2015-11-17 11:50:51 +00:00
|
|
|
#include <linux/ftrace.h>
|
2014-01-24 10:56:19 +00:00
|
|
|
#include <linux/percpu.h>
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
#include <linux/slab.h>
|
2016-10-18 10:27:48 +00:00
|
|
|
#include <asm/alternative.h>
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
#include <asm/cacheflush.h>
|
2016-10-18 10:27:48 +00:00
|
|
|
#include <asm/cpufeature.h>
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
#include <asm/debug-monitors.h>
|
2016-10-18 10:27:48 +00:00
|
|
|
#include <asm/exec.h>
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
#include <asm/pgtable.h>
|
|
|
|
#include <asm/memory.h>
|
2014-12-19 17:03:47 +00:00
|
|
|
#include <asm/mmu_context.h>
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
#include <asm/smp_plat.h>
|
|
|
|
#include <asm/suspend.h>
|
|
|
|
|
|
|
|
/*
|
2016-04-27 16:47:07 +00:00
|
|
|
* This is allocated by cpu_suspend_init(), and used to store a pointer to
|
|
|
|
* the 'struct sleep_stack_data' the contains a particular CPUs state.
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
*/
|
2016-04-27 16:47:07 +00:00
|
|
|
unsigned long *sleep_save_stash;
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
|
2014-01-10 13:15:05 +00:00
|
|
|
/*
|
|
|
|
* This hook is provided so that cpu_suspend code can restore HW
|
|
|
|
* breakpoints as early as possible in the resume path, before reenabling
|
|
|
|
* debug exceptions. Code cannot be run from a CPU PM notifier since by the
|
|
|
|
* time the notifier runs debug exceptions might have been enabled already,
|
|
|
|
* with HW breakpoints registers content still in an unknown state.
|
|
|
|
*/
|
2016-08-15 17:55:11 +00:00
|
|
|
static int (*hw_breakpoint_restore)(unsigned int);
|
|
|
|
void __init cpu_suspend_set_dbg_restorer(int (*hw_bp_restore)(unsigned int))
|
2014-01-10 13:15:05 +00:00
|
|
|
{
|
|
|
|
/* Prevent multiple restore hook initializations */
|
|
|
|
if (WARN_ON(hw_breakpoint_restore))
|
|
|
|
return;
|
|
|
|
hw_breakpoint_restore = hw_bp_restore;
|
|
|
|
}
|
|
|
|
|
2016-04-27 16:47:06 +00:00
|
|
|
void notrace __cpu_suspend_exit(void)
|
|
|
|
{
|
2016-08-15 17:55:11 +00:00
|
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
|
2016-04-27 16:47:06 +00:00
|
|
|
/*
|
|
|
|
* We are resuming from reset with the idmap active in TTBR0_EL1.
|
|
|
|
* We must uninstall the idmap and restore the expected MMU
|
|
|
|
* state before we can possibly return to userspace.
|
|
|
|
*/
|
|
|
|
cpu_uninstall_idmap();
|
|
|
|
|
2016-10-18 10:27:48 +00:00
|
|
|
/*
|
|
|
|
* PSTATE was not saved over suspend/resume, re-enable any detected
|
|
|
|
* features that might not have been set correctly.
|
|
|
|
*/
|
|
|
|
asm(ALTERNATIVE("nop", SET_PSTATE_PAN(1), ARM64_HAS_PAN,
|
|
|
|
CONFIG_ARM64_PAN));
|
|
|
|
uao_thread_switch(current);
|
|
|
|
|
2016-04-27 16:47:06 +00:00
|
|
|
/*
|
|
|
|
* Restore HW breakpoint registers to sane values
|
|
|
|
* before debug exceptions are possibly reenabled
|
|
|
|
* through local_dbg_restore.
|
|
|
|
*/
|
|
|
|
if (hw_breakpoint_restore)
|
2016-08-15 17:55:11 +00:00
|
|
|
hw_breakpoint_restore(cpu);
|
2016-04-27 16:47:06 +00:00
|
|
|
}
|
|
|
|
|
arm64: kernel: refactor the CPU suspend API for retention states
CPU suspend is the standard kernel interface to be used to enter
low-power states on ARM64 systems. Current cpu_suspend implementation
by default assumes that all low power states are losing the CPU context,
so the CPU registers must be saved and cleaned to DRAM upon state
entry. Furthermore, the current cpu_suspend() implementation assumes
that if the CPU suspend back-end method returns when called, this has
to be considered an error regardless of the return code (which can be
successful) since the CPU was not expected to return from a code path that
is different from cpu_resume code path - eg returning from the reset vector.
All in all this means that the current API does not cope well with low-power
states that preserve the CPU context when entered (ie retention states),
since first of all the context is saved for nothing on state entry for
those states and a successful state entry can return as a normal function
return, which is considered an error by the current CPU suspend
implementation.
This patch refactors the cpu_suspend() API so that it can be split in
two separate functionalities. The arm64 cpu_suspend API just provides
a wrapper around CPU suspend operation hook. A new function is
introduced (for architecture code use only) for states that require
context saving upon entry:
__cpu_suspend(unsigned long arg, int (*fn)(unsigned long))
__cpu_suspend() saves the context on function entry and calls the
so called suspend finisher (ie fn) to complete the suspend operation.
The finisher is not expected to return, unless it fails in which case
the error is propagated back to the __cpu_suspend caller.
The API refactoring results in the following pseudo code call sequence for a
suspending CPU, when triggered from a kernel subsystem:
/*
* int cpu_suspend(unsigned long idx)
* @idx: idle state index
*/
{
-> cpu_suspend(idx)
|---> CPU operations suspend hook called, if present
|--> if (retention_state)
|--> direct suspend back-end call (eg PSCI suspend)
else
|--> __cpu_suspend(idx, &back_end_finisher);
}
By refactoring the cpu_suspend API this way, the CPU operations back-end
has a chance to detect whether idle states require state saving or not
and can call the required suspend operations accordingly either through
simple function call or indirectly through __cpu_suspend() which carries out
state saving and suspend finisher dispatching to complete idle state entry.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 13:54:50 +00:00
|
|
|
/*
|
2015-06-18 14:41:32 +00:00
|
|
|
* cpu_suspend
|
arm64: kernel: refactor the CPU suspend API for retention states
CPU suspend is the standard kernel interface to be used to enter
low-power states on ARM64 systems. Current cpu_suspend implementation
by default assumes that all low power states are losing the CPU context,
so the CPU registers must be saved and cleaned to DRAM upon state
entry. Furthermore, the current cpu_suspend() implementation assumes
that if the CPU suspend back-end method returns when called, this has
to be considered an error regardless of the return code (which can be
successful) since the CPU was not expected to return from a code path that
is different from cpu_resume code path - eg returning from the reset vector.
All in all this means that the current API does not cope well with low-power
states that preserve the CPU context when entered (ie retention states),
since first of all the context is saved for nothing on state entry for
those states and a successful state entry can return as a normal function
return, which is considered an error by the current CPU suspend
implementation.
This patch refactors the cpu_suspend() API so that it can be split in
two separate functionalities. The arm64 cpu_suspend API just provides
a wrapper around CPU suspend operation hook. A new function is
introduced (for architecture code use only) for states that require
context saving upon entry:
__cpu_suspend(unsigned long arg, int (*fn)(unsigned long))
__cpu_suspend() saves the context on function entry and calls the
so called suspend finisher (ie fn) to complete the suspend operation.
The finisher is not expected to return, unless it fails in which case
the error is propagated back to the __cpu_suspend caller.
The API refactoring results in the following pseudo code call sequence for a
suspending CPU, when triggered from a kernel subsystem:
/*
* int cpu_suspend(unsigned long idx)
* @idx: idle state index
*/
{
-> cpu_suspend(idx)
|---> CPU operations suspend hook called, if present
|--> if (retention_state)
|--> direct suspend back-end call (eg PSCI suspend)
else
|--> __cpu_suspend(idx, &back_end_finisher);
}
By refactoring the cpu_suspend API this way, the CPU operations back-end
has a chance to detect whether idle states require state saving or not
and can call the required suspend operations accordingly either through
simple function call or indirectly through __cpu_suspend() which carries out
state saving and suspend finisher dispatching to complete idle state entry.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 13:54:50 +00:00
|
|
|
*
|
|
|
|
* arg: argument to pass to the finisher function
|
|
|
|
* fn: finisher function pointer
|
|
|
|
*
|
|
|
|
*/
|
2015-06-18 14:41:32 +00:00
|
|
|
int cpu_suspend(unsigned long arg, int (*fn)(unsigned long))
|
arm64: kernel: refactor the CPU suspend API for retention states
CPU suspend is the standard kernel interface to be used to enter
low-power states on ARM64 systems. Current cpu_suspend implementation
by default assumes that all low power states are losing the CPU context,
so the CPU registers must be saved and cleaned to DRAM upon state
entry. Furthermore, the current cpu_suspend() implementation assumes
that if the CPU suspend back-end method returns when called, this has
to be considered an error regardless of the return code (which can be
successful) since the CPU was not expected to return from a code path that
is different from cpu_resume code path - eg returning from the reset vector.
All in all this means that the current API does not cope well with low-power
states that preserve the CPU context when entered (ie retention states),
since first of all the context is saved for nothing on state entry for
those states and a successful state entry can return as a normal function
return, which is considered an error by the current CPU suspend
implementation.
This patch refactors the cpu_suspend() API so that it can be split in
two separate functionalities. The arm64 cpu_suspend API just provides
a wrapper around CPU suspend operation hook. A new function is
introduced (for architecture code use only) for states that require
context saving upon entry:
__cpu_suspend(unsigned long arg, int (*fn)(unsigned long))
__cpu_suspend() saves the context on function entry and calls the
so called suspend finisher (ie fn) to complete the suspend operation.
The finisher is not expected to return, unless it fails in which case
the error is propagated back to the __cpu_suspend caller.
The API refactoring results in the following pseudo code call sequence for a
suspending CPU, when triggered from a kernel subsystem:
/*
* int cpu_suspend(unsigned long idx)
* @idx: idle state index
*/
{
-> cpu_suspend(idx)
|---> CPU operations suspend hook called, if present
|--> if (retention_state)
|--> direct suspend back-end call (eg PSCI suspend)
else
|--> __cpu_suspend(idx, &back_end_finisher);
}
By refactoring the cpu_suspend API this way, the CPU operations back-end
has a chance to detect whether idle states require state saving or not
and can call the required suspend operations accordingly either through
simple function call or indirectly through __cpu_suspend() which carries out
state saving and suspend finisher dispatching to complete idle state entry.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 13:54:50 +00:00
|
|
|
{
|
2016-04-27 16:47:06 +00:00
|
|
|
int ret = 0;
|
arm64: kernel: refactor the CPU suspend API for retention states
CPU suspend is the standard kernel interface to be used to enter
low-power states on ARM64 systems. Current cpu_suspend implementation
by default assumes that all low power states are losing the CPU context,
so the CPU registers must be saved and cleaned to DRAM upon state
entry. Furthermore, the current cpu_suspend() implementation assumes
that if the CPU suspend back-end method returns when called, this has
to be considered an error regardless of the return code (which can be
successful) since the CPU was not expected to return from a code path that
is different from cpu_resume code path - eg returning from the reset vector.
All in all this means that the current API does not cope well with low-power
states that preserve the CPU context when entered (ie retention states),
since first of all the context is saved for nothing on state entry for
those states and a successful state entry can return as a normal function
return, which is considered an error by the current CPU suspend
implementation.
This patch refactors the cpu_suspend() API so that it can be split in
two separate functionalities. The arm64 cpu_suspend API just provides
a wrapper around CPU suspend operation hook. A new function is
introduced (for architecture code use only) for states that require
context saving upon entry:
__cpu_suspend(unsigned long arg, int (*fn)(unsigned long))
__cpu_suspend() saves the context on function entry and calls the
so called suspend finisher (ie fn) to complete the suspend operation.
The finisher is not expected to return, unless it fails in which case
the error is propagated back to the __cpu_suspend caller.
The API refactoring results in the following pseudo code call sequence for a
suspending CPU, when triggered from a kernel subsystem:
/*
* int cpu_suspend(unsigned long idx)
* @idx: idle state index
*/
{
-> cpu_suspend(idx)
|---> CPU operations suspend hook called, if present
|--> if (retention_state)
|--> direct suspend back-end call (eg PSCI suspend)
else
|--> __cpu_suspend(idx, &back_end_finisher);
}
By refactoring the cpu_suspend API this way, the CPU operations back-end
has a chance to detect whether idle states require state saving or not
and can call the required suspend operations accordingly either through
simple function call or indirectly through __cpu_suspend() which carries out
state saving and suspend finisher dispatching to complete idle state entry.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 13:54:50 +00:00
|
|
|
unsigned long flags;
|
2016-04-27 16:47:06 +00:00
|
|
|
struct sleep_stack_data state;
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* From this point debug exceptions are disabled to prevent
|
|
|
|
* updates to mdscr register (saved and restored along with
|
|
|
|
* general purpose registers) from kernel debuggers.
|
|
|
|
*/
|
|
|
|
local_dbg_save(flags);
|
|
|
|
|
2015-11-17 11:50:51 +00:00
|
|
|
/*
|
|
|
|
* Function graph tracer state gets incosistent when the kernel
|
|
|
|
* calls functions that never return (aka suspend finishers) hence
|
|
|
|
* disable graph tracing during their execution.
|
|
|
|
*/
|
|
|
|
pause_graph_tracing();
|
|
|
|
|
2016-04-27 16:47:06 +00:00
|
|
|
if (__cpu_suspend_enter(&state)) {
|
|
|
|
/* Call the suspend finisher */
|
|
|
|
ret = fn(arg);
|
2014-01-24 10:56:19 +00:00
|
|
|
|
2014-01-10 13:15:05 +00:00
|
|
|
/*
|
2016-04-27 16:47:06 +00:00
|
|
|
* Never gets here, unless the suspend finisher fails.
|
|
|
|
* Successful cpu_suspend() should return from cpu_resume(),
|
|
|
|
* returning through this code path is considered an error
|
|
|
|
* If the return value is set to 0 force ret = -EOPNOTSUPP
|
|
|
|
* to make sure a proper error condition is propagated
|
2014-01-10 13:15:05 +00:00
|
|
|
*/
|
2016-04-27 16:47:06 +00:00
|
|
|
if (!ret)
|
|
|
|
ret = -EOPNOTSUPP;
|
|
|
|
} else {
|
|
|
|
__cpu_suspend_exit();
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
}
|
|
|
|
|
2015-11-17 11:50:51 +00:00
|
|
|
unpause_graph_tracing();
|
|
|
|
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
/*
|
|
|
|
* Restore pstate flags. OS lock and mdscr have been already
|
|
|
|
* restored, so from this point onwards, debugging is fully
|
|
|
|
* renabled if it was enabled when core started shutdown.
|
|
|
|
*/
|
|
|
|
local_dbg_restore(flags);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2014-07-17 17:19:20 +00:00
|
|
|
static int __init cpu_suspend_init(void)
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
{
|
|
|
|
/* ctx_ptr is an array of physical addresses */
|
2016-04-27 16:47:07 +00:00
|
|
|
sleep_save_stash = kcalloc(mpidr_hash_size(), sizeof(*sleep_save_stash),
|
|
|
|
GFP_KERNEL);
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
|
2016-04-27 16:47:07 +00:00
|
|
|
if (WARN_ON(!sleep_save_stash))
|
arm64: kernel: cpu_{suspend/resume} implementation
Kernel subsystems like CPU idle and suspend to RAM require a generic
mechanism to suspend a processor, save its context and put it into
a quiescent state. The cpu_{suspend}/{resume} implementation provides
such a framework through a kernel interface allowing to save/restore
registers, flush the context to DRAM and suspend/resume to/from
low-power states where processor context may be lost.
The CPU suspend implementation relies on the suspend protocol registered
in CPU operations to carry out a suspend request after context is
saved and flushed to DRAM. The cpu_suspend interface:
int cpu_suspend(unsigned long arg);
allows to pass an opaque parameter that is handed over to the suspend CPU
operations back-end so that it can take action according to the
semantics attached to it. The arg parameter allows suspend to RAM and CPU
idle drivers to communicate to suspend protocol back-ends; it requires
standardization so that the interface can be reused seamlessly across
systems, paving the way for generic drivers.
Context memory is allocated on the stack, whose address is stashed in a
per-cpu variable to keep track of it and passed to core functions that
save/restore the registers required by the architecture.
Even though, upon successful execution, the cpu_suspend function shuts
down the suspending processor, the warm boot resume mechanism, based
on the cpu_resume function, makes the resume path operate as a
cpu_suspend function return, so that cpu_suspend can be treated as a C
function by the caller, which simplifies coding the PM drivers that rely
on the cpu_suspend API.
Upon context save, the minimal amount of memory is flushed to DRAM so
that it can be retrieved when the MMU is off and caches are not searched.
The suspend CPU operation, depending on the required operations (eg CPU vs
Cluster shutdown) is in charge of flushing the cache hierarchy either
implicitly (by calling firmware implementations like PSCI) or explicitly
by executing the required cache maintainance functions.
Debug exceptions are disabled during cpu_{suspend}/{resume} operations
so that debug registers can be saved and restored properly preventing
preemption from debug agents enabled in the kernel.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 11:22:13 +00:00
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
early_initcall(cpu_suspend_init);
|