linux/drivers/scsi/sun_esp.c

660 lines
14 KiB
C
Raw Normal View History

/* sun_esp.c: ESP front-end for Sparc SBUS systems.
*
* Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/module.h>
2008-07-24 04:28:13 +00:00
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/of.h>
#include <linux/of_device.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/gfp.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <scsi/scsi_host.h>
#include "esp_scsi.h"
#define DRV_MODULE_NAME "sun_esp"
#define PFX DRV_MODULE_NAME ": "
#define DRV_VERSION "1.100"
#define DRV_MODULE_RELDATE "August 27, 2008"
#define dma_read32(REG) \
sbus_readl(esp->dma_regs + (REG))
#define dma_write32(VAL, REG) \
sbus_writel((VAL), esp->dma_regs + (REG))
/* DVMA chip revisions */
enum dvma_rev {
dvmarev0,
dvmaesc1,
dvmarev1,
dvmarev2,
dvmarev3,
dvmarevplus,
dvmahme
};
static int esp_sbus_setup_dma(struct esp *esp, struct platform_device *dma_of)
{
esp->dma = dma_of;
esp->dma_regs = of_ioremap(&dma_of->resource[0], 0,
resource_size(&dma_of->resource[0]),
"espdma");
if (!esp->dma_regs)
return -ENOMEM;
switch (dma_read32(DMA_CSR) & DMA_DEVICE_ID) {
case DMA_VERS0:
esp->dmarev = dvmarev0;
break;
case DMA_ESCV1:
esp->dmarev = dvmaesc1;
break;
case DMA_VERS1:
esp->dmarev = dvmarev1;
break;
case DMA_VERS2:
esp->dmarev = dvmarev2;
break;
case DMA_VERHME:
esp->dmarev = dvmahme;
break;
case DMA_VERSPLUS:
esp->dmarev = dvmarevplus;
break;
}
return 0;
}
static int esp_sbus_map_regs(struct esp *esp, int hme)
{
struct platform_device *op = esp->dev;
struct resource *res;
/* On HME, two reg sets exist, first is DVMA,
* second is ESP registers.
*/
if (hme)
res = &op->resource[1];
else
res = &op->resource[0];
esp->regs = of_ioremap(res, 0, SBUS_ESP_REG_SIZE, "ESP");
if (!esp->regs)
return -ENOMEM;
return 0;
}
static int esp_sbus_map_command_block(struct esp *esp)
{
struct platform_device *op = esp->dev;
esp->command_block = dma_alloc_coherent(&op->dev, 16,
&esp->command_block_dma,
GFP_ATOMIC);
if (!esp->command_block)
return -ENOMEM;
return 0;
}
static int esp_sbus_register_irq(struct esp *esp)
{
struct Scsi_Host *host = esp->host;
struct platform_device *op = esp->dev;
host->irq = op->archdata.irqs[0];
return request_irq(host->irq, scsi_esp_intr, IRQF_SHARED, "ESP", esp);
}
static void esp_get_scsi_id(struct esp *esp, struct platform_device *espdma)
{
struct platform_device *op = esp->dev;
struct device_node *dp;
dp = op->dev.of_node;
esp->scsi_id = of_getintprop_default(dp, "initiator-id", 0xff);
if (esp->scsi_id != 0xff)
goto done;
esp->scsi_id = of_getintprop_default(dp, "scsi-initiator-id", 0xff);
if (esp->scsi_id != 0xff)
goto done;
esp->scsi_id = of_getintprop_default(espdma->dev.of_node,
"scsi-initiator-id", 7);
done:
esp->host->this_id = esp->scsi_id;
esp->scsi_id_mask = (1 << esp->scsi_id);
}
static void esp_get_differential(struct esp *esp)
{
struct platform_device *op = esp->dev;
struct device_node *dp;
dp = op->dev.of_node;
if (of_find_property(dp, "differential", NULL))
esp->flags |= ESP_FLAG_DIFFERENTIAL;
else
esp->flags &= ~ESP_FLAG_DIFFERENTIAL;
}
static void esp_get_clock_params(struct esp *esp)
{
struct platform_device *op = esp->dev;
struct device_node *bus_dp, *dp;
int fmhz;
dp = op->dev.of_node;
bus_dp = dp->parent;
fmhz = of_getintprop_default(dp, "clock-frequency", 0);
if (fmhz == 0)
fmhz = of_getintprop_default(bus_dp, "clock-frequency", 0);
esp->cfreq = fmhz;
}
static void esp_get_bursts(struct esp *esp, struct platform_device *dma_of)
{
struct device_node *dma_dp = dma_of->dev.of_node;
struct platform_device *op = esp->dev;
struct device_node *dp;
u8 bursts, val;
dp = op->dev.of_node;
bursts = of_getintprop_default(dp, "burst-sizes", 0xff);
val = of_getintprop_default(dma_dp, "burst-sizes", 0xff);
if (val != 0xff)
bursts &= val;
val = of_getintprop_default(dma_dp->parent, "burst-sizes", 0xff);
if (val != 0xff)
bursts &= val;
if (bursts == 0xff ||
(bursts & DMA_BURST16) == 0 ||
(bursts & DMA_BURST32) == 0)
bursts = (DMA_BURST32 - 1);
esp->bursts = bursts;
}
static void esp_sbus_get_props(struct esp *esp, struct platform_device *espdma)
{
esp_get_scsi_id(esp, espdma);
esp_get_differential(esp);
esp_get_clock_params(esp);
esp_get_bursts(esp, espdma);
}
static void sbus_esp_write8(struct esp *esp, u8 val, unsigned long reg)
{
sbus_writeb(val, esp->regs + (reg * 4UL));
}
static u8 sbus_esp_read8(struct esp *esp, unsigned long reg)
{
return sbus_readb(esp->regs + (reg * 4UL));
}
static dma_addr_t sbus_esp_map_single(struct esp *esp, void *buf,
size_t sz, int dir)
{
struct platform_device *op = esp->dev;
return dma_map_single(&op->dev, buf, sz, dir);
}
static int sbus_esp_map_sg(struct esp *esp, struct scatterlist *sg,
int num_sg, int dir)
{
struct platform_device *op = esp->dev;
return dma_map_sg(&op->dev, sg, num_sg, dir);
}
static void sbus_esp_unmap_single(struct esp *esp, dma_addr_t addr,
size_t sz, int dir)
{
struct platform_device *op = esp->dev;
dma_unmap_single(&op->dev, addr, sz, dir);
}
static void sbus_esp_unmap_sg(struct esp *esp, struct scatterlist *sg,
int num_sg, int dir)
{
struct platform_device *op = esp->dev;
dma_unmap_sg(&op->dev, sg, num_sg, dir);
}
static int sbus_esp_irq_pending(struct esp *esp)
{
if (dma_read32(DMA_CSR) & (DMA_HNDL_INTR | DMA_HNDL_ERROR))
return 1;
return 0;
}
static void sbus_esp_reset_dma(struct esp *esp)
{
int can_do_burst16, can_do_burst32, can_do_burst64;
int can_do_sbus64, lim;
struct platform_device *op;
u32 val;
can_do_burst16 = (esp->bursts & DMA_BURST16) != 0;
can_do_burst32 = (esp->bursts & DMA_BURST32) != 0;
can_do_burst64 = 0;
can_do_sbus64 = 0;
op = esp->dev;
if (sbus_can_dma_64bit())
can_do_sbus64 = 1;
if (sbus_can_burst64())
can_do_burst64 = (esp->bursts & DMA_BURST64) != 0;
/* Put the DVMA into a known state. */
if (esp->dmarev != dvmahme) {
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_RST_SCSI, DMA_CSR);
dma_write32(val & ~DMA_RST_SCSI, DMA_CSR);
}
switch (esp->dmarev) {
case dvmahme:
dma_write32(DMA_RESET_FAS366, DMA_CSR);
dma_write32(DMA_RST_SCSI, DMA_CSR);
esp->prev_hme_dmacsr = (DMA_PARITY_OFF | DMA_2CLKS |
DMA_SCSI_DISAB | DMA_INT_ENAB);
esp->prev_hme_dmacsr &= ~(DMA_ENABLE | DMA_ST_WRITE |
DMA_BRST_SZ);
if (can_do_burst64)
esp->prev_hme_dmacsr |= DMA_BRST64;
else if (can_do_burst32)
esp->prev_hme_dmacsr |= DMA_BRST32;
if (can_do_sbus64) {
esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64;
sbus_set_sbus64(&op->dev, esp->bursts);
}
lim = 1000;
while (dma_read32(DMA_CSR) & DMA_PEND_READ) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA_PEND_READ "
"will not clear!\n",
esp->host->unique_id);
break;
}
udelay(1);
}
dma_write32(0, DMA_CSR);
dma_write32(esp->prev_hme_dmacsr, DMA_CSR);
dma_write32(0, DMA_ADDR);
break;
case dvmarev2:
if (esp->rev != ESP100) {
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_3CLKS, DMA_CSR);
}
break;
case dvmarev3:
val = dma_read32(DMA_CSR);
val &= ~DMA_3CLKS;
val |= DMA_2CLKS;
if (can_do_burst32) {
val &= ~DMA_BRST_SZ;
val |= DMA_BRST32;
}
dma_write32(val, DMA_CSR);
break;
case dvmaesc1:
val = dma_read32(DMA_CSR);
val |= DMA_ADD_ENABLE;
val &= ~DMA_BCNT_ENAB;
if (!can_do_burst32 && can_do_burst16) {
val |= DMA_ESC_BURST;
} else {
val &= ~(DMA_ESC_BURST);
}
dma_write32(val, DMA_CSR);
break;
default:
break;
}
/* Enable interrupts. */
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_INT_ENAB, DMA_CSR);
}
static void sbus_esp_dma_drain(struct esp *esp)
{
u32 csr;
int lim;
if (esp->dmarev == dvmahme)
return;
csr = dma_read32(DMA_CSR);
if (!(csr & DMA_FIFO_ISDRAIN))
return;
if (esp->dmarev != dvmarev3 && esp->dmarev != dvmaesc1)
dma_write32(csr | DMA_FIFO_STDRAIN, DMA_CSR);
lim = 1000;
while (dma_read32(DMA_CSR) & DMA_FIFO_ISDRAIN) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA will not drain!\n",
esp->host->unique_id);
break;
}
udelay(1);
}
}
static void sbus_esp_dma_invalidate(struct esp *esp)
{
if (esp->dmarev == dvmahme) {
dma_write32(DMA_RST_SCSI, DMA_CSR);
esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr |
(DMA_PARITY_OFF | DMA_2CLKS |
DMA_SCSI_DISAB | DMA_INT_ENAB)) &
~(DMA_ST_WRITE | DMA_ENABLE));
dma_write32(0, DMA_CSR);
dma_write32(esp->prev_hme_dmacsr, DMA_CSR);
/* This is necessary to avoid having the SCSI channel
* engine lock up on us.
*/
dma_write32(0, DMA_ADDR);
} else {
u32 val;
int lim;
lim = 1000;
while ((val = dma_read32(DMA_CSR)) & DMA_PEND_READ) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA will not "
"invalidate!\n", esp->host->unique_id);
break;
}
udelay(1);
}
val &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB);
val |= DMA_FIFO_INV;
dma_write32(val, DMA_CSR);
val &= ~DMA_FIFO_INV;
dma_write32(val, DMA_CSR);
}
}
static void sbus_esp_send_dma_cmd(struct esp *esp, u32 addr, u32 esp_count,
u32 dma_count, int write, u8 cmd)
{
u32 csr;
BUG_ON(!(cmd & ESP_CMD_DMA));
sbus_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
sbus_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
if (esp->rev == FASHME) {
sbus_esp_write8(esp, (esp_count >> 16) & 0xff, FAS_RLO);
sbus_esp_write8(esp, 0, FAS_RHI);
scsi_esp_cmd(esp, cmd);
csr = esp->prev_hme_dmacsr;
csr |= DMA_SCSI_DISAB | DMA_ENABLE;
if (write)
csr |= DMA_ST_WRITE;
else
csr &= ~DMA_ST_WRITE;
esp->prev_hme_dmacsr = csr;
dma_write32(dma_count, DMA_COUNT);
dma_write32(addr, DMA_ADDR);
dma_write32(csr, DMA_CSR);
} else {
csr = dma_read32(DMA_CSR);
csr |= DMA_ENABLE;
if (write)
csr |= DMA_ST_WRITE;
else
csr &= ~DMA_ST_WRITE;
dma_write32(csr, DMA_CSR);
if (esp->dmarev == dvmaesc1) {
u32 end = PAGE_ALIGN(addr + dma_count + 16U);
dma_write32(end - addr, DMA_COUNT);
}
dma_write32(addr, DMA_ADDR);
scsi_esp_cmd(esp, cmd);
}
}
static int sbus_esp_dma_error(struct esp *esp)
{
u32 csr = dma_read32(DMA_CSR);
if (csr & DMA_HNDL_ERROR)
return 1;
return 0;
}
static const struct esp_driver_ops sbus_esp_ops = {
.esp_write8 = sbus_esp_write8,
.esp_read8 = sbus_esp_read8,
.map_single = sbus_esp_map_single,
.map_sg = sbus_esp_map_sg,
.unmap_single = sbus_esp_unmap_single,
.unmap_sg = sbus_esp_unmap_sg,
.irq_pending = sbus_esp_irq_pending,
.reset_dma = sbus_esp_reset_dma,
.dma_drain = sbus_esp_dma_drain,
.dma_invalidate = sbus_esp_dma_invalidate,
.send_dma_cmd = sbus_esp_send_dma_cmd,
.dma_error = sbus_esp_dma_error,
};
static int esp_sbus_probe_one(struct platform_device *op,
struct platform_device *espdma, int hme)
{
struct scsi_host_template *tpnt = &scsi_esp_template;
struct Scsi_Host *host;
struct esp *esp;
int err;
host = scsi_host_alloc(tpnt, sizeof(struct esp));
err = -ENOMEM;
if (!host)
goto fail;
host->max_id = (hme ? 16 : 8);
esp = shost_priv(host);
esp->host = host;
esp->dev = op;
esp->ops = &sbus_esp_ops;
if (hme)
esp->flags |= ESP_FLAG_WIDE_CAPABLE;
err = esp_sbus_setup_dma(esp, espdma);
if (err < 0)
goto fail_unlink;
err = esp_sbus_map_regs(esp, hme);
if (err < 0)
goto fail_unlink;
err = esp_sbus_map_command_block(esp);
if (err < 0)
goto fail_unmap_regs;
err = esp_sbus_register_irq(esp);
if (err < 0)
goto fail_unmap_command_block;
esp_sbus_get_props(esp, espdma);
/* Before we try to touch the ESP chip, ESC1 dma can
* come up with the reset bit set, so make sure that
* is clear first.
*/
if (esp->dmarev == dvmaesc1) {
u32 val = dma_read32(DMA_CSR);
dma_write32(val & ~DMA_RST_SCSI, DMA_CSR);
}
dev_set_drvdata(&op->dev, esp);
err = scsi_esp_register(esp, &op->dev);
if (err)
goto fail_free_irq;
return 0;
fail_free_irq:
free_irq(host->irq, esp);
fail_unmap_command_block:
dma_free_coherent(&op->dev, 16,
esp->command_block,
esp->command_block_dma);
fail_unmap_regs:
of_iounmap(&op->resource[(hme ? 1 : 0)], esp->regs, SBUS_ESP_REG_SIZE);
fail_unlink:
scsi_host_put(host);
fail:
return err;
}
static int esp_sbus_probe(struct platform_device *op)
{
struct device_node *dma_node = NULL;
struct device_node *dp = op->dev.of_node;
struct platform_device *dma_of = NULL;
int hme = 0;
if (dp->parent &&
(!strcmp(dp->parent->name, "espdma") ||
!strcmp(dp->parent->name, "dma")))
dma_node = dp->parent;
else if (!strcmp(dp->name, "SUNW,fas")) {
dma_node = op->dev.of_node;
hme = 1;
}
if (dma_node)
dma_of = of_find_device_by_node(dma_node);
if (!dma_of)
return -ENODEV;
return esp_sbus_probe_one(op, dma_of, hme);
}
static int esp_sbus_remove(struct platform_device *op)
{
struct esp *esp = dev_get_drvdata(&op->dev);
struct platform_device *dma_of = esp->dma;
unsigned int irq = esp->host->irq;
bool is_hme;
u32 val;
scsi_esp_unregister(esp);
/* Disable interrupts. */
val = dma_read32(DMA_CSR);
dma_write32(val & ~DMA_INT_ENAB, DMA_CSR);
free_irq(irq, esp);
is_hme = (esp->dmarev == dvmahme);
dma_free_coherent(&op->dev, 16,
esp->command_block,
esp->command_block_dma);
of_iounmap(&op->resource[(is_hme ? 1 : 0)], esp->regs,
SBUS_ESP_REG_SIZE);
of_iounmap(&dma_of->resource[0], esp->dma_regs,
resource_size(&dma_of->resource[0]));
scsi_host_put(esp->host);
dev_set_drvdata(&op->dev, NULL);
return 0;
}
static const struct of_device_id esp_match[] = {
{
.name = "SUNW,esp",
},
{
.name = "SUNW,fas",
},
{
.name = "esp",
},
{},
};
MODULE_DEVICE_TABLE(of, esp_match);
static struct platform_driver esp_sbus_driver = {
.driver = {
.name = "esp",
.owner = THIS_MODULE,
.of_match_table = esp_match,
},
.probe = esp_sbus_probe,
.remove = esp_sbus_remove,
};
static int __init sunesp_init(void)
{
return platform_driver_register(&esp_sbus_driver);
}
static void __exit sunesp_exit(void)
{
platform_driver_unregister(&esp_sbus_driver);
}
MODULE_DESCRIPTION("Sun ESP SCSI driver");
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
module_init(sunesp_init);
module_exit(sunesp_exit);