a4 == x->props.saddr.a4 || !saddr->a4 || !x->props.saddr.a4))
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline__ int
|
2011-02-24 06:42:28 +00:00
|
|
|
__xfrm6_state_addr_check(const struct xfrm_state *x,
|
|
|
|
const xfrm_address_t *daddr, const xfrm_address_t *saddr)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2013-01-29 12:48:31 +00:00
|
|
|
if (ipv6_addr_equal((struct in6_addr *)daddr, (struct in6_addr *)&x->id.daddr) &&
|
|
|
|
(ipv6_addr_equal((struct in6_addr *)saddr, (struct in6_addr *)&x->props.saddr) ||
|
2018-02-27 23:48:21 +00:00
|
|
|
ipv6_addr_any((struct in6_addr *)saddr) ||
|
2005-04-16 22:20:36 +00:00
|
|
|
ipv6_addr_any((struct in6_addr *)&x->props.saddr)))
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline__ int
|
2011-02-24 06:42:28 +00:00
|
|
|
xfrm_state_addr_check(const struct xfrm_state *x,
|
|
|
|
const xfrm_address_t *daddr, const xfrm_address_t *saddr,
|
2005-04-16 22:20:36 +00:00
|
|
|
unsigned short family)
|
|
|
|
{
|
|
|
|
switch (family) {
|
|
|
|
case AF_INET:
|
|
|
|
return __xfrm4_state_addr_check(x, daddr, saddr);
|
|
|
|
case AF_INET6:
|
|
|
|
return __xfrm6_state_addr_check(x, daddr, saddr);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-08-24 02:12:01 +00:00
|
|
|
static __inline__ int
|
2011-02-24 06:42:28 +00:00
|
|
|
xfrm_state_addr_flow_check(const struct xfrm_state *x, const struct flowi *fl,
|
2006-08-24 02:12:01 +00:00
|
|
|
unsigned short family)
|
|
|
|
{
|
|
|
|
switch (family) {
|
|
|
|
case AF_INET:
|
|
|
|
return __xfrm4_state_addr_check(x,
|
2011-03-12 07:42:11 +00:00
|
|
|
(const xfrm_address_t *)&fl->u.ip4.daddr,
|
|
|
|
(const xfrm_address_t *)&fl->u.ip4.saddr);
|
2006-08-24 02:12:01 +00:00
|
|
|
case AF_INET6:
|
|
|
|
return __xfrm6_state_addr_check(x,
|
2011-03-12 07:42:11 +00:00
|
|
|
(const xfrm_address_t *)&fl->u.ip6.daddr,
|
|
|
|
(const xfrm_address_t *)&fl->u.ip6.saddr);
|
2006-08-24 02:12:01 +00:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-02-24 06:42:28 +00:00
|
|
|
static inline int xfrm_state_kern(const struct xfrm_state *x)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
return atomic_read(&x->tunnel_users);
|
|
|
|
}
|
|
|
|
|
2006-09-22 22:06:24 +00:00
|
|
|
static inline int xfrm_id_proto_match(u8 proto, u8 userproto)
|
|
|
|
{
|
2006-08-24 00:49:52 +00:00
|
|
|
return (!userproto || proto == userproto ||
|
|
|
|
(userproto == IPSEC_PROTO_ANY && (proto == IPPROTO_AH ||
|
|
|
|
proto == IPPROTO_ESP ||
|
|
|
|
proto == IPPROTO_COMP)));
|
2006-09-22 22:06:24 +00:00
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* xfrm algorithm information
|
|
|
|
*/
|
2008-01-29 03:37:29 +00:00
|
|
|
struct xfrm_algo_aead_info {
|
2015-05-27 08:03:44 +00:00
|
|
|
char *geniv;
|
2008-01-29 03:37:29 +00:00
|
|
|
u16 icv_truncbits;
|
|
|
|
};
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
struct xfrm_algo_auth_info {
|
|
|
|
u16 icv_truncbits;
|
|
|
|
u16 icv_fullbits;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct xfrm_algo_encr_info {
|
2015-05-27 08:03:44 +00:00
|
|
|
char *geniv;
|
2005-04-16 22:20:36 +00:00
|
|
|
u16 blockbits;
|
|
|
|
u16 defkeybits;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct xfrm_algo_comp_info {
|
|
|
|
u16 threshold;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct xfrm_algo_desc {
|
|
|
|
char *name;
|
2006-08-12 22:50:00 +00:00
|
|
|
char *compat;
|
2005-04-16 22:20:36 +00:00
|
|
|
u8 available:1;
|
2013-01-31 10:40:38 +00:00
|
|
|
u8 pfkey_supported:1;
|
2005-04-16 22:20:36 +00:00
|
|
|
union {
|
2008-01-29 03:37:29 +00:00
|
|
|
struct xfrm_algo_aead_info aead;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct xfrm_algo_auth_info auth;
|
|
|
|
struct xfrm_algo_encr_info encr;
|
|
|
|
struct xfrm_algo_comp_info comp;
|
|
|
|
} uinfo;
|
|
|
|
struct sadb_alg desc;
|
|
|
|
};
|
|
|
|
|
2014-02-21 07:41:08 +00:00
|
|
|
/* XFRM protocol handlers. */
|
|
|
|
struct xfrm4_protocol {
|
|
|
|
int (*handler)(struct sk_buff *skb);
|
|
|
|
int (*input_handler)(struct sk_buff *skb, int nexthdr, __be32 spi,
|
|
|
|
int encap_type);
|
|
|
|
int (*cb_handler)(struct sk_buff *skb, int err);
|
|
|
|
int (*err_handler)(struct sk_buff *skb, u32 info);
|
|
|
|
|
|
|
|
struct xfrm4_protocol __rcu *next;
|
|
|
|
int priority;
|
|
|
|
};
|
|
|
|
|
2014-03-14 06:28:07 +00:00
|
|
|
struct xfrm6_protocol {
|
2005-04-16 22:20:36 +00:00
|
|
|
int (*handler)(struct sk_buff *skb);
|
2014-03-14 06:28:07 +00:00
|
|
|
int (*cb_handler)(struct sk_buff *skb, int err);
|
|
|
|
int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt,
|
|
|
|
u8 type, u8 code, int offset, __be32 info);
|
2006-03-28 09:12:13 +00:00
|
|
|
|
2014-03-14 06:28:07 +00:00
|
|
|
struct xfrm6_protocol __rcu *next;
|
2006-03-28 09:12:13 +00:00
|
|
|
int priority;
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/* XFRM tunnel handlers. */
|
|
|
|
struct xfrm_tunnel {
|
{ipv4,xfrm}: Introduce xfrm_tunnel_notifier for xfrm tunnel mode callback
Some thoughts on IPv4 VTI implementation:
The connection between VTI receiving part and xfrm tunnel mode input process
is hardly a "xfrm_tunnel", xfrm_tunnel is used in places where, e.g ipip/sit
and xfrm4_tunnel, acts like a true "tunnel" device.
In addition, IMHO, VTI doesn't need vti_err to do something meaningful, as all
VTI needs is just a notifier to be called whenever xfrm_input ingress a packet
to update statistics.
A IPsec protected packet is first handled by protocol handlers, e.g AH/ESP,
to check packet authentication or encryption rightness. PMTU update is taken
care of in this stage by protocol error handler.
Then the packet is rearranged properly depending on whether it's transport
mode or tunnel mode packed by mode "input" handler. The VTI handler code
takes effects in this stage in tunnel mode only. So it neither need propagate
PMTU, as it has already been done if necessary, nor the VTI handler is
qualified as a xfrm_tunnel.
So this patch introduces xfrm_tunnel_notifier and meanwhile wipe out vti_err
code.
Signed-off-by: Fan Du <fan.du@windriver.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: David S. Miller <davem@davemloft.net>
Reviewed-by: Saurabh Mohan <saurabh.mohan@vyatta.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2013-08-28 07:09:40 +00:00
|
|
|
int (*handler)(struct sk_buff *skb);
|
2010-02-09 13:21:17 +00:00
|
|
|
int (*err_handler)(struct sk_buff *skb, u32 info);
|
2006-03-28 09:12:13 +00:00
|
|
|
|
2010-10-25 21:01:26 +00:00
|
|
|
struct xfrm_tunnel __rcu *next;
|
{ipv4,xfrm}: Introduce xfrm_tunnel_notifier for xfrm tunnel mode callback
Some thoughts on IPv4 VTI implementation:
The connection between VTI receiving part and xfrm tunnel mode input process
is hardly a "xfrm_tunnel", xfrm_tunnel is used in places where, e.g ipip/sit
and xfrm4_tunnel, acts like a true "tunnel" device.
In addition, IMHO, VTI doesn't need vti_err to do something meaningful, as all
VTI needs is just a notifier to be called whenever xfrm_input ingress a packet
to update statistics.
A IPsec protected packet is first handled by protocol handlers, e.g AH/ESP,
to check packet authentication or encryption rightness. PMTU update is taken
care of in this stage by protocol error handler.
Then the packet is rearranged properly depending on whether it's transport
mode or tunnel mode packed by mode "input" handler. The VTI handler code
takes effects in this stage in tunnel mode only. So it neither need propagate
PMTU, as it has already been done if necessary, nor the VTI handler is
qualified as a xfrm_tunnel.
So this patch introduces xfrm_tunnel_notifier and meanwhile wipe out vti_err
code.
Signed-off-by: Fan Du <fan.du@windriver.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: David S. Miller <davem@davemloft.net>
Reviewed-by: Saurabh Mohan <saurabh.mohan@vyatta.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2013-08-28 07:09:40 +00:00
|
|
|
int priority;
|
|
|
|
};
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
struct xfrm6_tunnel {
|
2006-03-28 09:12:13 +00:00
|
|
|
int (*handler)(struct sk_buff *skb);
|
|
|
|
int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt,
|
2009-06-23 11:31:07 +00:00
|
|
|
u8 type, u8 code, int offset, __be32 info);
|
2010-10-24 21:33:16 +00:00
|
|
|
struct xfrm6_tunnel __rcu *next;
|
2006-03-28 09:12:13 +00:00
|
|
|
int priority;
|
2005-04-16 22:20:36 +00:00
|
|
|
};
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
void xfrm_init(void);
|
|
|
|
void xfrm4_init(void);
|
|
|
|
int xfrm_state_init(struct net *net);
|
|
|
|
void xfrm_state_fini(struct net *net);
|
|
|
|
void xfrm4_state_init(void);
|
2014-03-14 06:28:07 +00:00
|
|
|
void xfrm4_protocol_init(void);
|
2007-12-08 08:14:11 +00:00
|
|
|
#ifdef CONFIG_XFRM
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm6_init(void);
|
|
|
|
void xfrm6_fini(void);
|
|
|
|
int xfrm6_state_init(void);
|
|
|
|
void xfrm6_state_fini(void);
|
2014-03-14 06:28:07 +00:00
|
|
|
int xfrm6_protocol_init(void);
|
|
|
|
void xfrm6_protocol_fini(void);
|
2007-12-08 08:14:11 +00:00
|
|
|
#else
|
|
|
|
static inline int xfrm6_init(void)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static inline void xfrm6_fini(void)
|
|
|
|
{
|
|
|
|
;
|
|
|
|
}
|
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-12-21 04:42:57 +00:00
|
|
|
#ifdef CONFIG_XFRM_STATISTICS
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_proc_init(struct net *net);
|
|
|
|
void xfrm_proc_fini(struct net *net);
|
2007-12-21 04:42:57 +00:00
|
|
|
#endif
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_sysctl_init(struct net *net);
|
2008-11-26 02:00:48 +00:00
|
|
|
#ifdef CONFIG_SYSCTL
|
2013-09-23 18:33:53 +00:00
|
|
|
void xfrm_sysctl_fini(struct net *net);
|
2008-11-26 02:00:48 +00:00
|
|
|
#else
|
|
|
|
static inline void xfrm_sysctl_fini(struct net *net)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2014-02-14 14:30:36 +00:00
|
|
|
void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto,
|
2014-03-06 17:24:29 +00:00
|
|
|
struct xfrm_address_filter *filter);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
|
|
|
|
int (*func)(struct xfrm_state *, int, void*), void *);
|
2013-11-07 09:47:50 +00:00
|
|
|
void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net);
|
2013-09-23 18:33:53 +00:00
|
|
|
struct xfrm_state *xfrm_state_alloc(struct net *net);
|
|
|
|
struct xfrm_state *xfrm_state_find(const xfrm_address_t *daddr,
|
|
|
|
const xfrm_address_t *saddr,
|
|
|
|
const struct flowi *fl,
|
|
|
|
struct xfrm_tmpl *tmpl,
|
|
|
|
struct xfrm_policy *pol, int *err,
|
|
|
|
unsigned short family);
|
|
|
|
struct xfrm_state *xfrm_stateonly_find(struct net *net, u32 mark,
|
|
|
|
xfrm_address_t *daddr,
|
|
|
|
xfrm_address_t *saddr,
|
|
|
|
unsigned short family,
|
|
|
|
u8 mode, u8 proto, u32 reqid);
|
2014-01-03 03:18:32 +00:00
|
|
|
struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi,
|
|
|
|
unsigned short family);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_state_check_expire(struct xfrm_state *x);
|
|
|
|
void xfrm_state_insert(struct xfrm_state *x);
|
|
|
|
int xfrm_state_add(struct xfrm_state *x);
|
|
|
|
int xfrm_state_update(struct xfrm_state *x);
|
|
|
|
struct xfrm_state *xfrm_state_lookup(struct net *net, u32 mark,
|
|
|
|
const xfrm_address_t *daddr, __be32 spi,
|
|
|
|
u8 proto, unsigned short family);
|
|
|
|
struct xfrm_state *xfrm_state_lookup_byaddr(struct net *net, u32 mark,
|
|
|
|
const xfrm_address_t *daddr,
|
|
|
|
const xfrm_address_t *saddr,
|
|
|
|
u8 proto,
|
|
|
|
unsigned short family);
|
2006-08-24 05:48:31 +00:00
|
|
|
#ifdef CONFIG_XFRM_SUB_POLICY
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
|
2013-11-07 09:47:50 +00:00
|
|
|
unsigned short family, struct net *net);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
|
|
|
|
unsigned short family);
|
2006-08-24 05:48:31 +00:00
|
|
|
#else
|
|
|
|
static inline int xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src,
|
2013-11-07 09:47:50 +00:00
|
|
|
int n, unsigned short family, struct net *net)
|
2006-08-24 05:48:31 +00:00
|
|
|
{
|
|
|
|
return -ENOSYS;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src,
|
|
|
|
int n, unsigned short family)
|
|
|
|
{
|
|
|
|
return -ENOSYS;
|
|
|
|
}
|
|
|
|
#endif
|
2007-05-04 19:55:13 +00:00
|
|
|
|
|
|
|
struct xfrmk_sadinfo {
|
|
|
|
u32 sadhcnt; /* current hash bkts */
|
|
|
|
u32 sadhmcnt; /* max allowed hash bkts */
|
|
|
|
u32 sadcnt; /* current running count */
|
|
|
|
};
|
|
|
|
|
2007-05-04 19:55:39 +00:00
|
|
|
struct xfrmk_spdinfo {
|
|
|
|
u32 incnt;
|
|
|
|
u32 outcnt;
|
|
|
|
u32 fwdcnt;
|
|
|
|
u32 inscnt;
|
|
|
|
u32 outscnt;
|
|
|
|
u32 fwdscnt;
|
|
|
|
u32 spdhcnt;
|
|
|
|
u32 spdhmcnt;
|
|
|
|
};
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq);
|
|
|
|
int xfrm_state_delete(struct xfrm_state *x);
|
2014-04-22 12:48:30 +00:00
|
|
|
int xfrm_state_flush(struct net *net, u8 proto, bool task_valid);
|
2017-04-14 08:06:10 +00:00
|
|
|
int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid);
|
2013-09-23 18:33:53 +00:00
|
|
|
void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si);
|
|
|
|
void xfrm_spd_getinfo(struct net *net, struct xfrmk_spdinfo *si);
|
|
|
|
u32 xfrm_replay_seqhi(struct xfrm_state *x, __be32 net_seq);
|
|
|
|
int xfrm_init_replay(struct xfrm_state *x);
|
|
|
|
int xfrm_state_mtu(struct xfrm_state *x, int mtu);
|
2017-08-01 09:49:08 +00:00
|
|
|
int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_init_state(struct xfrm_state *x);
|
|
|
|
int xfrm_prepare_input(struct xfrm_state *x, struct sk_buff *skb);
|
|
|
|
int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type);
|
|
|
|
int xfrm_input_resume(struct sk_buff *skb, int nexthdr);
|
2017-12-15 05:40:44 +00:00
|
|
|
int xfrm_trans_queue(struct sk_buff *skb,
|
|
|
|
int (*finish)(struct net *, struct sock *,
|
|
|
|
struct sk_buff *));
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_output_resume(struct sk_buff *skb, int err);
|
2015-04-06 02:19:04 +00:00
|
|
|
int xfrm_output(struct sock *sk, struct sk_buff *skb);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_inner_extract_output(struct xfrm_state *x, struct sk_buff *skb);
|
|
|
|
void xfrm_local_error(struct sk_buff *skb, int mtu);
|
|
|
|
int xfrm4_extract_header(struct sk_buff *skb);
|
|
|
|
int xfrm4_extract_input(struct xfrm_state *x, struct sk_buff *skb);
|
|
|
|
int xfrm4_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi,
|
|
|
|
int encap_type);
|
|
|
|
int xfrm4_transport_finish(struct sk_buff *skb, int async);
|
|
|
|
int xfrm4_rcv(struct sk_buff *skb);
|
2017-02-15 08:39:49 +00:00
|
|
|
int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq);
|
2007-10-18 04:28:53 +00:00
|
|
|
|
|
|
|
static inline int xfrm4_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi)
|
|
|
|
{
|
2014-02-21 07:41:09 +00:00
|
|
|
XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4 = NULL;
|
2014-02-21 07:41:08 +00:00
|
|
|
XFRM_SPI_SKB_CB(skb)->family = AF_INET;
|
|
|
|
XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct iphdr, daddr);
|
|
|
|
return xfrm_input(skb, nexthdr, spi, 0);
|
2007-10-18 04:28:53 +00:00
|
|
|
}
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm4_extract_output(struct xfrm_state *x, struct sk_buff *skb);
|
|
|
|
int xfrm4_prepare_output(struct xfrm_state *x, struct sk_buff *skb);
|
2015-10-07 21:48:47 +00:00
|
|
|
int xfrm4_output(struct net *net, struct sock *sk, struct sk_buff *skb);
|
2015-04-06 02:19:04 +00:00
|
|
|
int xfrm4_output_finish(struct sock *sk, struct sk_buff *skb);
|
2014-02-21 07:41:08 +00:00
|
|
|
int xfrm4_rcv_cb(struct sk_buff *skb, u8 protocol, int err);
|
|
|
|
int xfrm4_protocol_register(struct xfrm4_protocol *handler, unsigned char protocol);
|
|
|
|
int xfrm4_protocol_deregister(struct xfrm4_protocol *handler, unsigned char protocol);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm4_tunnel_register(struct xfrm_tunnel *handler, unsigned short family);
|
|
|
|
int xfrm4_tunnel_deregister(struct xfrm_tunnel *handler, unsigned short family);
|
|
|
|
void xfrm4_local_error(struct sk_buff *skb, u32 mtu);
|
|
|
|
int xfrm6_extract_header(struct sk_buff *skb);
|
|
|
|
int xfrm6_extract_input(struct xfrm_state *x, struct sk_buff *skb);
|
2016-09-19 14:17:57 +00:00
|
|
|
int xfrm6_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi,
|
|
|
|
struct ip6_tnl *t);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm6_transport_finish(struct sk_buff *skb, int async);
|
2016-09-19 14:17:57 +00:00
|
|
|
int xfrm6_rcv_tnl(struct sk_buff *skb, struct ip6_tnl *t);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm6_rcv(struct sk_buff *skb);
|
|
|
|
int xfrm6_input_addr(struct sk_buff *skb, xfrm_address_t *daddr,
|
|
|
|
xfrm_address_t *saddr, u8 proto);
|
2013-09-30 19:11:00 +00:00
|
|
|
void xfrm6_local_error(struct sk_buff *skb, u32 mtu);
|
2014-03-14 06:28:07 +00:00
|
|
|
int xfrm6_rcv_cb(struct sk_buff *skb, u8 protocol, int err);
|
|
|
|
int xfrm6_protocol_register(struct xfrm6_protocol *handler, unsigned char protocol);
|
|
|
|
int xfrm6_protocol_deregister(struct xfrm6_protocol *handler, unsigned char protocol);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm6_tunnel_register(struct xfrm6_tunnel *handler, unsigned short family);
|
2013-09-30 19:11:00 +00:00
|
|
|
int xfrm6_tunnel_deregister(struct xfrm6_tunnel *handler, unsigned short family);
|
2013-09-23 18:33:53 +00:00
|
|
|
__be32 xfrm6_tunnel_alloc_spi(struct net *net, xfrm_address_t *saddr);
|
|
|
|
__be32 xfrm6_tunnel_spi_lookup(struct net *net, const xfrm_address_t *saddr);
|
|
|
|
int xfrm6_extract_output(struct xfrm_state *x, struct sk_buff *skb);
|
|
|
|
int xfrm6_prepare_output(struct xfrm_state *x, struct sk_buff *skb);
|
2015-10-07 21:48:47 +00:00
|
|
|
int xfrm6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
|
2015-04-06 02:19:04 +00:00
|
|
|
int xfrm6_output_finish(struct sock *sk, struct sk_buff *skb);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm6_find_1stfragopt(struct xfrm_state *x, struct sk_buff *skb,
|
|
|
|
u8 **prevhdr);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_XFRM
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb);
|
|
|
|
int xfrm_user_policy(struct sock *sk, int optname,
|
|
|
|
u8 __user *optval, int optlen);
|
2005-04-16 22:20:36 +00:00
|
|
|
#else
|
|
|
|
static inline int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen)
|
|
|
|
{
|
|
|
|
return -ENOPROTOOPT;
|
2018-02-27 23:48:21 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-07-06 00:08:05 +00:00
|
|
|
static inline int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
/* should not happen */
|
|
|
|
kfree_skb(skb);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2017-04-14 08:06:10 +00:00
|
|
|
struct dst_entry *__xfrm_dst_lookup(struct net *net, int tos, int oif,
|
|
|
|
const xfrm_address_t *saddr,
|
|
|
|
const xfrm_address_t *daddr,
|
net: xfrm: support setting an output mark.
On systems that use mark-based routing it may be necessary for
routing lookups to use marks in order for packets to be routed
correctly. An example of such a system is Android, which uses
socket marks to route packets via different networks.
Currently, routing lookups in tunnel mode always use a mark of
zero, making routing incorrect on such systems.
This patch adds a new output_mark element to the xfrm state and
a corresponding XFRMA_OUTPUT_MARK netlink attribute. The output
mark differs from the existing xfrm mark in two ways:
1. The xfrm mark is used to match xfrm policies and states, while
the xfrm output mark is used to set the mark (and influence
the routing) of the packets emitted by those states.
2. The existing mark is constrained to be a subset of the bits of
the originating socket or transformed packet, but the output
mark is arbitrary and depends only on the state.
The use of a separate mark provides additional flexibility. For
example:
- A packet subject to two transforms (e.g., transport mode inside
tunnel mode) can have two different output marks applied to it,
one for the transport mode SA and one for the tunnel mode SA.
- On a system where socket marks determine routing, the packets
emitted by an IPsec tunnel can be routed based on a mark that
is determined by the tunnel, not by the marks of the
unencrypted packets.
- Support for setting the output marks can be introduced without
breaking any existing setups that employ both mark-based
routing and xfrm tunnel mode. Simply changing the code to use
the xfrm mark for routing output packets could xfrm mark could
change behaviour in a way that breaks these setups.
If the output mark is unspecified or set to zero, the mark is not
set or changed.
Tested: make allyesconfig; make -j64
Tested: https://android-review.googlesource.com/452776
Signed-off-by: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2017-08-10 17:11:33 +00:00
|
|
|
int family, u32 mark);
|
2017-04-14 08:06:10 +00:00
|
|
|
|
2008-11-26 01:21:45 +00:00
|
|
|
struct xfrm_policy *xfrm_policy_alloc(struct net *net, gfp_t gfp);
|
2008-02-29 05:31:08 +00:00
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
void xfrm_policy_walk_init(struct xfrm_policy_walk *walk, u8 type);
|
|
|
|
int xfrm_policy_walk(struct net *net, struct xfrm_policy_walk *walk,
|
|
|
|
int (*func)(struct xfrm_policy *, int, int, void*),
|
|
|
|
void *);
|
2013-11-07 09:47:50 +00:00
|
|
|
void xfrm_policy_walk_done(struct xfrm_policy_walk *walk, struct net *net);
|
2005-04-16 22:20:36 +00:00
|
|
|
int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl);
|
2010-02-22 11:32:57 +00:00
|
|
|
struct xfrm_policy *xfrm_policy_bysel_ctx(struct net *net, u32 mark,
|
|
|
|
u8 type, int dir,
|
2006-08-24 05:43:30 +00:00
|
|
|
struct xfrm_selector *sel,
|
2007-03-07 23:37:58 +00:00
|
|
|
struct xfrm_sec_ctx *ctx, int delete,
|
|
|
|
int *err);
|
2013-09-23 18:33:53 +00:00
|
|
|
struct xfrm_policy *xfrm_policy_byid(struct net *net, u32 mark, u8, int dir,
|
|
|
|
u32 id, int delete, int *err);
|
2014-04-22 12:48:30 +00:00
|
|
|
int xfrm_policy_flush(struct net *net, u8 type, bool task_valid);
|
xfrm: configure policy hash table thresholds by netlink
Enable to specify local and remote prefix length thresholds for the
policy hash table via a netlink XFRM_MSG_NEWSPDINFO message.
prefix length thresholds are specified by XFRMA_SPD_IPV4_HTHRESH and
XFRMA_SPD_IPV6_HTHRESH optional attributes (struct xfrmu_spdhthresh).
example:
struct xfrmu_spdhthresh thresh4 = {
.lbits = 0;
.rbits = 24;
};
struct xfrmu_spdhthresh thresh6 = {
.lbits = 0;
.rbits = 56;
};
struct nlmsghdr *hdr;
struct nl_msg *msg;
msg = nlmsg_alloc();
hdr = nlmsg_put(msg, NL_AUTO_PORT, NL_AUTO_SEQ, XFRMA_SPD_IPV4_HTHRESH, sizeof(__u32), NLM_F_REQUEST);
nla_put(msg, XFRMA_SPD_IPV4_HTHRESH, sizeof(thresh4), &thresh4);
nla_put(msg, XFRMA_SPD_IPV6_HTHRESH, sizeof(thresh6), &thresh6);
nla_send_auto(sk, msg);
The numbers are the policy selector minimum prefix lengths to put a
policy in the hash table.
- lbits is the local threshold (source address for out policies,
destination address for in and fwd policies).
- rbits is the remote threshold (destination address for out
policies, source address for in and fwd policies).
The default values are:
XFRMA_SPD_IPV4_HTHRESH: 32 32
XFRMA_SPD_IPV6_HTHRESH: 128 128
Dynamic re-building of the SPD is performed when the thresholds values
are changed.
The current thresholds can be read via a XFRM_MSG_GETSPDINFO request:
the kernel replies to XFRM_MSG_GETSPDINFO requests by an
XFRM_MSG_NEWSPDINFO message, with both attributes
XFRMA_SPD_IPV4_HTHRESH and XFRMA_SPD_IPV6_HTHRESH.
Signed-off-by: Christophe Gouault <christophe.gouault@6wind.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2014-08-29 14:16:05 +00:00
|
|
|
void xfrm_policy_hash_rebuild(struct net *net);
|
2005-04-16 22:20:36 +00:00
|
|
|
u32 xfrm_get_acqseq(void);
|
2013-12-16 10:47:49 +00:00
|
|
|
int verify_spi_info(u8 proto, u32 min, u32 max);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_alloc_spi(struct xfrm_state *x, u32 minspi, u32 maxspi);
|
2013-06-26 21:56:58 +00:00
|
|
|
struct xfrm_state *xfrm_find_acq(struct net *net, const struct xfrm_mark *mark,
|
2010-02-23 00:20:22 +00:00
|
|
|
u8 mode, u32 reqid, u8 proto,
|
2011-02-28 07:17:24 +00:00
|
|
|
const xfrm_address_t *daddr,
|
|
|
|
const xfrm_address_t *saddr, int create,
|
2010-02-23 00:20:22 +00:00
|
|
|
unsigned short family);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-02-08 21:11:42 +00:00
|
|
|
#ifdef CONFIG_XFRM_MIGRATE
|
2013-09-23 18:33:53 +00:00
|
|
|
int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
|
|
|
|
const struct xfrm_migrate *m, int num_bundles,
|
2017-06-06 10:12:14 +00:00
|
|
|
const struct xfrm_kmaddress *k,
|
|
|
|
const struct xfrm_encap_tmpl *encap);
|
2013-11-07 09:47:50 +00:00
|
|
|
struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net);
|
2013-09-23 18:33:53 +00:00
|
|
|
struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x,
|
2017-06-06 10:12:13 +00:00
|
|
|
struct xfrm_migrate *m,
|
|
|
|
struct xfrm_encap_tmpl *encap);
|
2013-09-23 18:33:53 +00:00
|
|
|
int xfrm_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
|
|
|
|
struct xfrm_migrate *m, int num_bundles,
|
2017-06-06 10:12:13 +00:00
|
|
|
struct xfrm_kmaddress *k, struct net *net,
|
|
|
|
struct xfrm_encap_tmpl *encap);
|
2007-02-08 21:11:42 +00:00
|
|
|
#endif
|
|
|
|
|
2013-09-23 18:33:53 +00:00
|
|
|
int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport);
|
|
|
|
void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid);
|
|
|
|
int km_report(struct net *net, u8 proto, struct xfrm_selector *sel,
|
|
|
|
xfrm_address_t *addr);
|
|
|
|
|
|
|
|
void xfrm_input_init(void);
|
|
|
|
int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq);
|
|
|
|
|
|
|
|
void xfrm_probe_algs(void);
|
|
|
|
int xfrm_count_pfkey_auth_supported(void);
|
|
|
|
int xfrm_count_pfkey_enc_supported(void);
|
|
|
|
struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx);
|
|
|
|
struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx);
|
|
|
|
struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id);
|
|
|
|
struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id);
|
|
|
|
struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id);
|
|
|
|
struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe);
|
|
|
|
struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe);
|
|
|
|
struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe);
|
|
|
|
struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len,
|
|
|
|
int probe);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2013-01-29 12:48:50 +00:00
|
|
|
static inline bool xfrm6_addr_equal(const xfrm_address_t *a,
|
|
|
|
const xfrm_address_t *b)
|
|
|
|
{
|
|
|
|
return ipv6_addr_equal((const struct in6_addr *)a,
|
|
|
|
(const struct in6_addr *)b);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool xfrm_addr_equal(const xfrm_address_t *a,
|
|
|
|
const xfrm_address_t *b,
|
|
|
|
sa_family_t family)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
switch (family) {
|
|
|
|
default:
|
|
|
|
case AF_INET:
|
2013-01-29 12:48:50 +00:00
|
|
|
return ((__force u32)a->a4 ^ (__force u32)b->a4) == 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
case AF_INET6:
|
2013-01-29 12:48:50 +00:00
|
|
|
return xfrm6_addr_equal(a, b);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-10-05 19:15:12 +00:00
|
|
|
static inline int xfrm_policy_id2dir(u32 index)
|
|
|
|
{
|
|
|
|
return index & 7;
|
|
|
|
}
|
|
|
|
|
2008-11-26 01:38:20 +00:00
|
|
|
#ifdef CONFIG_XFRM
|
|
|
|
static inline int xfrm_aevent_is_on(struct net *net)
|
2006-03-21 03:15:11 +00:00
|
|
|
{
|
2006-03-21 06:40:54 +00:00
|
|
|
struct sock *nlsk;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
rcu_read_lock();
|
2008-11-26 01:38:20 +00:00
|
|
|
nlsk = rcu_dereference(net->xfrm.nlsk);
|
2006-03-21 06:40:54 +00:00
|
|
|
if (nlsk)
|
|
|
|
ret = netlink_has_listeners(nlsk, XFRMNLGRP_AEVENTS);
|
|
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
2006-03-21 03:15:11 +00:00
|
|
|
}
|
2014-02-12 14:20:06 +00:00
|
|
|
|
|
|
|
static inline int xfrm_acquire_is_on(struct net *net)
|
|
|
|
{
|
|
|
|
struct sock *nlsk;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
nlsk = rcu_dereference(net->xfrm.nlsk);
|
|
|
|
if (nlsk)
|
|
|
|
ret = netlink_has_listeners(nlsk, XFRMNLGRP_ACQUIRE);
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
2008-11-26 01:38:20 +00:00
|
|
|
#endif
|
2006-03-21 03:15:11 +00:00
|
|
|
|
2017-09-21 20:45:43 +00:00
|
|
|
static inline unsigned int aead_len(struct xfrm_algo_aead *alg)
|
2014-02-19 12:33:24 +00:00
|
|
|
{
|
|
|
|
return sizeof(*alg) + ((alg->alg_key_len + 7) / 8);
|
|
|
|
}
|
|
|
|
|
2017-09-21 20:46:30 +00:00
|
|
|
static inline unsigned int xfrm_alg_len(const struct xfrm_algo *alg)
|
2008-01-09 07:39:06 +00:00
|
|
|
{
|
|
|
|
return sizeof(*alg) + ((alg->alg_key_len + 7) / 8);
|
|
|
|
}
|
|
|
|
|
2017-09-21 20:47:09 +00:00
|
|
|
static inline unsigned int xfrm_alg_auth_len(const struct xfrm_algo_auth *alg)
|
2009-11-25 00:29:52 +00:00
|
|
|
{
|
|
|
|
return sizeof(*alg) + ((alg->alg_key_len + 7) / 8);
|
|
|
|
}
|
|
|
|
|
2017-09-21 20:47:50 +00:00
|
|
|
static inline unsigned int xfrm_replay_state_esn_len(struct xfrm_replay_state_esn *replay_esn)
|
2011-03-08 00:05:43 +00:00
|
|
|
{
|
|
|
|
return sizeof(*replay_esn) + replay_esn->bmp_len * sizeof(__u32);
|
|
|
|
}
|
|
|
|
|
2007-02-08 21:11:42 +00:00
|
|
|
#ifdef CONFIG_XFRM_MIGRATE
|
2011-03-28 19:46:39 +00:00
|
|
|
static inline int xfrm_replay_clone(struct xfrm_state *x,
|
|
|
|
struct xfrm_state *orig)
|
|
|
|
{
|
|
|
|
x->replay_esn = kzalloc(xfrm_replay_state_esn_len(orig->replay_esn),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!x->replay_esn)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
x->replay_esn->bmp_len = orig->replay_esn->bmp_len;
|
|
|
|
x->replay_esn->replay_window = orig->replay_esn->replay_window;
|
|
|
|
|
|
|
|
x->preplay_esn = kmemdup(x->replay_esn,
|
|
|
|
xfrm_replay_state_esn_len(x->replay_esn),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!x->preplay_esn) {
|
|
|
|
kfree(x->replay_esn);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-02-19 12:33:24 +00:00
|
|
|
static inline struct xfrm_algo_aead *xfrm_algo_aead_clone(struct xfrm_algo_aead *orig)
|
|
|
|
{
|
|
|
|
return kmemdup(orig, aead_len(orig), GFP_KERNEL);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-02-08 21:11:42 +00:00
|
|
|
static inline struct xfrm_algo *xfrm_algo_clone(struct xfrm_algo *orig)
|
|
|
|
{
|
2008-01-09 07:39:06 +00:00
|
|
|
return kmemdup(orig, xfrm_alg_len(orig), GFP_KERNEL);
|
2007-02-08 21:11:42 +00:00
|
|
|
}
|
|
|
|
|
2009-11-25 00:29:52 +00:00
|
|
|
static inline struct xfrm_algo_auth *xfrm_algo_auth_clone(struct xfrm_algo_auth *orig)
|
|
|
|
{
|
|
|
|
return kmemdup(orig, xfrm_alg_auth_len(orig), GFP_KERNEL);
|
|
|
|
}
|
|
|
|
|
2007-02-08 21:11:42 +00:00
|
|
|
static inline void xfrm_states_put(struct xfrm_state **states, int n)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
xfrm_state_put(*(states + i));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_states_delete(struct xfrm_state **states, int n)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
xfrm_state_delete(*(states + i));
|
|
|
|
}
|
|
|
|
#endif
|
2006-03-21 03:15:11 +00:00
|
|
|
|
2008-10-28 20:24:06 +00:00
|
|
|
#ifdef CONFIG_XFRM
|
2007-12-11 09:53:43 +00:00
|
|
|
static inline struct xfrm_state *xfrm_input_state(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->sp->xvec[skb->sp->len - 1];
|
|
|
|
}
|
2017-12-20 09:41:36 +00:00
|
|
|
#endif
|
|
|
|
|
2017-02-15 08:39:54 +00:00
|
|
|
static inline struct xfrm_offload *xfrm_offload(struct sk_buff *skb)
|
|
|
|
{
|
2017-12-20 09:41:36 +00:00
|
|
|
#ifdef CONFIG_XFRM
|
2017-02-15 08:39:54 +00:00
|
|
|
struct sec_path *sp = skb->sp;
|
|
|
|
|
|
|
|
if (!sp || !sp->olen || sp->len != sp->olen)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return &sp->ovec[sp->olen - 1];
|
2017-12-20 09:41:36 +00:00
|
|
|
#else
|
|
|
|
return NULL;
|
2008-10-28 20:24:06 +00:00
|
|
|
#endif
|
2017-12-20 09:41:36 +00:00
|
|
|
}
|
2007-12-11 09:53:43 +00:00
|
|
|
|
2018-03-29 14:03:25 +00:00
|
|
|
void __init xfrm_dev_init(void);
|
2017-06-01 06:57:56 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_XFRM_OFFLOAD
|
2017-12-20 09:41:36 +00:00
|
|
|
void xfrm_dev_resume(struct sk_buff *skb);
|
|
|
|
void xfrm_dev_backlog(struct softnet_data *sd);
|
|
|
|
struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again);
|
2017-04-14 08:06:10 +00:00
|
|
|
int xfrm_dev_state_add(struct net *net, struct xfrm_state *x,
|
|
|
|
struct xfrm_user_offload *xuo);
|
|
|
|
bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x);
|
|
|
|
|
2018-01-14 09:39:10 +00:00
|
|
|
static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
struct xfrm_state_offload *xso = &x->xso;
|
|
|
|
|
|
|
|
if (xso->dev && xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn)
|
|
|
|
xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn(x);
|
|
|
|
}
|
|
|
|
|
2017-08-01 09:49:10 +00:00
|
|
|
static inline bool xfrm_dst_offload_ok(struct dst_entry *dst)
|
|
|
|
{
|
|
|
|
struct xfrm_state *x = dst->xfrm;
|
2017-11-28 20:45:44 +00:00
|
|
|
struct xfrm_dst *xdst;
|
2017-08-01 09:49:10 +00:00
|
|
|
|
|
|
|
if (!x || !x->type_offload)
|
|
|
|
return false;
|
|
|
|
|
2017-11-28 20:45:44 +00:00
|
|
|
xdst = (struct xfrm_dst *) dst;
|
2017-12-20 09:41:48 +00:00
|
|
|
if (!x->xso.offload_handle && !xdst->child->xfrm)
|
|
|
|
return true;
|
2017-11-28 20:40:46 +00:00
|
|
|
if (x->xso.offload_handle && (x->xso.dev == xfrm_dst_path(dst)->dev) &&
|
2017-11-28 20:45:44 +00:00
|
|
|
!xdst->child->xfrm)
|
2017-08-01 09:49:10 +00:00
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2017-04-14 08:06:10 +00:00
|
|
|
static inline void xfrm_dev_state_delete(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
struct xfrm_state_offload *xso = &x->xso;
|
|
|
|
|
|
|
|
if (xso->dev)
|
|
|
|
xso->dev->xfrmdev_ops->xdo_dev_state_delete(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_dev_state_free(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
struct xfrm_state_offload *xso = &x->xso;
|
|
|
|
struct net_device *dev = xso->dev;
|
|
|
|
|
|
|
|
if (dev && dev->xfrmdev_ops) {
|
2017-12-19 23:35:47 +00:00
|
|
|
if (dev->xfrmdev_ops->xdo_dev_state_free)
|
|
|
|
dev->xfrmdev_ops->xdo_dev_state_free(x);
|
2017-04-14 08:06:10 +00:00
|
|
|
xso->dev = NULL;
|
|
|
|
dev_put(dev);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
2017-12-20 09:41:36 +00:00
|
|
|
static inline void xfrm_dev_resume(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_dev_backlog(struct softnet_data *sd)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again)
|
2017-04-14 08:07:28 +00:00
|
|
|
{
|
2017-12-20 09:41:31 +00:00
|
|
|
return skb;
|
2017-04-14 08:07:28 +00:00
|
|
|
}
|
|
|
|
|
2017-04-14 08:06:10 +00:00
|
|
|
static inline int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_dev_state_delete(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void xfrm_dev_state_free(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
2017-08-01 09:49:10 +00:00
|
|
|
|
2018-01-14 09:39:10 +00:00
|
|
|
static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2017-08-01 09:49:10 +00:00
|
|
|
static inline bool xfrm_dst_offload_ok(struct dst_entry *dst)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
2017-04-14 08:06:10 +00:00
|
|
|
#endif
|
|
|
|
|
2010-02-22 11:32:54 +00:00
|
|
|
static inline int xfrm_mark_get(struct nlattr **attrs, struct xfrm_mark *m)
|
|
|
|
{
|
|
|
|
if (attrs[XFRMA_MARK])
|
2010-06-30 17:41:15 +00:00
|
|
|
memcpy(m, nla_data(attrs[XFRMA_MARK]), sizeof(struct xfrm_mark));
|
2010-02-22 11:32:54 +00:00
|
|
|
else
|
|
|
|
m->v = m->m = 0;
|
|
|
|
|
|
|
|
return m->v & m->m;
|
|
|
|
}
|
|
|
|
|
2011-02-28 07:20:19 +00:00
|
|
|
static inline int xfrm_mark_put(struct sk_buff *skb, const struct xfrm_mark *m)
|
2010-02-22 11:32:54 +00:00
|
|
|
{
|
2012-06-28 04:57:03 +00:00
|
|
|
int ret = 0;
|
2010-02-22 11:32:54 +00:00
|
|
|
|
2012-06-28 04:57:03 +00:00
|
|
|
if (m->m | m->v)
|
|
|
|
ret = nla_put(skb, XFRMA_MARK, sizeof(struct xfrm_mark), m);
|
|
|
|
return ret;
|
2010-02-22 11:32:54 +00:00
|
|
|
}
|
|
|
|
|
2018-06-12 10:44:26 +00:00
|
|
|
static inline __u32 xfrm_smark_get(__u32 mark, struct xfrm_state *x)
|
|
|
|
{
|
|
|
|
struct xfrm_mark *m = &x->props.smark;
|
|
|
|
|
|
|
|
return (m->v & m->m) | (mark & ~m->m);
|
|
|
|
}
|
|
|
|
|
2014-02-21 07:41:09 +00:00
|
|
|
static inline int xfrm_tunnel_check(struct sk_buff *skb, struct xfrm_state *x,
|
|
|
|
unsigned int family)
|
|
|
|
{
|
|
|
|
bool tunnel = false;
|
|
|
|
|
|
|
|
switch(family) {
|
|
|
|
case AF_INET:
|
|
|
|
if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4)
|
|
|
|
tunnel = true;
|
|
|
|
break;
|
|
|
|
case AF_INET6:
|
|
|
|
if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6)
|
|
|
|
tunnel = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (tunnel && !(x->outer_mode->flags & XFRM_MODE_FLAG_TUNNEL))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif /* _NET_XFRM_H */
|