linux/arch/x86/mm/init.c

727 lines
20 KiB
C
Raw Normal View History

include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/gfp.h>
#include <linux/initrd.h>
#include <linux/ioport.h>
#include <linux/swap.h>
#include <linux/memblock.h>
#include <linux/bootmem.h> /* for max_low_pfn */
#include <asm/cacheflush.h>
#include <asm/e820.h>
#include <asm/init.h>
#include <asm/page.h>
#include <asm/page_types.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/tlb.h>
#include <asm/proto.h>
#include <asm/dma.h> /* for MAX_DMA_PFN */
#include <asm/microcode.h>
/*
* We need to define the tracepoints somewhere, and tlb.c
* is only compied when SMP=y.
*/
#define CREATE_TRACE_POINTS
#include <trace/events/tlb.h>
#include "mm_internal.h"
/*
* Tables translating between page_cache_type_t and pte encoding.
* Minimal supported modes are defined statically, modified if more supported
* cache modes are available.
* Index into __cachemode2pte_tbl is the cachemode.
* Index into __pte2cachemode_tbl are the caching attribute bits of the pte
* (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
*/
uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
[_PAGE_CACHE_MODE_WB] = 0,
[_PAGE_CACHE_MODE_WC] = _PAGE_PWT,
[_PAGE_CACHE_MODE_UC_MINUS] = _PAGE_PCD,
[_PAGE_CACHE_MODE_UC] = _PAGE_PCD | _PAGE_PWT,
[_PAGE_CACHE_MODE_WT] = _PAGE_PCD,
[_PAGE_CACHE_MODE_WP] = _PAGE_PCD,
};
EXPORT_SYMBOL_GPL(__cachemode2pte_tbl);
uint8_t __pte2cachemode_tbl[8] = {
[__pte2cm_idx(0)] = _PAGE_CACHE_MODE_WB,
[__pte2cm_idx(_PAGE_PWT)] = _PAGE_CACHE_MODE_WC,
[__pte2cm_idx(_PAGE_PCD)] = _PAGE_CACHE_MODE_UC_MINUS,
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD)] = _PAGE_CACHE_MODE_UC,
[__pte2cm_idx(_PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
[__pte2cm_idx(_PAGE_PWT | _PAGE_PAT)] = _PAGE_CACHE_MODE_WC,
[__pte2cm_idx(_PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
};
EXPORT_SYMBOL_GPL(__pte2cachemode_tbl);
static unsigned long __initdata pgt_buf_start;
static unsigned long __initdata pgt_buf_end;
static unsigned long __initdata pgt_buf_top;
static unsigned long min_pfn_mapped;
static bool __initdata can_use_brk_pgt = true;
/*
* Pages returned are already directly mapped.
*
* Changing that is likely to break Xen, see commit:
*
* 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
*
* for detailed information.
*/
__ref void *alloc_low_pages(unsigned int num)
{
unsigned long pfn;
int i;
if (after_bootmem) {
unsigned int order;
order = get_order((unsigned long)num << PAGE_SHIFT);
return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
__GFP_ZERO, order);
}
if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
unsigned long ret;
if (min_pfn_mapped >= max_pfn_mapped)
panic("alloc_low_pages: ran out of memory");
ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
max_pfn_mapped << PAGE_SHIFT,
PAGE_SIZE * num , PAGE_SIZE);
if (!ret)
panic("alloc_low_pages: can not alloc memory");
memblock_reserve(ret, PAGE_SIZE * num);
pfn = ret >> PAGE_SHIFT;
} else {
pfn = pgt_buf_end;
pgt_buf_end += num;
printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
}
for (i = 0; i < num; i++) {
void *adr;
adr = __va((pfn + i) << PAGE_SHIFT);
clear_page(adr);
}
return __va(pfn << PAGE_SHIFT);
}
x86/mm: Fix boot crash with DEBUG_PAGE_ALLOC=y and more than 512G RAM Dave Hansen reported that systems between 500G and 600G RAM crash early if DEBUG_PAGEALLOC is selected. > [ 0.000000] init_memory_mapping: [mem 0x00000000-0x000fffff] > [ 0.000000] [mem 0x00000000-0x000fffff] page 4k > [ 0.000000] BRK [0x02086000, 0x02086fff] PGTABLE > [ 0.000000] BRK [0x02087000, 0x02087fff] PGTABLE > [ 0.000000] BRK [0x02088000, 0x02088fff] PGTABLE > [ 0.000000] init_memory_mapping: [mem 0xe80ee00000-0xe80effffff] > [ 0.000000] [mem 0xe80ee00000-0xe80effffff] page 4k > [ 0.000000] BRK [0x02089000, 0x02089fff] PGTABLE > [ 0.000000] BRK [0x0208a000, 0x0208afff] PGTABLE > [ 0.000000] Kernel panic - not syncing: alloc_low_page: ran out of memory It turns out that we missed increasing needed pages in BRK to mapping initial 2M and [0,1M) when we switched to use the #PF handler to set memory mappings: > commit 8170e6bed465b4b0c7687f93e9948aca4358a33b > Author: H. Peter Anvin <hpa@zytor.com> > Date: Thu Jan 24 12:19:52 2013 -0800 > > x86, 64bit: Use a #PF handler to materialize early mappings on demand Before that, we had the maping from [0,512M) in head_64.S, and we can spare two pages [0-1M). After that change, we can not reuse pages anymore. When we have more than 512M ram, we need an extra page for pgd page with [512G, 1024g). Increase pages in BRK for page table to solve the boot crash. Reported-by: Dave Hansen <dave.hansen@intel.com> Bisected-by: Dave Hansen <dave.hansen@intel.com> Tested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: <stable@vger.kernel.org> # v3.9 and later Link: http://lkml.kernel.org/r/1376351004-4015-1-git-send-email-yinghai@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-08-12 23:43:24 +00:00
/* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
#define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
void __init early_alloc_pgt_buf(void)
{
unsigned long tables = INIT_PGT_BUF_SIZE;
phys_addr_t base;
base = __pa(extend_brk(tables, PAGE_SIZE));
pgt_buf_start = base >> PAGE_SHIFT;
pgt_buf_end = pgt_buf_start;
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
}
int after_bootmem;
int direct_gbpages
#ifdef CONFIG_DIRECT_GBPAGES
= 1
#endif
;
static void __init init_gbpages(void)
{
#ifdef CONFIG_X86_64
if (direct_gbpages && cpu_has_gbpages)
printk(KERN_INFO "Using GB pages for direct mapping\n");
else
direct_gbpages = 0;
#endif
}
struct map_range {
unsigned long start;
unsigned long end;
unsigned page_size_mask;
};
static int page_size_mask;
static void __init probe_page_size_mask(void)
{
init_gbpages();
#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
/*
* For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
* This will simplify cpa(), which otherwise needs to support splitting
* large pages into small in interrupt context, etc.
*/
if (direct_gbpages)
page_size_mask |= 1 << PG_LEVEL_1G;
if (cpu_has_pse)
page_size_mask |= 1 << PG_LEVEL_2M;
#endif
/* Enable PSE if available */
if (cpu_has_pse)
set_in_cr4(X86_CR4_PSE);
/* Enable PGE if available */
if (cpu_has_pge) {
set_in_cr4(X86_CR4_PGE);
__supported_pte_mask |= _PAGE_GLOBAL;
}
}
x86,xen: introduce x86_init.mapping.pagetable_reserve Introduce a new x86_init hook called pagetable_reserve that at the end of init_memory_mapping is used to reserve a range of memory addresses for the kernel pagetable pages we used and free the other ones. On native it just calls memblock_x86_reserve_range while on xen it also takes care of setting the spare memory previously allocated for kernel pagetable pages from RO to RW, so that it can be used for other purposes. A detailed explanation of the reason why this hook is needed follows. As a consequence of the commit: commit 4b239f458c229de044d6905c2b0f9fe16ed9e01e Author: Yinghai Lu <yinghai@kernel.org> Date: Fri Dec 17 16:58:28 2010 -0800 x86-64, mm: Put early page table high at some point init_memory_mapping is going to reach the pagetable pages area and map those pages too (mapping them as normal memory that falls in the range of addresses passed to init_memory_mapping as argument). Some of those pages are already pagetable pages (they are in the range pgt_buf_start-pgt_buf_end) therefore they are going to be mapped RO and everything is fine. Some of these pages are not pagetable pages yet (they fall in the range pgt_buf_end-pgt_buf_top; for example the page at pgt_buf_end) so they are going to be mapped RW. When these pages become pagetable pages and are hooked into the pagetable, xen will find that the guest has already a RW mapping of them somewhere and fail the operation. The reason Xen requires pagetables to be RO is that the hypervisor needs to verify that the pagetables are valid before using them. The validation operations are called "pinning" (more details in arch/x86/xen/mmu.c). In order to fix the issue we mark all the pages in the entire range pgt_buf_start-pgt_buf_top as RO, however when the pagetable allocation is completed only the range pgt_buf_start-pgt_buf_end is reserved by init_memory_mapping. Hence the kernel is going to crash as soon as one of the pages in the range pgt_buf_end-pgt_buf_top is reused (b/c those ranges are RO). For this reason we need a hook to reserve the kernel pagetable pages we used and free the other ones so that they can be reused for other purposes. On native it just means calling memblock_x86_reserve_range, on Xen it also means marking RW the pagetable pages that we allocated before but that haven't been used before. Another way to fix this is without using the hook is by adding a 'if (xen_pv_domain)' in the 'init_memory_mapping' code and calling the Xen counterpart, but that is just nasty. Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Acked-by: Yinghai Lu <yinghai@kernel.org> Acked-by: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-04-14 14:49:41 +00:00
#ifdef CONFIG_X86_32
#define NR_RANGE_MR 3
#else /* CONFIG_X86_64 */
#define NR_RANGE_MR 5
#endif
static int __meminit save_mr(struct map_range *mr, int nr_range,
unsigned long start_pfn, unsigned long end_pfn,
unsigned long page_size_mask)
{
if (start_pfn < end_pfn) {
if (nr_range >= NR_RANGE_MR)
panic("run out of range for init_memory_mapping\n");
mr[nr_range].start = start_pfn<<PAGE_SHIFT;
mr[nr_range].end = end_pfn<<PAGE_SHIFT;
mr[nr_range].page_size_mask = page_size_mask;
nr_range++;
}
return nr_range;
}
/*
* adjust the page_size_mask for small range to go with
* big page size instead small one if nearby are ram too.
*/
static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
int nr_range)
{
int i;
for (i = 0; i < nr_range; i++) {
if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
!(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
unsigned long start = round_down(mr[i].start, PMD_SIZE);
unsigned long end = round_up(mr[i].end, PMD_SIZE);
#ifdef CONFIG_X86_32
if ((end >> PAGE_SHIFT) > max_low_pfn)
continue;
#endif
if (memblock_is_region_memory(start, end - start))
mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
}
if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
!(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
unsigned long start = round_down(mr[i].start, PUD_SIZE);
unsigned long end = round_up(mr[i].end, PUD_SIZE);
if (memblock_is_region_memory(start, end - start))
mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
}
}
}
static int __meminit split_mem_range(struct map_range *mr, int nr_range,
unsigned long start,
unsigned long end)
{
unsigned long start_pfn, end_pfn, limit_pfn;
unsigned long pfn;
int i;
limit_pfn = PFN_DOWN(end);
/* head if not big page alignment ? */
pfn = start_pfn = PFN_DOWN(start);
#ifdef CONFIG_X86_32
/*
* Don't use a large page for the first 2/4MB of memory
* because there are often fixed size MTRRs in there
* and overlapping MTRRs into large pages can cause
* slowdowns.
*/
if (pfn == 0)
end_pfn = PFN_DOWN(PMD_SIZE);
else
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
#else /* CONFIG_X86_64 */
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
#endif
if (end_pfn > limit_pfn)
end_pfn = limit_pfn;
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
pfn = end_pfn;
}
/* big page (2M) range */
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
#ifdef CONFIG_X86_32
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
#else /* CONFIG_X86_64 */
end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
#endif
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pfn = end_pfn;
}
#ifdef CONFIG_X86_64
/* big page (1G) range */
start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask &
((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
pfn = end_pfn;
}
/* tail is not big page (1G) alignment */
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pfn = end_pfn;
}
#endif
/* tail is not big page (2M) alignment */
start_pfn = pfn;
end_pfn = limit_pfn;
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
x86: Fix adjust_range_size_mask calling position Commit 8d57470d x86, mm: setup page table in top-down causes a kernel panic while setting mem=2G. [mem 0x00000000-0x000fffff] page 4k [mem 0x7fe00000-0x7fffffff] page 1G [mem 0x7c000000-0x7fdfffff] page 1G [mem 0x00100000-0x001fffff] page 4k [mem 0x00200000-0x7bffffff] page 2M for last entry is not what we want, we should have [mem 0x00200000-0x3fffffff] page 2M [mem 0x40000000-0x7bffffff] page 1G Actually we merge the continuous ranges with same page size too early. in this case, before merging we have [mem 0x00200000-0x3fffffff] page 2M [mem 0x40000000-0x7bffffff] page 2M after merging them, will get [mem 0x00200000-0x7bffffff] page 2M even we can use 1G page to map [mem 0x40000000-0x7bffffff] that will cause problem, because we already map [mem 0x7fe00000-0x7fffffff] page 1G [mem 0x7c000000-0x7fdfffff] page 1G with 1G page, aka [0x40000000-0x7fffffff] is mapped with 1G page already. During phys_pud_init() for [0x40000000-0x7bffffff], it will not reuse existing that pud page, and allocate new one then try to use 2M page to map it instead, as page_size_mask does not include PG_LEVEL_1G. At end will have [7c000000-0x7fffffff] not mapped, loop in phys_pmd_init stop mapping at 0x7bffffff. That is right behavoir, it maps exact range with exact page size that we ask, and we should explicitly call it to map [7c000000-0x7fffffff] before or after mapping 0x40000000-0x7bffffff. Anyway we need to make sure ranges' page_size_mask correct and consistent after split_mem_range for each range. Fix that by calling adjust_range_size_mask before merging range with same page size. -v2: update change log. -v3: add more explanation why [7c000000-0x7fffffff] is not mapped, and it causes panic. Bisected-by: "Xie, ChanglongX" <changlongx.xie@intel.com> Bisected-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Reported-and-tested-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1370015587-20835-1-git-send-email-yinghai@kernel.org Cc: <stable@vger.kernel.org> v3.9 Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-05-31 15:53:07 +00:00
if (!after_bootmem)
adjust_range_page_size_mask(mr, nr_range);
/* try to merge same page size and continuous */
for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
unsigned long old_start;
if (mr[i].end != mr[i+1].start ||
mr[i].page_size_mask != mr[i+1].page_size_mask)
continue;
/* move it */
old_start = mr[i].start;
memmove(&mr[i], &mr[i+1],
(nr_range - 1 - i) * sizeof(struct map_range));
mr[i--].start = old_start;
nr_range--;
}
for (i = 0; i < nr_range; i++)
printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
mr[i].start, mr[i].end - 1,
(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
(mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
return nr_range;
}
struct range pfn_mapped[E820_X_MAX];
int nr_pfn_mapped;
x86, mm: Only direct map addresses that are marked as E820_RAM Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT ) and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not backed by actual DRAM. This is fine for holes under 4GB which are covered by fixed and variable range MTRRs to be UC. However, we run into trouble on higher memory addresses which cannot be covered by MTRRs. Our system with 1TB of RAM has an e820 that looks like this: BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable and so direct mappings are created for huge memory hole between 0x000000e038000000 to 0x0000010000000000. Even though the kernel never generates memory accesses in that region, since the page tables mark them incorrectly as being WB, our (AMD) processor ends up causing a MCE while doing some memory bookkeeping/optimizations around that area. This patch iterates through e820 and only direct maps ranges that are marked as E820_RAM, and keeps track of those pfn ranges. Depending on the alignment of E820 ranges, this may possibly result in using smaller size (i.e. 4K instead of 2M or 1G) page tables. -v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range instead. - Yinghai Lu -v3: add calculate_all_table_space_size() to get correct needed page table size. - Yinghai Lu -v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when mem map does have hole under 4g that is found by Konard on xen domU with 8g ram. - Yinghai Signed-off-by: Jacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.org Signed-off-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-17 03:38:52 +00:00
static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
nr_pfn_mapped, start_pfn, end_pfn);
nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
max_pfn_mapped = max(max_pfn_mapped, end_pfn);
if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
max_low_pfn_mapped = max(max_low_pfn_mapped,
min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
}
bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
int i;
for (i = 0; i < nr_pfn_mapped; i++)
if ((start_pfn >= pfn_mapped[i].start) &&
(end_pfn <= pfn_mapped[i].end))
return true;
return false;
}
/*
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
* This runs before bootmem is initialized and gets pages directly from
* the physical memory. To access them they are temporarily mapped.
*/
unsigned long __init_refok init_memory_mapping(unsigned long start,
unsigned long end)
{
struct map_range mr[NR_RANGE_MR];
unsigned long ret = 0;
int nr_range, i;
pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
start, end - 1);
memset(mr, 0, sizeof(mr));
nr_range = split_mem_range(mr, 0, start, end);
for (i = 0; i < nr_range; i++)
ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
mr[i].page_size_mask);
x86, mm: Only direct map addresses that are marked as E820_RAM Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT ) and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not backed by actual DRAM. This is fine for holes under 4GB which are covered by fixed and variable range MTRRs to be UC. However, we run into trouble on higher memory addresses which cannot be covered by MTRRs. Our system with 1TB of RAM has an e820 that looks like this: BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable and so direct mappings are created for huge memory hole between 0x000000e038000000 to 0x0000010000000000. Even though the kernel never generates memory accesses in that region, since the page tables mark them incorrectly as being WB, our (AMD) processor ends up causing a MCE while doing some memory bookkeeping/optimizations around that area. This patch iterates through e820 and only direct maps ranges that are marked as E820_RAM, and keeps track of those pfn ranges. Depending on the alignment of E820 ranges, this may possibly result in using smaller size (i.e. 4K instead of 2M or 1G) page tables. -v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range instead. - Yinghai Lu -v3: add calculate_all_table_space_size() to get correct needed page table size. - Yinghai Lu -v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when mem map does have hole under 4g that is found by Konard on xen domU with 8g ram. - Yinghai Signed-off-by: Jacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.org Signed-off-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-17 03:38:52 +00:00
add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
return ret >> PAGE_SHIFT;
}
x86, mm: Only direct map addresses that are marked as E820_RAM Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT ) and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not backed by actual DRAM. This is fine for holes under 4GB which are covered by fixed and variable range MTRRs to be UC. However, we run into trouble on higher memory addresses which cannot be covered by MTRRs. Our system with 1TB of RAM has an e820 that looks like this: BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable and so direct mappings are created for huge memory hole between 0x000000e038000000 to 0x0000010000000000. Even though the kernel never generates memory accesses in that region, since the page tables mark them incorrectly as being WB, our (AMD) processor ends up causing a MCE while doing some memory bookkeeping/optimizations around that area. This patch iterates through e820 and only direct maps ranges that are marked as E820_RAM, and keeps track of those pfn ranges. Depending on the alignment of E820 ranges, this may possibly result in using smaller size (i.e. 4K instead of 2M or 1G) page tables. -v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range instead. - Yinghai Lu -v3: add calculate_all_table_space_size() to get correct needed page table size. - Yinghai Lu -v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when mem map does have hole under 4g that is found by Konard on xen domU with 8g ram. - Yinghai Signed-off-by: Jacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.org Signed-off-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-17 03:38:52 +00:00
/*
* We need to iterate through the E820 memory map and create direct mappings
* for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
* create direct mappings for all pfns from [0 to max_low_pfn) and
* [4GB to max_pfn) because of possible memory holes in high addresses
* that cannot be marked as UC by fixed/variable range MTRRs.
* Depending on the alignment of E820 ranges, this may possibly result
* in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
*
* init_mem_mapping() calls init_range_memory_mapping() with big range.
* That range would have hole in the middle or ends, and only ram parts
* will be mapped in init_range_memory_mapping().
x86, mm: Only direct map addresses that are marked as E820_RAM Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT ) and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not backed by actual DRAM. This is fine for holes under 4GB which are covered by fixed and variable range MTRRs to be UC. However, we run into trouble on higher memory addresses which cannot be covered by MTRRs. Our system with 1TB of RAM has an e820 that looks like this: BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable and so direct mappings are created for huge memory hole between 0x000000e038000000 to 0x0000010000000000. Even though the kernel never generates memory accesses in that region, since the page tables mark them incorrectly as being WB, our (AMD) processor ends up causing a MCE while doing some memory bookkeeping/optimizations around that area. This patch iterates through e820 and only direct maps ranges that are marked as E820_RAM, and keeps track of those pfn ranges. Depending on the alignment of E820 ranges, this may possibly result in using smaller size (i.e. 4K instead of 2M or 1G) page tables. -v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range instead. - Yinghai Lu -v3: add calculate_all_table_space_size() to get correct needed page table size. - Yinghai Lu -v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when mem map does have hole under 4g that is found by Konard on xen domU with 8g ram. - Yinghai Signed-off-by: Jacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.org Signed-off-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-17 03:38:52 +00:00
*/
static unsigned long __init init_range_memory_mapping(
unsigned long r_start,
unsigned long r_end)
x86, mm: Only direct map addresses that are marked as E820_RAM Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT ) and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not backed by actual DRAM. This is fine for holes under 4GB which are covered by fixed and variable range MTRRs to be UC. However, we run into trouble on higher memory addresses which cannot be covered by MTRRs. Our system with 1TB of RAM has an e820 that looks like this: BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable and so direct mappings are created for huge memory hole between 0x000000e038000000 to 0x0000010000000000. Even though the kernel never generates memory accesses in that region, since the page tables mark them incorrectly as being WB, our (AMD) processor ends up causing a MCE while doing some memory bookkeeping/optimizations around that area. This patch iterates through e820 and only direct maps ranges that are marked as E820_RAM, and keeps track of those pfn ranges. Depending on the alignment of E820 ranges, this may possibly result in using smaller size (i.e. 4K instead of 2M or 1G) page tables. -v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range instead. - Yinghai Lu -v3: add calculate_all_table_space_size() to get correct needed page table size. - Yinghai Lu -v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when mem map does have hole under 4g that is found by Konard on xen domU with 8g ram. - Yinghai Signed-off-by: Jacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.org Signed-off-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-17 03:38:52 +00:00
{
unsigned long start_pfn, end_pfn;
unsigned long mapped_ram_size = 0;
x86, mm: Only direct map addresses that are marked as E820_RAM Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT ) and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not backed by actual DRAM. This is fine for holes under 4GB which are covered by fixed and variable range MTRRs to be UC. However, we run into trouble on higher memory addresses which cannot be covered by MTRRs. Our system with 1TB of RAM has an e820 that looks like this: BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable and so direct mappings are created for huge memory hole between 0x000000e038000000 to 0x0000010000000000. Even though the kernel never generates memory accesses in that region, since the page tables mark them incorrectly as being WB, our (AMD) processor ends up causing a MCE while doing some memory bookkeeping/optimizations around that area. This patch iterates through e820 and only direct maps ranges that are marked as E820_RAM, and keeps track of those pfn ranges. Depending on the alignment of E820 ranges, this may possibly result in using smaller size (i.e. 4K instead of 2M or 1G) page tables. -v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range instead. - Yinghai Lu -v3: add calculate_all_table_space_size() to get correct needed page table size. - Yinghai Lu -v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when mem map does have hole under 4g that is found by Konard on xen domU with 8g ram. - Yinghai Signed-off-by: Jacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.org Signed-off-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-17 03:38:52 +00:00
int i;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
if (start >= end)
x86, mm: Only direct map addresses that are marked as E820_RAM Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT ) and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not backed by actual DRAM. This is fine for holes under 4GB which are covered by fixed and variable range MTRRs to be UC. However, we run into trouble on higher memory addresses which cannot be covered by MTRRs. Our system with 1TB of RAM has an e820 that looks like this: BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable and so direct mappings are created for huge memory hole between 0x000000e038000000 to 0x0000010000000000. Even though the kernel never generates memory accesses in that region, since the page tables mark them incorrectly as being WB, our (AMD) processor ends up causing a MCE while doing some memory bookkeeping/optimizations around that area. This patch iterates through e820 and only direct maps ranges that are marked as E820_RAM, and keeps track of those pfn ranges. Depending on the alignment of E820 ranges, this may possibly result in using smaller size (i.e. 4K instead of 2M or 1G) page tables. -v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range instead. - Yinghai Lu -v3: add calculate_all_table_space_size() to get correct needed page table size. - Yinghai Lu -v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when mem map does have hole under 4g that is found by Konard on xen domU with 8g ram. - Yinghai Signed-off-by: Jacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.org Signed-off-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-17 03:38:52 +00:00
continue;
/*
* if it is overlapping with brk pgt, we need to
* alloc pgt buf from memblock instead.
*/
can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
init_memory_mapping(start, end);
mapped_ram_size += end - start;
can_use_brk_pgt = true;
x86, mm: Only direct map addresses that are marked as E820_RAM Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT ) and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not backed by actual DRAM. This is fine for holes under 4GB which are covered by fixed and variable range MTRRs to be UC. However, we run into trouble on higher memory addresses which cannot be covered by MTRRs. Our system with 1TB of RAM has an e820 that looks like this: BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable and so direct mappings are created for huge memory hole between 0x000000e038000000 to 0x0000010000000000. Even though the kernel never generates memory accesses in that region, since the page tables mark them incorrectly as being WB, our (AMD) processor ends up causing a MCE while doing some memory bookkeeping/optimizations around that area. This patch iterates through e820 and only direct maps ranges that are marked as E820_RAM, and keeps track of those pfn ranges. Depending on the alignment of E820 ranges, this may possibly result in using smaller size (i.e. 4K instead of 2M or 1G) page tables. -v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range instead. - Yinghai Lu -v3: add calculate_all_table_space_size() to get correct needed page table size. - Yinghai Lu -v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when mem map does have hole under 4g that is found by Konard on xen domU with 8g ram. - Yinghai Signed-off-by: Jacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.org Signed-off-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-17 03:38:52 +00:00
}
return mapped_ram_size;
x86, mm: Only direct map addresses that are marked as E820_RAM Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT ) and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not backed by actual DRAM. This is fine for holes under 4GB which are covered by fixed and variable range MTRRs to be UC. However, we run into trouble on higher memory addresses which cannot be covered by MTRRs. Our system with 1TB of RAM has an e820 that looks like this: BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable and so direct mappings are created for huge memory hole between 0x000000e038000000 to 0x0000010000000000. Even though the kernel never generates memory accesses in that region, since the page tables mark them incorrectly as being WB, our (AMD) processor ends up causing a MCE while doing some memory bookkeeping/optimizations around that area. This patch iterates through e820 and only direct maps ranges that are marked as E820_RAM, and keeps track of those pfn ranges. Depending on the alignment of E820 ranges, this may possibly result in using smaller size (i.e. 4K instead of 2M or 1G) page tables. -v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range instead. - Yinghai Lu -v3: add calculate_all_table_space_size() to get correct needed page table size. - Yinghai Lu -v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when mem map does have hole under 4g that is found by Konard on xen domU with 8g ram. - Yinghai Signed-off-by: Jacob Shin <jacob.shin@amd.com> Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.org Signed-off-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-17 03:38:52 +00:00
}
static unsigned long __init get_new_step_size(unsigned long step_size)
{
/*
* Explain why we shift by 5 and why we don't have to worry about
* 'step_size << 5' overflowing:
*
* initial mapped size is PMD_SIZE (2M).
* We can not set step_size to be PUD_SIZE (1G) yet.
* In worse case, when we cross the 1G boundary, and
* PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
* to map 1G range with PTE. Use 5 as shift for now.
*
* Don't need to worry about overflow, on 32bit, when step_size
* is 0, round_down() returns 0 for start, and that turns it
* into 0x100000000ULL.
*/
return step_size << 5;
}
/**
* memory_map_top_down - Map [map_start, map_end) top down
* @map_start: start address of the target memory range
* @map_end: end address of the target memory range
*
* This function will setup direct mapping for memory range
* [map_start, map_end) in top-down. That said, the page tables
* will be allocated at the end of the memory, and we map the
* memory in top-down.
*/
static void __init memory_map_top_down(unsigned long map_start,
unsigned long map_end)
{
unsigned long real_end, start, last_start;
unsigned long step_size;
unsigned long addr;
unsigned long mapped_ram_size = 0;
unsigned long new_mapped_ram_size;
/* xen has big range in reserved near end of ram, skip it at first.*/
addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
real_end = addr + PMD_SIZE;
/* step_size need to be small so pgt_buf from BRK could cover it */
step_size = PMD_SIZE;
max_pfn_mapped = 0; /* will get exact value next */
min_pfn_mapped = real_end >> PAGE_SHIFT;
last_start = start = real_end;
/*
* We start from the top (end of memory) and go to the bottom.
* The memblock_find_in_range() gets us a block of RAM from the
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
* for page table.
*/
while (last_start > map_start) {
if (last_start > step_size) {
start = round_down(last_start - 1, step_size);
if (start < map_start)
start = map_start;
} else
start = map_start;
new_mapped_ram_size = init_range_memory_mapping(start,
last_start);
last_start = start;
min_pfn_mapped = last_start >> PAGE_SHIFT;
/* only increase step_size after big range get mapped */
if (new_mapped_ram_size > mapped_ram_size)
step_size = get_new_step_size(step_size);
mapped_ram_size += new_mapped_ram_size;
}
if (real_end < map_end)
init_range_memory_mapping(real_end, map_end);
}
x86/mem-hotplug: support initialize page tables in bottom-up The Linux kernel cannot migrate pages used by the kernel. As a result, kernel pages cannot be hot-removed. So we cannot allocate hotpluggable memory for the kernel. In a memory hotplug system, any numa node the kernel resides in should be unhotpluggable. And for a modern server, each node could have at least 16GB memory. So memory around the kernel image is highly likely unhotpluggable. ACPI SRAT (System Resource Affinity Table) contains the memory hotplug info. But before SRAT is parsed, memblock has already started to allocate memory for the kernel. So we need to prevent memblock from doing this. So direct memory mapping page tables setup is the case. init_mem_mapping() is called before SRAT is parsed. To prevent page tables being allocated within hotpluggable memory, we will use bottom-up direction to allocate page tables from the end of kernel image to the higher memory. Note: As for allocating page tables in lower memory, TJ said: : This is an optional behavior which is triggered by a very specific kernel : boot param, which I suspect is gonna need to stick around to support : memory hotplug in the current setup unless we add another layer of address : translation to support memory hotplug. As for page tables may occupy too much lower memory if using 4K mapping (CONFIG_DEBUG_PAGEALLOC and CONFIG_KMEMCHECK both disable using >4k pages), TJ said: : But as I said in the same paragraph, parsing SRAT earlier doesn't solve : the problem in itself either. Ignoring the option if 4k mapping is : required and memory consumption would be prohibitive should work, no? : Something like that would be necessary if we're gonna worry about cases : like this no matter how we implement it, but, frankly, I'm not sure this : is something worth worrying about. Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Toshi Kani <toshi.kani@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Thomas Renninger <trenn@suse.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-12 23:08:05 +00:00
/**
* memory_map_bottom_up - Map [map_start, map_end) bottom up
* @map_start: start address of the target memory range
* @map_end: end address of the target memory range
*
* This function will setup direct mapping for memory range
* [map_start, map_end) in bottom-up. Since we have limited the
* bottom-up allocation above the kernel, the page tables will
* be allocated just above the kernel and we map the memory
* in [map_start, map_end) in bottom-up.
*/
static void __init memory_map_bottom_up(unsigned long map_start,
unsigned long map_end)
{
unsigned long next, new_mapped_ram_size, start;
unsigned long mapped_ram_size = 0;
/* step_size need to be small so pgt_buf from BRK could cover it */
unsigned long step_size = PMD_SIZE;
start = map_start;
min_pfn_mapped = start >> PAGE_SHIFT;
/*
* We start from the bottom (@map_start) and go to the top (@map_end).
* The memblock_find_in_range() gets us a block of RAM from the
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
* for page table.
*/
while (start < map_end) {
if (map_end - start > step_size) {
next = round_up(start + 1, step_size);
if (next > map_end)
next = map_end;
} else
next = map_end;
new_mapped_ram_size = init_range_memory_mapping(start, next);
start = next;
if (new_mapped_ram_size > mapped_ram_size)
step_size = get_new_step_size(step_size);
mapped_ram_size += new_mapped_ram_size;
}
}
void __init init_mem_mapping(void)
{
unsigned long end;
probe_page_size_mask();
#ifdef CONFIG_X86_64
end = max_pfn << PAGE_SHIFT;
#else
end = max_low_pfn << PAGE_SHIFT;
#endif
/* the ISA range is always mapped regardless of memory holes */
init_memory_mapping(0, ISA_END_ADDRESS);
x86/mem-hotplug: support initialize page tables in bottom-up The Linux kernel cannot migrate pages used by the kernel. As a result, kernel pages cannot be hot-removed. So we cannot allocate hotpluggable memory for the kernel. In a memory hotplug system, any numa node the kernel resides in should be unhotpluggable. And for a modern server, each node could have at least 16GB memory. So memory around the kernel image is highly likely unhotpluggable. ACPI SRAT (System Resource Affinity Table) contains the memory hotplug info. But before SRAT is parsed, memblock has already started to allocate memory for the kernel. So we need to prevent memblock from doing this. So direct memory mapping page tables setup is the case. init_mem_mapping() is called before SRAT is parsed. To prevent page tables being allocated within hotpluggable memory, we will use bottom-up direction to allocate page tables from the end of kernel image to the higher memory. Note: As for allocating page tables in lower memory, TJ said: : This is an optional behavior which is triggered by a very specific kernel : boot param, which I suspect is gonna need to stick around to support : memory hotplug in the current setup unless we add another layer of address : translation to support memory hotplug. As for page tables may occupy too much lower memory if using 4K mapping (CONFIG_DEBUG_PAGEALLOC and CONFIG_KMEMCHECK both disable using >4k pages), TJ said: : But as I said in the same paragraph, parsing SRAT earlier doesn't solve : the problem in itself either. Ignoring the option if 4k mapping is : required and memory consumption would be prohibitive should work, no? : Something like that would be necessary if we're gonna worry about cases : like this no matter how we implement it, but, frankly, I'm not sure this : is something worth worrying about. Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Toshi Kani <toshi.kani@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Thomas Renninger <trenn@suse.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-12 23:08:05 +00:00
/*
* If the allocation is in bottom-up direction, we setup direct mapping
* in bottom-up, otherwise we setup direct mapping in top-down.
*/
if (memblock_bottom_up()) {
unsigned long kernel_end = __pa_symbol(_end);
/*
* we need two separate calls here. This is because we want to
* allocate page tables above the kernel. So we first map
* [kernel_end, end) to make memory above the kernel be mapped
* as soon as possible. And then use page tables allocated above
* the kernel to map [ISA_END_ADDRESS, kernel_end).
*/
memory_map_bottom_up(kernel_end, end);
memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
} else {
memory_map_top_down(ISA_END_ADDRESS, end);
}
#ifdef CONFIG_X86_64
if (max_pfn > max_low_pfn) {
/* can we preseve max_low_pfn ?*/
max_low_pfn = max_pfn;
}
#else
early_ioremap_page_table_range_init();
x86, 64bit: Use a #PF handler to materialize early mappings on demand Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all 64-bit code has to use page tables. This makes it awkward before we have first set up properly all-covering page tables to access objects that are outside the static kernel range. So far we have dealt with that simply by mapping a fixed amount of low memory, but that fails in at least two upcoming use cases: 1. We will support load and run kernel, struct boot_params, ramdisk, command line, etc. above the 4 GiB mark. 2. need to access ramdisk early to get microcode to update that as early possible. We could use early_iomap to access them too, but it will make code to messy and hard to be unified with 32 bit. Hence, set up a #PF table and use a fixed number of buffers to set up page tables on demand. If the buffers fill up then we simply flush them and start over. These buffers are all in __initdata, so it does not increase RAM usage at runtime. Thus, with the help of the #PF handler, we can set the final kernel mapping from blank, and switch to init_level4_pgt later. During the switchover in head_64.S, before #PF handler is available, we use three pages to handle kernel crossing 1G, 512G boundaries with sharing page by playing games with page aliasing: the same page is mapped twice in the higher-level tables with appropriate wraparound. The kernel region itself will be properly mapped; other mappings may be spurious. early_make_pgtable is using kernel high mapping address to access pages to set page table. -v4: Add phys_base offset to make kexec happy, and add init_mapping_kernel() - Yinghai -v5: fix compiling with xen, and add back ident level3 and level2 for xen also move back init_level4_pgt from BSS to DATA again. because we have to clear it anyway. - Yinghai -v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai -v7: remove not needed clear_page for init_level4_page it is with fill 512,8,0 already in head_64.S - Yinghai -v8: we need to keep that handler alive until init_mem_mapping and don't let early_trap_init to trash that early #PF handler. So split early_trap_pf_init out and move it down. - Yinghai -v9: switchover only cover kernel space instead of 1G so could avoid touch possible mem holes. - Yinghai -v11: change far jmp back to far return to initial_code, that is needed to fix failure that is reported by Konrad on AMD systems. - Yinghai Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-24 20:19:52 +00:00
#endif
load_cr3(swapper_pg_dir);
__flush_tlb_all();
early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
}
/*
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
* is valid. The argument is a physical page number.
*
*
* On x86, access has to be given to the first megabyte of ram because that area
* contains bios code and data regions used by X and dosemu and similar apps.
* Access has to be given to non-kernel-ram areas as well, these contain the PCI
* mmio resources as well as potential bios/acpi data regions.
*/
int devmem_is_allowed(unsigned long pagenr)
{
if (pagenr < 256)
return 1;
if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
return 0;
if (!page_is_ram(pagenr))
return 1;
return 0;
}
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
x86: Make sure free_init_pages() frees pages on page boundary When CONFIG_NO_BOOTMEM=y, it could use memory more effiently, or in a more compact fashion. Example: Allocated new RAMDISK: 00ec2000 - 0248ce57 Move RAMDISK from 000000002ea04000 - 000000002ffcee56 to 00ec2000 - 0248ce56 The new RAMDISK's end is not page aligned. Last page could be shared with other users. When free_init_pages are called for initrd or .init, the page could be freed and we could corrupt other data. code segment in free_init_pages(): | for (; addr < end; addr += PAGE_SIZE) { | ClearPageReserved(virt_to_page(addr)); | init_page_count(virt_to_page(addr)); | memset((void *)(addr & ~(PAGE_SIZE-1)), | POISON_FREE_INITMEM, PAGE_SIZE); | free_page(addr); | totalram_pages++; | } last half page could be used as one whole free page. So page align the boundaries. -v2: make the original initramdisk to be aligned, according to Johannes, otherwise we have the chance to lose one page. we still need to keep initrd_end not aligned, otherwise it could confuse decompressor. -v3: change to WARN_ON instead, suggested by Johannes. -v4: use PAGE_ALIGN, suggested by Johannes. We may fix that macro name later to PAGE_ALIGN_UP, and PAGE_ALIGN_DOWN Add comments about assuming ramdisk start is aligned in relocate_initrd(), change to re get ramdisk_image instead of save it to make diff smaller. Add warning for wrong range, suggested by Johannes. -v6: remove one WARN() We need to align beginning in free_init_pages() do not copy more than ramdisk_size, noticed by Johannes Reported-by: Stanislaw Gruszka <sgruszka@redhat.com> Tested-by: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: David Miller <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <1269830604-26214-3-git-send-email-yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-29 02:42:55 +00:00
unsigned long begin_aligned, end_aligned;
x86: Make sure free_init_pages() frees pages on page boundary When CONFIG_NO_BOOTMEM=y, it could use memory more effiently, or in a more compact fashion. Example: Allocated new RAMDISK: 00ec2000 - 0248ce57 Move RAMDISK from 000000002ea04000 - 000000002ffcee56 to 00ec2000 - 0248ce56 The new RAMDISK's end is not page aligned. Last page could be shared with other users. When free_init_pages are called for initrd or .init, the page could be freed and we could corrupt other data. code segment in free_init_pages(): | for (; addr < end; addr += PAGE_SIZE) { | ClearPageReserved(virt_to_page(addr)); | init_page_count(virt_to_page(addr)); | memset((void *)(addr & ~(PAGE_SIZE-1)), | POISON_FREE_INITMEM, PAGE_SIZE); | free_page(addr); | totalram_pages++; | } last half page could be used as one whole free page. So page align the boundaries. -v2: make the original initramdisk to be aligned, according to Johannes, otherwise we have the chance to lose one page. we still need to keep initrd_end not aligned, otherwise it could confuse decompressor. -v3: change to WARN_ON instead, suggested by Johannes. -v4: use PAGE_ALIGN, suggested by Johannes. We may fix that macro name later to PAGE_ALIGN_UP, and PAGE_ALIGN_DOWN Add comments about assuming ramdisk start is aligned in relocate_initrd(), change to re get ramdisk_image instead of save it to make diff smaller. Add warning for wrong range, suggested by Johannes. -v6: remove one WARN() We need to align beginning in free_init_pages() do not copy more than ramdisk_size, noticed by Johannes Reported-by: Stanislaw Gruszka <sgruszka@redhat.com> Tested-by: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: David Miller <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <1269830604-26214-3-git-send-email-yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-29 02:42:55 +00:00
/* Make sure boundaries are page aligned */
begin_aligned = PAGE_ALIGN(begin);
end_aligned = end & PAGE_MASK;
if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
begin = begin_aligned;
end = end_aligned;
}
if (begin >= end)
return;
/*
* If debugging page accesses then do not free this memory but
* mark them not present - any buggy init-section access will
* create a kernel page fault:
*/
#ifdef CONFIG_DEBUG_PAGEALLOC
printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
begin, end - 1);
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
/*
* We just marked the kernel text read only above, now that
* we are going to free part of that, we need to make that
x86: Add NX protection for kernel data This patch expands functionality of CONFIG_DEBUG_RODATA to set main (static) kernel data area as NX. The following steps are taken to achieve this: 1. Linker script is adjusted so .text always starts and ends on a page bound 2. Linker script is adjusted so .rodata always start and end on a page boundary 3. NX is set for all pages from _etext through _end in mark_rodata_ro. 4. free_init_pages() sets released memory NX in arch/x86/mm/init.c 5. bios rom is set to x when pcibios is used. The results of patch application may be observed in the diff of kernel page table dumps: pcibios: -- data_nx_pt_before.txt 2009-10-13 07:48:59.000000000 -0400 ++ data_nx_pt_after.txt 2009-10-13 07:26:46.000000000 -0400 0x00000000-0xc0000000 3G pmd ---[ Kernel Mapping ]--- -0xc0000000-0xc0100000 1M RW GLB x pte +0xc0000000-0xc00a0000 640K RW GLB NX pte +0xc00a0000-0xc0100000 384K RW GLB x pte -0xc0100000-0xc03d7000 2908K ro GLB x pte +0xc0100000-0xc0318000 2144K ro GLB x pte +0xc0318000-0xc03d7000 764K ro GLB NX pte -0xc03d7000-0xc0600000 2212K RW GLB x pte +0xc03d7000-0xc0600000 2212K RW GLB NX pte 0xc0600000-0xf7a00000 884M RW PSE GLB NX pmd 0xf7a00000-0xf7bfe000 2040K RW GLB NX pte 0xf7bfe000-0xf7c00000 8K pte No pcibios: -- data_nx_pt_before.txt 2009-10-13 07:48:59.000000000 -0400 ++ data_nx_pt_after.txt 2009-10-13 07:26:46.000000000 -0400 0x00000000-0xc0000000 3G pmd ---[ Kernel Mapping ]--- -0xc0000000-0xc0100000 1M RW GLB x pte +0xc0000000-0xc0100000 1M RW GLB NX pte -0xc0100000-0xc03d7000 2908K ro GLB x pte +0xc0100000-0xc0318000 2144K ro GLB x pte +0xc0318000-0xc03d7000 764K ro GLB NX pte -0xc03d7000-0xc0600000 2212K RW GLB x pte +0xc03d7000-0xc0600000 2212K RW GLB NX pte 0xc0600000-0xf7a00000 884M RW PSE GLB NX pmd 0xf7a00000-0xf7bfe000 2040K RW GLB NX pte 0xf7bfe000-0xf7c00000 8K pte The patch has been originally developed for Linux 2.6.34-rc2 x86 by Siarhei Liakh <sliakh.lkml@gmail.com> and Xuxian Jiang <jiang@cs.ncsu.edu>. -v1: initial patch for 2.6.30 -v2: patch for 2.6.31-rc7 -v3: moved all code into arch/x86, adjusted credits -v4: fixed ifdef, removed credits from CREDITS -v5: fixed an address calculation bug in mark_nxdata_nx() -v6: added acked-by and PT dump diff to commit log -v7: minor adjustments for -tip -v8: rework with the merge of "Set first MB as RW+NX" Signed-off-by: Siarhei Liakh <sliakh.lkml@gmail.com> Signed-off-by: Xuxian Jiang <jiang@cs.ncsu.edu> Signed-off-by: Matthieu CASTET <castet.matthieu@free.fr> Cc: Arjan van de Ven <arjan@infradead.org> Cc: James Morris <jmorris@namei.org> Cc: Andi Kleen <ak@muc.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dave Jones <davej@redhat.com> Cc: Kees Cook <kees.cook@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <4CE2F82E.60601@free.fr> [ minor cleanliness edits ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-11-16 21:31:26 +00:00
* writeable and non-executable first.
*/
x86: Add NX protection for kernel data This patch expands functionality of CONFIG_DEBUG_RODATA to set main (static) kernel data area as NX. The following steps are taken to achieve this: 1. Linker script is adjusted so .text always starts and ends on a page bound 2. Linker script is adjusted so .rodata always start and end on a page boundary 3. NX is set for all pages from _etext through _end in mark_rodata_ro. 4. free_init_pages() sets released memory NX in arch/x86/mm/init.c 5. bios rom is set to x when pcibios is used. The results of patch application may be observed in the diff of kernel page table dumps: pcibios: -- data_nx_pt_before.txt 2009-10-13 07:48:59.000000000 -0400 ++ data_nx_pt_after.txt 2009-10-13 07:26:46.000000000 -0400 0x00000000-0xc0000000 3G pmd ---[ Kernel Mapping ]--- -0xc0000000-0xc0100000 1M RW GLB x pte +0xc0000000-0xc00a0000 640K RW GLB NX pte +0xc00a0000-0xc0100000 384K RW GLB x pte -0xc0100000-0xc03d7000 2908K ro GLB x pte +0xc0100000-0xc0318000 2144K ro GLB x pte +0xc0318000-0xc03d7000 764K ro GLB NX pte -0xc03d7000-0xc0600000 2212K RW GLB x pte +0xc03d7000-0xc0600000 2212K RW GLB NX pte 0xc0600000-0xf7a00000 884M RW PSE GLB NX pmd 0xf7a00000-0xf7bfe000 2040K RW GLB NX pte 0xf7bfe000-0xf7c00000 8K pte No pcibios: -- data_nx_pt_before.txt 2009-10-13 07:48:59.000000000 -0400 ++ data_nx_pt_after.txt 2009-10-13 07:26:46.000000000 -0400 0x00000000-0xc0000000 3G pmd ---[ Kernel Mapping ]--- -0xc0000000-0xc0100000 1M RW GLB x pte +0xc0000000-0xc0100000 1M RW GLB NX pte -0xc0100000-0xc03d7000 2908K ro GLB x pte +0xc0100000-0xc0318000 2144K ro GLB x pte +0xc0318000-0xc03d7000 764K ro GLB NX pte -0xc03d7000-0xc0600000 2212K RW GLB x pte +0xc03d7000-0xc0600000 2212K RW GLB NX pte 0xc0600000-0xf7a00000 884M RW PSE GLB NX pmd 0xf7a00000-0xf7bfe000 2040K RW GLB NX pte 0xf7bfe000-0xf7c00000 8K pte The patch has been originally developed for Linux 2.6.34-rc2 x86 by Siarhei Liakh <sliakh.lkml@gmail.com> and Xuxian Jiang <jiang@cs.ncsu.edu>. -v1: initial patch for 2.6.30 -v2: patch for 2.6.31-rc7 -v3: moved all code into arch/x86, adjusted credits -v4: fixed ifdef, removed credits from CREDITS -v5: fixed an address calculation bug in mark_nxdata_nx() -v6: added acked-by and PT dump diff to commit log -v7: minor adjustments for -tip -v8: rework with the merge of "Set first MB as RW+NX" Signed-off-by: Siarhei Liakh <sliakh.lkml@gmail.com> Signed-off-by: Xuxian Jiang <jiang@cs.ncsu.edu> Signed-off-by: Matthieu CASTET <castet.matthieu@free.fr> Cc: Arjan van de Ven <arjan@infradead.org> Cc: James Morris <jmorris@namei.org> Cc: Andi Kleen <ak@muc.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dave Jones <davej@redhat.com> Cc: Kees Cook <kees.cook@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <4CE2F82E.60601@free.fr> [ minor cleanliness edits ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-11-16 21:31:26 +00:00
set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
#endif
}
void free_initmem(void)
{
free_init_pages("unused kernel",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
#ifdef CONFIG_BLK_DEV_INITRD
void __init free_initrd_mem(unsigned long start, unsigned long end)
{
#ifdef CONFIG_MICROCODE_EARLY
/*
* Remember, initrd memory may contain microcode or other useful things.
* Before we lose initrd mem, we need to find a place to hold them
* now that normal virtual memory is enabled.
*/
save_microcode_in_initrd();
#endif
x86: Make sure free_init_pages() frees pages on page boundary When CONFIG_NO_BOOTMEM=y, it could use memory more effiently, or in a more compact fashion. Example: Allocated new RAMDISK: 00ec2000 - 0248ce57 Move RAMDISK from 000000002ea04000 - 000000002ffcee56 to 00ec2000 - 0248ce56 The new RAMDISK's end is not page aligned. Last page could be shared with other users. When free_init_pages are called for initrd or .init, the page could be freed and we could corrupt other data. code segment in free_init_pages(): | for (; addr < end; addr += PAGE_SIZE) { | ClearPageReserved(virt_to_page(addr)); | init_page_count(virt_to_page(addr)); | memset((void *)(addr & ~(PAGE_SIZE-1)), | POISON_FREE_INITMEM, PAGE_SIZE); | free_page(addr); | totalram_pages++; | } last half page could be used as one whole free page. So page align the boundaries. -v2: make the original initramdisk to be aligned, according to Johannes, otherwise we have the chance to lose one page. we still need to keep initrd_end not aligned, otherwise it could confuse decompressor. -v3: change to WARN_ON instead, suggested by Johannes. -v4: use PAGE_ALIGN, suggested by Johannes. We may fix that macro name later to PAGE_ALIGN_UP, and PAGE_ALIGN_DOWN Add comments about assuming ramdisk start is aligned in relocate_initrd(), change to re get ramdisk_image instead of save it to make diff smaller. Add warning for wrong range, suggested by Johannes. -v6: remove one WARN() We need to align beginning in free_init_pages() do not copy more than ramdisk_size, noticed by Johannes Reported-by: Stanislaw Gruszka <sgruszka@redhat.com> Tested-by: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: David Miller <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <1269830604-26214-3-git-send-email-yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-29 02:42:55 +00:00
/*
* end could be not aligned, and We can not align that,
* decompresser could be confused by aligned initrd_end
* We already reserve the end partial page before in
* - i386_start_kernel()
* - x86_64_start_kernel()
* - relocate_initrd()
* So here We can do PAGE_ALIGN() safely to get partial page to be freed
*/
free_init_pages("initrd", start, PAGE_ALIGN(end));
}
#endif
void __init zone_sizes_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
#ifdef CONFIG_ZONE_DMA
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
#endif
#ifdef CONFIG_ZONE_DMA32
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
#endif
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
#ifdef CONFIG_HIGHMEM
max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
#endif
free_area_init_nodes(max_zone_pfns);
}
void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
{
/* entry 0 MUST be WB (hardwired to speed up translations) */
BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
__pte2cachemode_tbl[entry] = cache;
}