linux/arch/arm/mm/mm-armv.c

604 lines
15 KiB
C
Raw Normal View History

/*
* linux/arch/arm/mm/mm-armv.c
*
* Copyright (C) 1998-2005 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Page table sludge for ARM v3 and v4 processor architectures.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/io.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/mach/map.h>
#define CPOLICY_UNCACHED 0
#define CPOLICY_BUFFERED 1
#define CPOLICY_WRITETHROUGH 2
#define CPOLICY_WRITEBACK 3
#define CPOLICY_WRITEALLOC 4
static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
pgprot_t pgprot_kernel;
EXPORT_SYMBOL(pgprot_kernel);
pmd_t *top_pmd;
struct cachepolicy {
const char policy[16];
unsigned int cr_mask;
unsigned int pmd;
unsigned int pte;
};
static struct cachepolicy cache_policies[] __initdata = {
{
.policy = "uncached",
.cr_mask = CR_W|CR_C,
.pmd = PMD_SECT_UNCACHED,
.pte = 0,
}, {
.policy = "buffered",
.cr_mask = CR_C,
.pmd = PMD_SECT_BUFFERED,
.pte = PTE_BUFFERABLE,
}, {
.policy = "writethrough",
.cr_mask = 0,
.pmd = PMD_SECT_WT,
.pte = PTE_CACHEABLE,
}, {
.policy = "writeback",
.cr_mask = 0,
.pmd = PMD_SECT_WB,
.pte = PTE_BUFFERABLE|PTE_CACHEABLE,
}, {
.policy = "writealloc",
.cr_mask = 0,
.pmd = PMD_SECT_WBWA,
.pte = PTE_BUFFERABLE|PTE_CACHEABLE,
}
};
/*
* These are useful for identifing cache coherency
* problems by allowing the cache or the cache and
* writebuffer to be turned off. (Note: the write
* buffer should not be on and the cache off).
*/
static void __init early_cachepolicy(char **p)
{
int i;
for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
int len = strlen(cache_policies[i].policy);
if (memcmp(*p, cache_policies[i].policy, len) == 0) {
cachepolicy = i;
cr_alignment &= ~cache_policies[i].cr_mask;
cr_no_alignment &= ~cache_policies[i].cr_mask;
*p += len;
break;
}
}
if (i == ARRAY_SIZE(cache_policies))
printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
flush_cache_all();
set_cr(cr_alignment);
}
static void __init early_nocache(char **__unused)
{
char *p = "buffered";
printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
early_cachepolicy(&p);
}
static void __init early_nowrite(char **__unused)
{
char *p = "uncached";
printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
early_cachepolicy(&p);
}
static void __init early_ecc(char **p)
{
if (memcmp(*p, "on", 2) == 0) {
ecc_mask = PMD_PROTECTION;
*p += 2;
} else if (memcmp(*p, "off", 3) == 0) {
ecc_mask = 0;
*p += 3;
}
}
__early_param("nocache", early_nocache);
__early_param("nowb", early_nowrite);
__early_param("cachepolicy=", early_cachepolicy);
__early_param("ecc=", early_ecc);
static int __init noalign_setup(char *__unused)
{
cr_alignment &= ~CR_A;
cr_no_alignment &= ~CR_A;
set_cr(cr_alignment);
return 1;
}
__setup("noalign", noalign_setup);
#define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
{
return pmd_offset(pgd, virt);
}
static inline pmd_t *pmd_off_k(unsigned long virt)
{
return pmd_off(pgd_offset_k(virt), virt);
}
/*
* need to get a 16k page for level 1
*/
pgd_t *get_pgd_slow(struct mm_struct *mm)
{
pgd_t *new_pgd, *init_pgd;
pmd_t *new_pmd, *init_pmd;
pte_t *new_pte, *init_pte;
new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
if (!new_pgd)
goto no_pgd;
memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
/*
* Copy over the kernel and IO PGD entries
*/
init_pgd = pgd_offset_k(0);
memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
(PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
if (!vectors_high()) {
/*
* This lock is here just to satisfy pmd_alloc and pte_lock
*/
spin_lock(&mm->page_table_lock);
/*
* On ARM, first page must always be allocated since it
* contains the machine vectors.
*/
new_pmd = pmd_alloc(mm, new_pgd, 0);
if (!new_pmd)
goto no_pmd;
new_pte = pte_alloc_map(mm, new_pmd, 0);
if (!new_pte)
goto no_pte;
init_pmd = pmd_offset(init_pgd, 0);
init_pte = pte_offset_map_nested(init_pmd, 0);
set_pte(new_pte, *init_pte);
pte_unmap_nested(init_pte);
pte_unmap(new_pte);
spin_unlock(&mm->page_table_lock);
}
return new_pgd;
no_pte:
spin_unlock(&mm->page_table_lock);
pmd_free(new_pmd);
free_pages((unsigned long)new_pgd, 2);
return NULL;
no_pmd:
spin_unlock(&mm->page_table_lock);
free_pages((unsigned long)new_pgd, 2);
return NULL;
no_pgd:
return NULL;
}
void free_pgd_slow(pgd_t *pgd)
{
pmd_t *pmd;
struct page *pte;
if (!pgd)
return;
/* pgd is always present and good */
pmd = pmd_off(pgd, 0);
if (pmd_none(*pmd))
goto free;
if (pmd_bad(*pmd)) {
pmd_ERROR(*pmd);
pmd_clear(pmd);
goto free;
}
pte = pmd_page(*pmd);
pmd_clear(pmd);
dec_page_state(nr_page_table_pages);
pte_free(pte);
pmd_free(pmd);
free:
free_pages((unsigned long) pgd, 2);
}
/*
* Create a SECTION PGD between VIRT and PHYS in domain
* DOMAIN with protection PROT. This operates on half-
* pgdir entry increments.
*/
static inline void
alloc_init_section(unsigned long virt, unsigned long phys, int prot)
{
pmd_t *pmdp = pmd_off_k(virt);
if (virt & (1 << 20))
pmdp++;
*pmdp = __pmd(phys | prot);
flush_pmd_entry(pmdp);
}
/*
* Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
*/
static inline void
alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
{
int i;
for (i = 0; i < 16; i += 1) {
alloc_init_section(virt, phys, prot | PMD_SECT_SUPER);
virt += (PGDIR_SIZE / 2);
}
}
/*
* Add a PAGE mapping between VIRT and PHYS in domain
* DOMAIN with protection PROT. Note that due to the
* way we map the PTEs, we must allocate two PTE_SIZE'd
* blocks - one for the Linux pte table, and one for
* the hardware pte table.
*/
static inline void
alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
{
pmd_t *pmdp = pmd_off_k(virt);
pte_t *ptep;
if (pmd_none(*pmdp)) {
ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
sizeof(pte_t));
__pmd_populate(pmdp, __pa(ptep) | prot_l1);
}
ptep = pte_offset_kernel(pmdp, virt);
set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
}
struct mem_types {
unsigned int prot_pte;
unsigned int prot_l1;
unsigned int prot_sect;
unsigned int domain;
};
static struct mem_types mem_types[] __initdata = {
[MT_DEVICE] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_WRITE,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
PMD_SECT_AP_WRITE,
.domain = DOMAIN_IO,
},
[MT_CACHECLEAN] = {
.prot_sect = PMD_TYPE_SECT,
.domain = DOMAIN_KERNEL,
},
[MT_MINICLEAN] = {
.prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE,
.domain = DOMAIN_KERNEL,
},
[MT_LOW_VECTORS] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_EXEC,
.prot_l1 = PMD_TYPE_TABLE,
.domain = DOMAIN_USER,
},
[MT_HIGH_VECTORS] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_USER | L_PTE_EXEC,
.prot_l1 = PMD_TYPE_TABLE,
.domain = DOMAIN_USER,
},
[MT_MEMORY] = {
.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
.domain = DOMAIN_KERNEL,
},
[MT_ROM] = {
.prot_sect = PMD_TYPE_SECT,
.domain = DOMAIN_KERNEL,
},
[MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_WRITE,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
PMD_SECT_TEX(1),
.domain = DOMAIN_IO,
}
};
/*
* Adjust the PMD section entries according to the CPU in use.
*/
void __init build_mem_type_table(void)
{
struct cachepolicy *cp;
unsigned int cr = get_cr();
unsigned int user_pgprot;
int cpu_arch = cpu_architecture();
int i;
#if defined(CONFIG_CPU_DCACHE_DISABLE)
if (cachepolicy > CPOLICY_BUFFERED)
cachepolicy = CPOLICY_BUFFERED;
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
if (cachepolicy > CPOLICY_WRITETHROUGH)
cachepolicy = CPOLICY_WRITETHROUGH;
#endif
if (cpu_arch < CPU_ARCH_ARMv5) {
if (cachepolicy >= CPOLICY_WRITEALLOC)
cachepolicy = CPOLICY_WRITEBACK;
ecc_mask = 0;
}
if (cpu_arch <= CPU_ARCH_ARMv5TEJ) {
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
if (mem_types[i].prot_l1)
mem_types[i].prot_l1 |= PMD_BIT4;
if (mem_types[i].prot_sect)
mem_types[i].prot_sect |= PMD_BIT4;
}
}
cp = &cache_policies[cachepolicy];
user_pgprot = cp->pte;
/*
* ARMv6 and above have extended page tables.
*/
if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
/*
* bit 4 becomes XN which we must clear for the
* kernel memory mapping.
*/
mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;
mem_types[MT_ROM].prot_sect &= ~PMD_BIT4;
/*
* Mark cache clean areas and XIP ROM read only
* from SVC mode and no access from userspace.
*/
mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
/*
* Mark the device area as "shared device"
*/
mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
/*
* User pages need to be mapped with the ASID
* (iow, non-global)
*/
user_pgprot |= L_PTE_ASID;
}
if (cpu_arch >= CPU_ARCH_ARMv5) {
mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
} else {
mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte;
mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte;
mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
}
mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
mem_types[MT_ROM].prot_sect |= cp->pmd;
for (i = 0; i < 16; i++) {
unsigned long v = pgprot_val(protection_map[i]);
v = (v & ~(PTE_BUFFERABLE|PTE_CACHEABLE)) | user_pgprot;
protection_map[i] = __pgprot(v);
}
pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
L_PTE_DIRTY | L_PTE_WRITE |
L_PTE_EXEC | cp->pte);
switch (cp->pmd) {
case PMD_SECT_WT:
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
break;
case PMD_SECT_WB:
case PMD_SECT_WBWA:
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
break;
}
printk("Memory policy: ECC %sabled, Data cache %s\n",
ecc_mask ? "en" : "dis", cp->policy);
}
#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
/*
* Create the page directory entries and any necessary
* page tables for the mapping specified by `md'. We
* are able to cope here with varying sizes and address
* offsets, and we take full advantage of sections and
* supersections.
*/
void __init create_mapping(struct map_desc *md)
{
unsigned long virt, length;
int prot_sect, prot_l1, domain;
pgprot_t prot_pte;
long off;
if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
printk(KERN_WARNING "BUG: not creating mapping for "
"0x%08lx at 0x%08lx in user region\n",
md->physical, md->virtual);
return;
}
if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx "
"overlaps vmalloc space\n",
md->physical, md->virtual);
}
domain = mem_types[md->type].domain;
prot_pte = __pgprot(mem_types[md->type].prot_pte);
prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);
virt = md->virtual;
off = md->physical - virt;
length = md->length;
if (mem_types[md->type].prot_l1 == 0 &&
(virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
"be mapped using pages, ignoring.\n",
md->physical, md->virtual);
return;
}
while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
alloc_init_page(virt, virt + off, prot_l1, prot_pte);
virt += PAGE_SIZE;
length -= PAGE_SIZE;
}
/* N.B. ARMv6 supersections are only defined to work with domain 0.
* Since domain assignments can in fact be arbitrary, the
* 'domain == 0' check below is required to insure that ARMv6
* supersections are only allocated for domain 0 regardless
* of the actual domain assignments in use.
*/
if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) {
/* Align to supersection boundary */
while ((virt & ~SUPERSECTION_MASK || (virt + off) &
~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) {
alloc_init_section(virt, virt + off, prot_sect);
virt += (PGDIR_SIZE / 2);
length -= (PGDIR_SIZE / 2);
}
while (length >= SUPERSECTION_SIZE) {
alloc_init_supersection(virt, virt + off, prot_sect);
virt += SUPERSECTION_SIZE;
length -= SUPERSECTION_SIZE;
}
}
/*
* A section mapping covers half a "pgdir" entry.
*/
while (length >= (PGDIR_SIZE / 2)) {
alloc_init_section(virt, virt + off, prot_sect);
virt += (PGDIR_SIZE / 2);
length -= (PGDIR_SIZE / 2);
}
while (length >= PAGE_SIZE) {
alloc_init_page(virt, virt + off, prot_l1, prot_pte);
virt += PAGE_SIZE;
length -= PAGE_SIZE;
}
}
/*
* In order to soft-boot, we need to insert a 1:1 mapping in place of
* the user-mode pages. This will then ensure that we have predictable
* results when turning the mmu off
*/
void setup_mm_for_reboot(char mode)
{
unsigned long base_pmdval;
pgd_t *pgd;
int i;
if (current->mm && current->mm->pgd)
pgd = current->mm->pgd;
else
pgd = init_mm.pgd;
base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ)
base_pmdval |= PMD_BIT4;
for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
pmd_t *pmd;
pmd = pmd_off(pgd, i << PGDIR_SHIFT);
pmd[0] = __pmd(pmdval);
pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
flush_pmd_entry(pmd);
}
}
/*
* Create the architecture specific mappings
*/
void __init iotable_init(struct map_desc *io_desc, int nr)
{
int i;
for (i = 0; i < nr; i++)
create_mapping(io_desc + i);
}